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Abstract: We consider the computing issues of the steady probabilities for block-structured discrete-
time Makrov chains that are of upper-Hessenberg or lower-Hessenberg transition kernels with a
continuous phase set. An effective computational framework is proposed based on the wavelet
transform, which extends and modifies the arguments in the literature for quasi-birth-death (QBD)
processes. A numerical procedure is developed for computing the steady probabilities based on the
fast discrete wavelet transform, and several examples are presented to illustrate its effectiveness.
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1. Introduction

Consider a two-dimensional block-structured discrete-time Markov chain (DTMC)
{(Ln, Xn) : n ∈ N} on the state space N× R, where N and R are sets of non-negative
integers and real numbers, respectively. Denote by B(R) the Borel σ-field of the set R.
The transition probability law is time homogeneous and is characterized by the following
transition kernel

Pij(x, A) = P{(Ln+1, Xn+1) ∈ j× A|(Ln, Xn) = (i, x)},

where i, j ∈ N, x ∈ R and A ∈ B(R). Recall that a two-dimensional function F(x, A) is
called a kernel if it is a measurable function in x for each A ∈ B(R), and a non-negative
measure on R for each x ∈ R. When A = (−∞, y], we write F(x, A) to be F(x, y) for
simplicity. Note that the kernel function Pij(x, y) is stochastic in the sense that Pij(x, ∞) :=
limy→∞ ∑j≥0 Pij(x, y) = 1 for all i and all x. The level and phase of each state (i, x) are
respectively represented by the first component i and the second component x. For any
i ≥ 0, define `i = {(i, x) : x ∈ R} to be the i level set. Then, the state space E can be
decomposed as E =

⋃∞
i=0 `i. For n ≥ 1, the corresponding n-step transition kernel is

given by

Pn(i, x; j, A) = ∑
k∈N

∫
R

Pn−1(i, x; k, dz)P(k, z; j, A) = P{Xn ∈ j× A|X0 = (i, x)}.

Two different types of block-structured discrete-time Markov chains are the focus of
this paper. The first one is the discrete-time GI/M/1-type Markov chain, whose transition
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kernel matrix PGI(x, y) := (PGI(i, x; j, y))i,j∈N is level independent and has the following
lower-Hessenberg block form:

PGI(x, y) =


B0(x, y) A0(x, y) 0 0 · · ·
B1(x, y) A1(x, y) A0(x, y) 0 · · ·
B2(x, y) A2(x, y) A1(x, y) A0(x, y) · · ·
B3(x, y) A3(x, y) A2(x, y) A1(x, y) · · ·

...
...

...
. . . . . .

. (1)

The second one is the discrete-time M/G/1-type Markov chain, whose transition
kernel matrix PM(x, y) := (PM(i, x; j, y))i,j∈N is level independent and has the following
upper-Hessenberg block form:

PM(x, y) =


B0(x, y) B1(x, y) B2(x, y) B3(x, y) · · ·
A0(x, y) A1(x, y) A2(x, y) A3(x, y) · · ·

0 A0(x, y) A1(x, y) A2(x, y) · · ·
0 0 A0(x, y) A1(x, y) · · ·
...

...
...

...
. . .

, (2)

These block-structured Markov chains are of the special features that the transition of
the level is skip-free to the right or skip-free to the left, respectively.

Tweedie [1] proposed the GI/M/1-type Markov chain with a continuous phase set
and demonstrated that the positive recurrent GI/M/1-type Markov chain is of the operator-
geometric stationary distribution. Thus, Tweedie [1] extended the well-known results for
the GI/M/1-type Markov chain with a finite phase set, which was derived by Neuts [2].
Tweedie’s finding was later applied by Breuer [3] to investigate the stationary distribution
for the embedded GI/G/k queue with a Lebsegue-dominated inter-arrival time distribution.
A positive recurrent tridiagonal block-structured quasi-birth-death (QBD) process with a
continuous phase set, as well as a computational framework of its stationary distribution,
are investigated by Nielsen and Ramaswami [4]. They also demonstrated the motivation
for investigating a model with a continuous phase set. The computational framework
was recently extended and improved by Jiang et al. [5] by incorporating the wavelet
transform approach.

The GI/M/1-type and M/G/1-type Markov chains with a finite phase set were
investigated systematically by Neuts in 1981 [2] and 1989 [6], respectively. Effective solver
tools for solving the stationary distribution for these chains were developed by Bini et al.
in [7], based on the algorithms collected in [8]. It is known that the matrices R and G
are key matrices for solving stationary distributions for GI/M/1-type and M/G/1-type
Markov chains, respectively. Since R and G are closely connected by Ramaswami dual
and Bright dual, the computation of matrix R for GI/M/1-type chains can be reduced to
the computation of matrix G for M/G/1-type Markov chains ([9–12]). Several effective
algorithms have been developed to compute the matrix G, such as functional iteration,
Newton iteration, invariant subspace method, cyclic reduction and Ramaswami Reduction.
Please refer to [13] for a detailed description of the algorithms.

As far as we know, the following two issues are still not well addressed in the literature:
(i) For a positive recurrent GI/M/1-type Markov chain with a continuous phase set,

numerical algorithms for computing the stationary distribution are missing, although the
theoretical framework has been established in [1],

(ii) M/G/1-type Markov chains are of the same importance as GI/M/1-type Markov
chains. However, both the theoretical and computational framework are missing for
M/G/1-type Markov chains with a continuous phase set.

The current research is motivated to investigate the above two issues. This paper is
organized into six sections. We provide an overview of DTMCs on a general state space and
the wavelet series expansion in two dimensions in Section 2. The GI/M/1-type Markov
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chains are introduced in Section 3, most of which are well known in the literature [1], except
for the computational analysis. The analysis of stationary distributions for M/G/1-type
Markov chains is performed in Section 4. Numerical experiments, including a brief de-
scription of numerical algorithms and two illustrative examples, are presented in Section 5.
Comparisons among different algorithms are executed with respect to the accuracy and
speed of calculation. Conclusions are presented in Section 6. Please refer to Table A1 for a
summary of frequently used notations.

2. Preliminaries
2.1. Basics about DTMCs on a General State Space

We present some basic concepts for DTMCs on a general state space. Please refer
to [14] for more details.

Let Φn be a DTMC on a general state space E endowed with the countably generated
σ-field B(E). Define τA = {n ≥ 1 : Φn ∈ A} to be the first return time on A. For a
non-negative nontrivial measure ψ, the chain Φn is called ψ-irreducible if there exits a
non-negative nontrivial measure ϕ, such that Φn is ϕ-irreducible, i.e.,

L(x, A) := P{τA < ∞|Φ0 = x} > 0

for any A ∈ B(E), ϕ(A) > 0 and any x ∈ A, and ψ is a maximal irreducible measure
with respect to ϕ. A set A ∈ B(E) is called a Harris recurrent if L(x, A) = 1 for all
x ∈ A. The chain Φn is called a Harris recurrent if it is ψ-irreducible and every set in
B+(E) := {A ∈ B(E) : ψ(A) > 0} is Harris recurrent. A Harris recurrent chain has an
unique invariant measure Π such that

Π(A) =
∫

E
Π(dx)P(x, A).

A Harris recurrent chain with a finite Π(E) is said to be Harris positive recurrent.
If Φn is Harris positive recurrent and aperiodic, then

Π(A) = lim
n→∞

Pn(x, A),

which implies that the limit of the transition kernel exists independently of the initial
state (i, x). In this case, Π(A) is called the invariant probability measure or the stationary
probability distribution.

We now introduce the censored Markov chain, which will be used later to deal with the
invariant probability distributions for block-structured Harris positive recurrent chains. Let
A be a non-empty subset in B(E). Let θk be the kth time that Φn successively visits a state
in A, i.e., θ0 = inf{m ≥ 0 : Φm ∈ A} and θk+1 = inf{m ≥ θk + 1 : Φm ∈ A}. The censored
Markov chain ΦA =

{
ΦA

k , k ≥ 0
}

on A is defined by ΦA
k = Φθk , k ≥ 0, whose one-step

transition kernel is denoted by PA(x, B), x ∈ E, B ∈ B(E). Define

APn(x, B) = P{Φn ∈ B, Φm /∈ A, 1 ≤ m ≤ n | Φ0 = x},

and

UA(x, B) =
∞

∑
n=1

APn(x, B).

When starting with Φ0 = x ∈ A and B ⊆ A, the censored chain ΦA evolves according
to the transition law

PA(x, B) = UA(x, B) = P{ΦτA ∈ B | Φ0 = x}.
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2.2. Basics about Wavelet in Two Dimensions

This section is concerned on some basics about the wavelet, most of which is taken
from [5] directly. Please refer to [15,16] for more details about the wavelet analysis.

Respectively denote the scaling function and the wavelet function by φ and ψ. For all
j ∈ Z, let φj,n(x) = 2−j/2φ

(
2−j(x− 2jn)

)
and ψj,n(x) = 2−j/2ψ

(
2−j(x− 2jn)

)
. Define

three wavelets

W(1)(x1, x2) = φ(x1)ψ(x2), W(2)(x1, x2) = ψ(x1)φ(x2), W(3)(x1, x2) = ψ(x1)ψ(x2),

and for all j in Z,

W(k)
j,n1,n2

(x1, x2) =
1
2j W(k)

(
x1 − 2jn1

2j ,
x2 − 2jn2

2j

)
, n1, n2 ∈ Z, 1 ≤ k ≤ 3.

Now, we consider the wavelet series expansion of a two-dimensional function. For each
i ∈ Z, define column vectors φi(x) = [φi,n(x) : n ∈ Z], ψi(x) = [ψi,n(x) : n ∈ Z],
and ζi(x) =

[
φT

i (x), ψT
i (x)

]T . By Lemma 3.1 in [5], any function u(x, y) ∈ L2(R2) can be
expanded as follows

u(x, y) = ζT(x)Uζ(y), (3)

where ζ(x) = [ζi(x) : i ∈ Z] is a column vector, the diagonal blocks of U are written as

Ui =

[
0 U(1)

i

U(3)
i U(3)

i

]

with (U(k)
i )m,n =< u, W(k)

i,m,n >.
Let U(x, y) be a kernel function whose density function is assumed to exist and is

denoted by u(x, y) := ∂U(x,y)
∂y . On the one hand, by performing (3) for the density of the

kernel function U(x, y), which is referred to as the wavelet transform (WT), we can find the
matrix U, also known as the associated matrix of U(x, y). On the other hand, for a given
associated matrix U, we can find the density function u(x, y) by performing (3) in the other
side, which is called the inverse wavelet transform (IWT).

As you will see in the following sections, it is crucial to deal with the convolution
operations of the transition kernels in order to investigate the stationary distributions.
The wavelet transform is introduced to transform these convolution operations into matrix
operations by expanding the kernels using the wavelet series. For any A ∈ B(E), define
the convolution C1 ∗ C2 of two kernel functions C1(x, y) and C2(x, y) by

C1 ∗ C2(x, A) =
∫
R

C1(x, dz)C2(z, A),

and define C(k)
1 (x, y) recursively by

C(k)
1 (x, y) =

∫
R

C(k−1)
1 (x, dz)C1(z, y) =

∫
R

C1(x, dz)C(k−1)
1 (z, y),

where C(0)
1 (x, x) = 1 and C(0)

1 (x, y) = 0 for any y 6= x. If ν is a signed measure on E,
we write

ν ∗ C1(A) =
∫

E
ν(dx)C1(x, A).

In order to expand the kernel functions through the wavelet transform, we need the
following assumption and theorem, which are both taken from [5].
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Assumption 1. All the kernel functions Bi(x, y) and Ai(x, y), i ≥ −1 belong to ∑H , where
H ⊂ R is of finite Lebesgue measure, and ∑H is the set of kernel functions U(x, y) having a density
function u(x, y) equaling to zeros outside of H × H.

Theorem 1 ([5]). Let {Fk(x, y), k ≥ 1} be a sequence of kernel functions in ∑H . Denote their
density functions by { fk(x, y), k ≥ 1}, and their associated matrices by {F̄k, k ≥ 1}.

(i) For any fixed n, the convolution kernel function F1 ∗ F2 ∗ · · · ∗ Fn(x, y) is also in ∑H , and
its associated matrix is ∏n

k=1 F̄k;
(ii) For any fixed n, the additive kernel function (F1 + F2 + · · ·+ Fn)(x, y) is also in ∑H and

its associated matrix is ∑n
k=1 F̄k;

(iii) If fn(x, y) converges to f (x, y), then the kernel function F(x, y) :=
∫ y
−∞ f (x, y)dy is

also in ∑H , and its associated matrix is F̄ = limn→∞ F̄n.

3. GI/M/1-Type Markov Chains

Consider a GI/M/1-type Markov chain (Ln, Xn), whose transition law P given by (1)
satisfies that for any C ∈ B(R)

P(i, x; j,R) = 0, j > i + 1,

P(i, x; j, C) = Ai−j+1(x, C), i ≥ j− 1, j ≥ 1,

P(i, x; 0, C) = Bi(x, C), i ≥ 0.

Define the kernel R(x, C) to be the expected number of visits to (i + 1)× C, starting
from (i, x) under the taboo set of

⋃i
k=0 `k. From [1], we know that the censored Markov

chain (Ln, Xn)`0 of the GI/M/1-type Markov chain on the zero level set `0 has the following
transition kernel

P`0
GI(x, C) =

∞

∑
k=0

R(k) ∗ Bk(x, C).

The following theorem is taken from [1], which characterizes the invariant probability
measure for GI/M/1-type Markov chains with a continuous phase set.

Theorem 2 ([1]). Suppose that the GI/M/1-type Markov Chain (Ln, Xn) with a continuous phase
set is Ψ-irreducible and Harris positive recurrent. Then, its unique stationary probability measure Π,
decomposed by Π(A) = (Π0(A), Π1(A), Π2(A), · · · ), satisfies the following recursive formula

Πk(A) = Π0 ∗ R(k)(A),

where the kernel R(x, A) is the minimal non-negative solution of the following equation

R(x, A) =
∞

∑
i=0

R(i) ∗ Ai(x, A),

and Π0(A) is uniquely determined by

Π0 ∗ P`0
GI(x, A) = Π0(A),

∞

∑
k=0

Π0 ∗ R(k)(x, E) = 1.

Applying Theorem 2 and Theorem 1, we can obtain the following theorem directly.

Theorem 3. Suppose that the GI/M/1-type Markov Chain (Ln, Xn) with a continuous phase set is
ψ-irreducible and Harris positive recurrent and that Assumption 1 holds.

(i) The kernels P`0
GI(x, y) and R(x, y) are in ∑H , whose associated matrices are, respectively,

denoted by P̄`0
GI , R̄ and B̄k.
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(ii) The invariant probability measure Πk is in ∑H . Let Π̄k be the associated row vector
of Πk(y), i.e., πk(y) = Π̄kζ(y), where πk(y) is the density of Πk(y), and ζ(y) is defined in
Section 2.2. Then, we have

Π̄k = Π̄0R̄(k),

and
Π̄0 P̄`0

GI = Π̄0, Π̄0(I − R̄)−11 = 1,

where P̄`0
GI = ∑∞

k=0 R̄(k)B̄k and 1 is the vector of 1’s with an appropriate dimension.

4. M/G/1-Type Markov Chains

In this section, we consider a M/G/1-type Markov Chain (Ln, Xn), whose transition
law P, given by (1), satisfies that for any C ∈ B(R)

P(i, x; j, C) = 0, for j < i− 1, i ≥ 1,

P(0, x; j, C) = Bj(x, C),

P(i, x; j, C) = Aj−i+1(x, C), for j ≥ i− 1, i ≥ 1.

Define τ`i
= inf{n ≥ 1 : Ln ∈ `i} to be the first return time to the level set `i for any

i ≥ 0. For any x ∈ R and any A ∈ B(R), define the following kernel function

G(x, A) = P
{

τ`i
< ∞, Xτ`i

∈ A | L0 = i + 1, X0 = x
}

,

which is independent of i due to the level independent structure of the chain. The first
result is about the kernel G(x, A), which plays a key role in analyzing M/G/1-type
Markov chains.

Theorem 4. Suppose that the M/G/1-type Markov chain (Ln, Xn) is ψ-irreducible. For any
A ∈ B(R), the kernel G(x, A) is the minimal nonnegative solution of the following equation

G(x, A) =
∞

∑
i=0

Ai ∗ G(i)(x, A), (4)

where G(i)(x, A) is the i-fold convolution of the kernel G(x, A) itself.

Proof. We first show that the kernel G(x, A) is a solution of Equation (4).
By conditioning on the state of the first transition, the kernel G(x, A) can be decom-

posed as follows

G(x, A) =
∫
R

∑
i∈N

[P{L1 = i, X1 ∈ dy | L0 = 1, X0 = x}

×P
{

τ`0 < ∞, Xτ`0
∈ A | L0 = i, X0 = y

}]
=

∫
R

∑
i∈N

Ai(x, dy)P
{

τ`0 < ∞, Xτ`0
∈ A | L0 = i, X0 = y

}
. (5)

We will use the inductive arguments to show

G(i)(y, A) = P
{

τ`0 < ∞, Xτ`0
∈ A | L0 = i, X0 = y

}
, i ≥ 1. (6)

Since the chain is level independent, when i = 1, we have

G(1)(y, A) = G(y, A) = P
{

τ`k
< ∞, Xτ`k

∈ A | L0 = k + 1, X0 = y
}
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for any k ≥ 0. Suppose that G(n) satisfies

G(n)(y, A) = P
{

τ`0 < ∞, Xτ`0
∈ A | L0 = n, X0 = y

}
.

By conditioning on the state of the first hitting on level `n and using the strong Markov
property, we have

P
{

τ`0 < ∞, Xτ`0
∈ A | L0 = n + 1, X0 = y

}
=
∫
R

P
{

τ`n < ∞, Xτ`n
∈ dx | L0 = n + 1, X0 = y

}
P
{

τ`0 < ∞, Xτ`0
∈ A | Lτ`n

= n, Xτ`n
= x

}
=
∫
R

P
{

τ`n < ∞, Xτ`n
∈ dx | L0 = n + 1, X0 = y

}
P
{

τ`0 < ∞, Xτ`0
∈ A | L0 = n, X0 = x

}
=
∫
R

G(1)(y, dx)G(n)(x, A)

= G(n+1)(y, A).

Substituting (6) into (5), we have

G(x, A) =
∫
R

∞

∑
i=0

Ai(x, dy)G(i)(y, A) =
∞

∑
i=0

Ai ∗ G(i)(y, A),

where we exchange the order between integration and summation by Fubini theorem.
Next we demonstrate that G(x, A) is the minimal non-negative solution of (4). We

divide the proof into two steps.
We first define a sequence of kernels {TN(x, A), N ≥ 1} by setting T0(x, A) = 0, and

TN+1(x, A) =
∞

∑
i=0

Ai ∗ T(i)
N (x, A), N ≥ 0.

Let Ĝ(x, A) be any solution of Equation (4). Obviously, Ĝ(x, A) ≥ 0 = T0(x, A).
Suppose that TN−1(x, A) ≤ Ĝ(x, A), then T(i)

N−1(x, A) ≤ Ĝ(i)(x, A) for i ≥ 1. Moreover,
we have

TN(x, A) =
∞

∑
i=0

Ai ∗ T(i)
N−1(x, A) ≤

∞

∑
i=0

Ai ∗ Ĝ(i)(x, A) = Ĝ(x, A). (7)

Similarly, if we assume inductively that TN−1(x, A) ≤ TN(x, A) , we have

TN(x, A) =
∞

∑
i=0

Ai ∗ T(i)
N−1(x, A) ≤

∞

∑
i=0

Ai ∗ T(i)
N (x, A) = TN+1(x, A),

and so TN(x, A) is monotonically increasing in N. Hence, the limit T∗(x, A) := limN→∞ ↑
TN(x, A) exists. Further, we have

T(k)
N (x, A) ↑ T(k)

∗ (x, A), k ≥ 1,

By taking the limit of both sides of Equation (6) and using the dominated convergence
theorem, we know that the kernel T∗(x, A) is a solution of (4), i.e.,

T∗(x, A) =
∞

∑
i=0

Ai ∗ T(i)
∗ (x, A),

We further have that T∗(x, A) is the minimal solution since T∗(x, A) ≤ Ĝ(x, A).
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Next, we need to prove that T∗(x, A) = G(x, A). Define

GN(x, A) = P
{

τ`0 ≤ N, Xτ`0
∈ A | L0 = 1, X0 = x

}
, N ≥ 1.

Obviously, we know that GN(x, A) ↑ G(x, A). By conditioning on the state of the first
transition, we have

GN+1(x, A) =
∫
R

N

∑
i=0

P
{

τ`0 ≤ N, Xτ`0
∈ A | L0 = i, X0 = y

}
× P{L1 = i, X1 ∈ dy | L0 = 1, X0 = x}. (8)

Denote
M(i)

N (y, A) = P
{

τ`0 ≤ N, Xτ`0
∈ A | L0 = i, X0 = y

}
.

By conditioning on the state of the first return time to level `i−1 and repeating the
same arguments, we have

M(i)
N (y, A) ≤

∫
R

P
{

τ`i−1
≤ N, Xτ`i−1

∈ dx | L0 = i, X0 = y
}

M(i−1)
N (x, A)

= G(1)
N ∗M(i−1)

N (y, A)

≤ G(2)
N ∗M(i−2)

N (y, A)

≤ · · ·
≤ G(i−1)

N ∗M(1)
N (y, A)

= G(i)
N (y, A). (9)

By (8) and (9), we can deduce that

GN+1(x, A) ≤
∫
R

N

∑
i=0

Ai(x, dy)G(i)
N (y, A)

≤
∫
R

∞

∑
i=0

Ai(x, dy)G(i)
N (y, A)

=
∞

∑
i=0

Ai ∗ G(i)
N (x, A)

Finally, note that G1(x, A) = A0(x, A) = T1(x, A), and so from (6), we have by
induction GN(x, A) ≤ TN(x, A). Taking the limit as N → ∞ gives G(x, A) ≤ T∗(x, A), as
required.

In the following, we will investigate numerical computing issues of the invariant
probability distribution for M/G/1-type chains. The key point is to set up the Ramaswami
algorithm, a well-known result for M/G/1-type chains with finite phases, for the M/G/1-
type chains with continuous phases.

Theorem 5. Suppose that the M/G/1-type Markov chain (Ln, Xn) is ψ-irreducible and Harris pos-
itive recurrent. Let the unique invariant probability measure be Π with Π(C) = (Π0(C), Π1(C),
Π2(C), . . . ), C ∈ B(R). Then, the measure Π satisfies the following recursive formula

Πk(C) = Π0 ∗ B̂k(C) +
k

∑
i=1

Πi ∗ Âk+1−i(C), (10)

where

B̂k(x, C) =
∞

∑
i=k

Bi ∗ G(i−k)(x, C), k ∈ N,
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Âm(x, C) =
∞

∑
i=m

Ai ∗ G(i−m)(x, C), 1 ≤ m ≤ k, (11)

and Π0 is a unique solution of the equation Π0(C) = Π0 ∗ B̂0(C).

Proof. By (6), we know that for any v ≥ 1 and i ≥ 0, the kernel function G(v)(x, C) is the
probability that the Markov chain first returns to level `i by hitting the state (i, C), given
that it starts from the state (i + v, x). The transition kernel function of the Markov chain
embedded at epochs of visits to the set A =

⋃∞
m=0 `m is given by

PA(x, C) =


B0(x, C) B1(x, C) . . . Bk−1(x, C) B̂k(x, C)
A0(x, C) A1(x, C) . . . Ak−1(x, C) Âk(x, C)

0 A0(x, C) . . . Ak−2(x, C) Âk−1(x, C)
...

...
...

...
0 0 . . . A0(x, C) Â1(x, C)

.

We now explain how to determine the transition kernel PA(x, C). The first k block
columns of the kernel function PA(x, C) are the same as those of P(x, C), since the chain
(Ln, Xn) can only move down by one level at a time. As for the (k + 1)th (i.e., last) block
column of PA(x, C), its first entry is as follows.

B̂k(x, C) = P{(L1, X1)
A ∈ k× C | (L0, X0)

A = (0, x)}
= P{L1 = k, X1 ∈ C | L0 = 0, X0 = x}

+
∞

∑
i=k+1

∫
R
[P{L1 = i, X1 ∈ dy | L0 = 0, X0 = x}

×P{τ`k
< ∞, Xτ`k

∈ C | L1 = i, X1 = y}]

= Bk(x, C) +
∞

∑
i=k+1

Bi ∗ G(i−k)(x, C)

=
∞

∑
i=k

Bi ∗ G(i−k)(x, C).

The equality (11) can be proved in a similar way.
Since this chain (Ln, Xn) is ψ-irreducible and a Harris positive recurrent, for ∀x ∈

X, M ⊆ E, starting from x, the set M will almost certainly be returned infinitely, and so is
the censored Markov chain (Ln, Xn)A. Thus, (Ln, Xn)A is also ψ-irreducible and a Harris
positive recurrent. Let ΠA(C) = (ΠA

0 (C), ΠA
1 (C), . . . , ΠA

k (C)) be the unique invariant
probability measure of (Ln, Xn)A.

Next, we will demonstrate that (Π0(C), Π1(C), . . . , Πk(C)) is also an invariant mea-
sure of the censored chain ΦA

n . Define the measure Π◦ by

Π◦i (C) :=
∫
R

ΠA
i (dx)UA(x, i× C), i ∈ N.

By Propostion 10.4.8 in [14], we know that

ΠA
i (C) = Π◦i (C), 0 ≤ i ≤ k (12)

and that Π◦ is invariant measure for (Ln, Xn). Since (Ln, Xn) is assumed to be a Harris
positive recurrent, the invariant measure is unique up to a constant. This shows that
Π◦(C) = cΠ(C) for some constant c, from which and (12), and we have

ΠA
i (C) = cΠi(C), for 0 ≤ i ≤ k.
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Since ∑k
i=0 ΠA

i (−∞, ∞) = 1, we can obtain

c =
1

∑k
i=0 Πi(−∞, ∞)

.

Thus, we have proved that (Π0, Π1, Π2, . . . , Πk) is an invariant measure of ΦA. Taking
into account the last block equation of ΠA(C) = Π ∗ PA(C), we have

Πk(y) = Π0 ∗ B̂k(y) +
k

∑
i=1

Πi ∗ Âk+1−i(y), k ≥ 1. (13)

This proves (10).
To determine Π0(C), we reset A = `0 and consider the censored chain (Ln, Xn)A,

whose transition kernel is given by

P`0(x, C) = B̂0(x, C).

By (13), we know that Π0(C) = Π0 ∗ B̂0(C).

Applying Theorem 5 and performing the wavelet series expansion, we can obtain the
following theorem directly.

Theorem 6. Suppose that the M/G/1-type Markov chain (Ln, Xn) is ψ-irreducible and Harris
positive recurrent and that Assumption 1 holds.

(i) The kernels G(x, y), Āk(x, y) and B̄k(x, y) are in ∑H , whose associated matrices satis-
fies that

¯̂Bk =
∞

∑
i=k

BiḠi−k, ¯̂Ak =
∞

∑
i=k

AiḠi−k.

(ii) The invariant probability measure Πk is in ∑H . Let Π̄k be the associated row vector of
Πk(y). Then, the associated matrices satisfy

Π̄k =

[
Π̄0

¯̂Bk +
k−1

∑
i=1

Π̄i
¯̂Ak+1−i

](
I − ¯̂A1

)−1
, k ≥ 1, (14)

where Π̄0 = Π̄0
¯̂B0.

Remark 1. (i) We note that the entries in the associated matrices of a kernel function may be
negative. Hence, the associated transition kernel matrices Ā′ks and B̄′ks cannot construct a stochastic
transition matrix.

(ii) We now consider numerical algorithms for computing the associated matrix Ḡ. In the litera-
ture, several known algorithms, including the functional iteration ([17,18]), Newton iteration ([19]),
invariant subspace method ([20]), cyclic reduction ([21]) and Ramaswami Reduction ([22]), have
been developed to solve the G-matrix for M/G/1-type chains with a finite phase. For a collection of
these algorithms, please refer to [13]. Similar to what we did in Theorems 4 and 5, we can set up the
corresponding algorithms for Ḡ by modifying these algorithms from the finite phase to the general
phase. We omit the details in order to avoid tedious presentations.

5. Numerical Experiments
5.1. Discrete Wavelet Transforms

We need to perform discrete wavelet transforms for numerical experiments. Without a
loss of generality, we assume that the phase space is taken to be R. In the following, we
only give a simple presentation of the computation framework; please refer to Section 5
in [5] for more details.
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We first consider numerical issues of the M/G/1-type Markov chain with a continuous
phase, which are divided into the following steps:

Step 1: Choose appropriate real numbers y, y and positive integer N. Then, evenly
sample N points from the truncated phase space [y, y]. Performing the DWT in Algorithm
5.1 in [5] to kernels Ai(x, y) and Bi(x, y) produces the associated sample matrices (Ai)asm
and (Bi)asm.

Step 2: Solve the the associated sample matrix Gasm through the algorithms listed in
(ii) of Remark 1, such as functional iteration, Newton iteration, invariant subspace method,
cyclic reduction and Ramaswami Reduction.

Step 3: Solve the associated sample invariant probability vector Πasm using Theorem 6.
Step 4: Performing the IDWT in Algorithm 5.2 in [5] to the matrix of Gasm and the

vector Πasm produces the kernels G(x, y) and Π(x).
Now, we consider numerical issues of GI/M/1-type Markov chains with the continu-

ous phase, which are also divided into four steps. The first step and the last step are the
same as that for the M/G/1-type Markov chains. In Step 3, we solve the associated sample
invariant probability vector Πasm based on Theorem 3. For Step 2, we use the Ramaswami
dual to solve the associated sample matrix Rasm. It is known that the Ramaswami dual [11]
enables us to compute the matrix R for a GI/M/1-type chain with a finite phase in terms of
computing the matrix G for a dual M/G/1-type Markov chain. Note that the Ramaswami
dual can be modified and extended to the case of M/G/1-type and GI/M/1-type chains
with a continuous phase.

5.2. Illustration with Examples
5.2.1. Example 1: An M/G/1-Type Chain

The Markov chain in this example is modified from Example 2 in [5] by extending the
tri-diagonal structure to the more general upper-Hessenberg setting.

Denote by Si, i ≥ 0 the arrival times of a Poisson process with parameter λ. Let S0 = 0.
Define a sequence of i.i.d. random variables V(Sn), n > 0, which are distributed with

P{V(Sn) = j} = pj, j ≥ −1,

where p′js are non-negative constants such that ∑∞
j=−1 pj = 1. We define

L(t) =
{

L(S0) = L(0), if 0 = S0 6 t < S1,
max{0, L(Sn−1) + j}, if V(Sn) = j, Sn 6 t < Sn+1,

(15)

Y(t) =
{

Y(Sk) + (t− Sk), if V(Sk) = `, Sk 6 t < Sk+1,
t− Sk, if V(Sk) = −1, Sk 6 t < Sk+1,

(16)

where n ≥ 1, j ≥ −1, k ≥ 0, ` ≥ 0.
Let Ln = L(Sn) and Yn = Y(Sn+1 − 0), then (Ln, Yn) is a M/G/1-type chain, whose

phase space is R+. Its transition kernels are derived as

A0(x, y) = p−1
(
1− e−λy), for all x, y,

Aj+1(x, y) =

{
0, if y < x;
pj

[
1− e−λ(y−x)

]
, if y > x,

if j ≥ 0.
(17)

and finally

B0(x, y) = A0(x, y) + A1(x, y), Bi(x, y) = Ai+1(x, y), i ≥ 1. (18)
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The marginal invariant probability measures for the M/G/1-type chain (Ln, Yn) has
analytical expressions, as follows:

LΠ0 =
p−1−∑∞

n=0 npn
p−1

,

LΠk =
Lπ0(∑∞

n=k pn)+∑k−1
i=1 ∑∞

j=0 Lπi pk−i+j
p−1

,

PΠ(y) =
{

0, if y < 0
1− e−λp−1y, if y > 0,

(19)

where LΠk and PΠ(y) are, respectively, the level and phase marginal invariant probabil-
ity measures.

Take p−1 = 1
2 , pk = ( 1

3 )
k+1, k ≥ 0. From (19), we can have the following exact value

of the marginal level stationary probabilities

LΠ0 =
1
2

, LΠk =
1
4
(

2
3
)k, k ≥ 1.

Evenly take 256 samples on [0, 45] as values of x and 256 samples on [0, 50] as values of
y, and choose the Haar wavelet for the wavelet transform. Figure 1 presents the numerical
solutions of kernel functions G(x, y). The marginal distributions are obtained numerically
based on the Gasm solved by functional iteration. The numerical solutions for level marginal
distribution and phase marginal distribution are, respectively, shown in Figures 2 and 3,
together with the corresponding analytical solutions. For each method used to derive Gasm,
we calculate its mean absolute error defined as 1

K+1 ∑K
k=0 |LΠk −L Π̂k|, where K = 500 and

LΠ̂k is the numerical solution of the marginal level stationary probability at level k. (We
take K = 500 because values of LΠk when k > 500 are small enough to be considered as neg-
ligible.) In this example, different methods of solving matrix G lead to the same numerical
solutions of level and phase marginal distributions. According to Figure 4, performances
of various methods are similar in the sense of accuracy and computational time.

Figure 1. Numerical solution of kernel function G(x, y).
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Figure 2. Level marginal invariant probability distribution LΠk.
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Figure 3. Phase marginal invariant probability distribution PΠ(y).
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Figure 4. Difference among methods on level marginal invariant probability distribution LΠk.
The legend of the first plot includes mean absolute errors, and the legend of the second plot in-
cludes computational times. (FI: functional iteration, CR: cyclic reduction, NI: Newton iteration, RR:
Ramaswami Reduction and IS: invariant subspace)

5.2.2. Example 2: A GI/M/1-Type Chain

Consider a first-come first-served single server GI/G/1 queuing system, which was
considered by [1] for the theoretical analysis of the invariant probability distribution.
Here, we consider the computational issue. In this GI/G/1 queue, the service times and
interarrival times are distributed with general distribution functions S(x) and F(x). We
assume that both the mean arrival interval λ =

∫ ∞
0 tdF(t) and the mean service time

µ0 :=
∫ ∞

0 tdS(t) are finite.
Let Ln be the number of customers right before the arrival time of the nth customer

and let Xn be the remaining service time just after the nth arrival. Let Zn be the departure
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time of the nth customer, and let X(t) be the remaining service time at time t of a customer
who is receiving the service. Write

Dt
n(x, y) = P{Zn ≤ t < Zn+1, X(t) ≤ y|X(0) = x}.

Then, (Ln, Xn), n ≥ 1 is a GI/M/1-type Markov chain with discrete levels and contin-
uous phases, whose transition probabilities are given by (1) with (see [1])

An(x, y) =
∫ ∞

0
Dt

n(x, y)dF(t), (20)

Bn(x, y) =

(
∞

∑
j=n+1

Aj(x, ∞)

)
S(y). (21)

From [1], we know that if λ > µ0, then (Ln, Xn) has an invariant probability measure
Πj with

Πk(·) = d
∫ ∞

0
dS(x)R(k)(x, ·)

where the constant d is given by

d = 1 +

(∫ ∞

0

[
∞

∑
n=0

Fn∗(x)

]
dS(x)

)[
exp

∞

∑
n=1

(
1−

∫ ∞

0
[1− Fn∗(x)]dS∗n(x)

)
/n

]
.

To illustrate our algorithm, we would like to compare numerical solutions for the level
of marginal distribution with its analytical value. For numerical calculation, let F(t) be
uniformly distributed in the interval (0, 1], i.e., F(t) ∼ U(0, 1), and let the service time be
exponentially distributed with parameter µ, i.e., S(t) ∼ exp(µ). Then we have, for n ≥ 1

Dt
n(x, y) =

{
µn−1(t−x)n−1

(n−1)! (e−µ(t−x) − e−µ(t−x+y)), t ≥ x,
0, t < x,

and, for n = 0
Dt

0(x, y) = I[0,y](x− t).

The kernels An(x, y) and Bn(x, y) are calculated as follows. For n ≥ 1, by (20)

An(x, y) =
∫ 1

x

µn−1(t− x)n−1

(n− 1)!

(
e−µ(t−x) − e−µ(t−x+y)

)
dt

=
1− e−µy

µ

∫ 1−x

0

µn

(n− 1)!
tn−1e−µtdt.

For 0 ≤ x ≤ 1, y ≥ x

A0(x, y) =
∫ x

x−y
1dt =

∫ x

0
1dt = x,

and for 0 ≤ x ≤ 1, y < x

A0(x, y) =
∫ x

x−y
1dt = y.

For n ≥ 0, by (21) we have

Bn(x, y) = (1− e−µy) ·
∫ 1−x

0

[
1−

n−1

∑
j=0

e−µt (µt)j

j!

]
dt.
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Since λ = 1/2 and E[S] = µ0 = 1
µ , the queuing system is stable if

ρ =
1/λ

1/E[S]
=

E[S]
λ

=
2
µ
< 1.

It is well known that the level marginal invariant probability distribution is

LΠj = cj(1− c),

where c is the solution of
∫ ∞

0 e−µt(1−c)dF(t) = c on the interval [0, 1]. Since F ∼ U(0, 1),
then

e(c−1)µ − 1 = c(c− 1)µ.

For numerical experiments, we take µ = 4.7. The constant c is solved to be approxi-
mately 0.2885. The exact marginal level distribution LΠ can be obtained. On the other hand,
we can perform the numerical algorithm in the previous section to approximate LΠ. We
may then compare the numerical results to the analytical results, and provide a verification
of the algorithm afterward. Here, we do not consider the marginal phase distribution, since
its closed form cannot be obtained.

Evenly take 256 samples on [0, 1] as values of x and 256 samples on [0, 1.5] as values of
y, and choose the Haar wavelet for a wavelet transform. The numerical solutions of kernel
functions G(x, y) and R(x, y) are shown in Figure 5. The level marginal distribution of
this queuing system could be computed by a previous algorithm. We show the numerical
solutions using Gasm solved by functional iteration, together with the analytical solutions
in Figure 6. Among the five numerical methods mentioned in (ii) of Remark 1, we note
that the method of the invariant subspace does not work during the run of the algorithm,
which may be caused by the fact that some matrices are not invertible. With numerical
solutions of marginal invariant probability distributions for the level and phase, we can
further estimate the mean and variance of the queue length and the remaining service time,
which are listed in Table 1. This implies practical uses of invariant probability distributions.

Since we are not able to obtain analytical solutions of marginal invariant probability
distributions for the phase, only the analytical mean and variance for the level are presented
in Table 1. When using the Ramaswami reduction, the mean queue length is the most
accurate among four methods, but the variance of the queue length is not close to the
analytical variance. However, the mean and variance solved using the functional iteration
are both relatively accurate.

Figure 5. Numerical solutions of kernel functions. The right picture is about the kernel R(x, y),
and the left is about its dual kernel G(x, y).
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Figure 6. Level marginal invariant probability distribution LΠk.

We compare properties of the other four methods according to their mean absolute
errors and speeds of computation. From Figure 7 and Table 1, the functional iteration
performs the best among all the four methods, since it is the fastest and also the most
accurate. When we raise the sample size from 256 to 512, it takes 20.98 s to solve Gasm
using a functional iteration. The computational times of the cyclic reduction, Newton
iteration and Ramaswami reduction are 116.35 s, 1997.53 s and 2191.45 s, respectively.
The differences between the mean absolute errors of numerical solutions and the errors
when using a sample size of 256, however, are only around 10−4.
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Figure 7. Difference among methods on level marginal invariant probability distribution LΠk.
The legend of the first plot includes mean absolute errors, and the legend of the second plot includes
computational times. (FI: functional iteration, CR: cyclic reduction, NI: Newton iteration and RR:
Ramaswami Reduction).

Table 1. Mean and variance of level and phase.

Queue Length (Level) Remaining Service Time (Phase)

Method Mean Variance Mean Variance

FI 0.3415 0.3680 0.3125 0.1127
CR 0.6964 1.3918 0.3345 0.1255
NI 0.6964 1.3918 0.3345 0.1255
RR 0.3911 0.9596 0.4385 0.1641

Analytical 0.4054 0.5698 - -

6. Conclusions

For invariant probability measures of Harris positive recurrent GI/M/1-type or
M/G/1-type Markov chains with discrete levels and a general phase set, we establish
wavelet-based computational frameworks in this paper. A theoretical analysis framework is
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also established for M/G/1-type Markov chains. These results extend the known findings
in [4,5] for QBD processes to the current more general block-structured Markov chains.
Numerical experiments support the effectiveness of our numerical algorithms based on
DTWC. An interesting observation in Example 2 is that among the adopted five algorithms
for G-matrix, the functional iteration performs the best, but the invariant subspace may fail.

For future research, it is interesting to consider block-structured continuous-time
Markov processes with discrete levels and continuous phases. In this case, the processes
should be presented in terms of the extended generators. It is expected that the research
is more challenging when setting up these models and preforming the theoretical and
numerical analysis of their invariant probability measures.
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Appendix A

Table A1. Summary of frequently used notations.

Notation Description

E State space of a Markov chain
`i The i level set of Markov chain {(Ln, Xn) : n ∈ N}
τ`i

The first return time to the level set `i
PGI(·, ·) Transition kernel matrix of GI/M/1-type Markov chain
PM(·, ·) Transition kernel matrix of M/G/1-type Markov chain
PA(·, ·) One-step transition kernel of a censored Markov chain on set A

Π Invariant probability measure
U Associated matrix of kernel function U(x, y)

∑H Set of kernel functions having a density function equaling to zeros outside of H × H
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