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Abstract: As an important stage in the development of autonomous driving, mixed traffic conditions,
consisting of connected autonomous vehicles (CAVs) and human-driven vehicles (HDVs), have
attracted more and more attention. In fact, the randomness of human-driven vehicles (HDV) is the
largest challenge for connected autonomous vehicles (CAV) to make reasonable decisions, especially
in lane change scenarios. In this paper, we propose the problem of lane change decisions for CAV
in low visibility and mixed traffic conditions for the first time. First, we consider the randomness
of HDV in this environment and construct a finite state machine (FSM) model. Then, this study
develops a partially observed Markov decision process (POMDP) for describing the problem of lane
change. In addition, we use the modified deep deterministic policy gradient (DDPG) to solve the
problem and get the optimal lane change decision in this environment. The reward designing takes
the comfort, safety and efficiency of the vehicle into account, and the introduction of transfer learning
accelerates the adaptation of CAV to the randomness of HDV. Finally, numerical experiments are
conducted. The results show that, compared with the original DDPG, the modified DDPG has a faster
convergence velocity. The strategy learned by the modified DDPG can complete the lane change in
most of the scenarios. The comparison between the modified DDPG and the rule-based decisions
indicates that the modified DDPG has a stronger adaptability to this special environment and can
grasp more lane change opportunities.

Keywords: reinforcement learning; low visibility and mixed traffic conditions; lane change decision;
DDPG

MSC: 90B20

1. Introduction

In recent years, connected autonomous vehicle (CAV) has been widely discussed in
the world. Sensing, decision-making, planning, control and other related autonomous
driving technologies have also entered a period of rapid development. Decision technology
is one of the most critical modules. It receives information from the perception module and
gives guidance to planning and control modules. Therefore, decision-making technology is
equivalent to the brain of CAV and plays a key role in the safe driving of the vehicle [1].
Lane change is the main scenario for CAV decision-making, including the determination of
lane change intention and execution time. In this paper, we assume that the vehicle has
a strong intent to change lanes. The CAV needs to choose the right time to change lanes
and perform the lane change. During a lane change, the CAV needs to pay attention to
the real-time state of the other vehicles in the area that are affected by the lane change,
including velocity, acceleration and relative position. In particular, the success of the lane
change is often directly determined by predicting the driving intention of vehicles behind
the target lane.
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The judgment of lane change timing is the key to a successful lane change. The basis of
the judgment includes some hard rules [2], such as the calculation of real-time benefits [3]
and the existing experience of the lane change [4,5].

In mixed traffic scenarios, drivers are stochastic, and relying on hard rules may cause
the CAV to miss some lane change opportunities. Therefore, lane change decisions based
on hard rules are conservative. Benefit calculation-based decision-making usually requires
real-time interaction with the driver on the road; however, this approach is difficult to
apply in low-visibility weather such as haze, fog, etc. There are two main reasons for this:
on the one hand, the sensing sensors (LIDAR, cameras, etc.) may be affected to varying
degrees [6], and on the other hand, the low-visibility environment can affect the driver’s
view. For the lane change experience, it is difficult to collect sufficient marker data from
skilled drivers, especially in low-visibility scenarios. Therefore, it is urgent to develop
a lane change decision algorithm for autonomous driving under low visibility mixed
traffic conditions.

The problem of lane change decisions for CAV under mixed traffic conditions has also
been widely studied [7–10]. In the existing research, researchers have used hard rule-based
lane change decision methods, such as FSM [11], decision trees (DT) [12] and custom
rules [13]. Other researchers have used machine learning methods to guide lane change
decisions by learning from successful lane change experiences. These methods are the
support vector machines (SVM) [14], XGBoost [4], Gaussian mixture density hidden Markov
model (GMM-HMM) [15] and neural networks [16]. There are also many researchers who
focus on decision methods for computing benefits, especially game theoretic methods
based on real-time interactions [17]. Reinforcement learning, which combines the benefits
of computing and machine learning in lane change strategies, has also been extensively
studied [18,19]. All the above studies address lane change decisions for CAV in mixed
traffic conditions in normal weather. To the best of our knowledge, no studies have been
conducted on the lane change decision of CAV in low visibility and mixed conditions.

In this study, we formulated the lane change decision for CAV as a partially observed
problem and solved it using modified reinforcement learning methods. First, we consid-
ered the effects of trust and visibility on drivers and proposed an FSM to characterize
drivers’ driving in low visibility and mixed traffic conditions. Second, we used a POMDP
to represent the problem of changing lanes for CAV in low visibility and mixed traffic
conditions. Third, we performed the solution with a modified reinforcement learning
algorithm. Finally, we tested and verified the effectiveness of the modified algorithm.

The main contributions of this research are as follows: First, it introduces a new
scenario for lane changing in CAV in mixed traffic and low visibility conditions. As far
as we know, this is the first study to address the lane change decision problem in such
conditions. Second, the study identifies four car following states that drivers experience
and combines the weights of safety and space factors to represent a driver’s response
to a vehicle ahead. These five states are then integrated into an FSM model. Third, the
researchers use POMDP to formulate the entire lane change decision problem for CAV and
develop a modified DDPG algorithm to solve this problem.

The remainder of this paper is organized as follows: Section 2 reviews related research
on the lane change decision-making in mixed traffic conditions for CAV. Section 3 presents
the driver model formulation and problem description. Section 4 describes our proposed
solution methodology, the modified DDPG. In Section 5, numerical experiments are con-
ducted to illustrate the effectiveness of our algorithm. This paper is concluded in Section 6
with the summary and possible future research.

2. Literature Review

In order to draw a clear distinction between this study and previous research, the
literature on rule-based, game-theoretic, machine-learning and reinforcement-learning
is reviewed. The influence of low visibility on the perception module of CAV and the
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behavior characteristics of drivers under low visibility and mixed traffic conditions are also
introduced in this section.

The existing research on rule-based lane change decisions is adequate. In these studies,
lane changes are guided by a set of deterministic rules [20]. The main purpose is to ensure
the absolute safety of lane change by judging whether vehicles meet lane change conditions.
It is based on the idea of absolute safety that Mobileye proposes a liability-sensitive safety
policy [21]. The earliest rule-based lane change decision models were mainly concerned
with the acceptance of lane change gaps [22,23]. The Gipps model [22] defines the lane
change process as a series of rules that use a decision tree and outputs the result as a binary
classification result. Of course, the model is no longer satisfied with the complex vehicle
composition and complex human-vehicle interaction behavior in the traffic environment.
Another typical representative of the rule-based lane change model is the MOBIL model [24],
which determines whether to change lanes by setting utility incentives and safety rules that
apply to various rules of following and free lane change and forced lane change behavior.
Of course, there is also a class of minimum safe distance models model, which determines
the safe lane change condition by specifying the minimum safe distance rule between
vehicles. At present, the biggest shortcoming of this type of rule-based model is that the
driving environment conditions are relatively simple, and the influence of the driver’s
driving behavior on lane changing is not much considered. In fact, these rules are the basic
elements for making lane change decisions, and many new decision methods are further
researched based on these rules.

Although these rules guarantee absolute safety for lane changes, they require a
large enough clearance, which is unrealistic in the case of traffic congestion or accidents.
Therefore, on the basis of accepting gaps, some studies have extended lane change rules,
taking into account the interaction between vehicles and the variability of individual
drivers [25–30]. Game theory is commonly used to reflect driver differences in inter-vehicle
interactions [31]. However, in low visibility, even if the sensing module of the CAV works
properly, the driver’s restricted field of view causes him/her not to interact properly with
the surrounding vehicles, therefore, the result between vehicles cannot be trusted.

With the development of artificial intelligence, many scholars try to improve the
safety of lane change decisions by machine learning methods. Chen et al. [32] used a
random forest classifier to extract key features from vehicle trajectory data and then used
fault analysis and k-mean clustering algorithms to determine the risk level of vehicle
lane-changing behavior. Xu et al. [5] developed a convolutional neural network (CNN)
model based on the lane-changing image dataset to estimate the driver’s intention to
change lanes. Jin et al. [16] proposed a Gauss mixture hidden Markov model (GM-HMM)
lane change decision model, which is experimentally shown to have a high similarity
rate to the actual lane change behavior. Gindele et al. [33] constructed a filter to estimate
the behavior of traffic participants and predict their future trajectories using a dynamic
Bayesian network (DBN) that takes into account all the information relevant to the driver’s
decision. Although much progress has been made in applying machine learning to lane
change decision problems, lane change decisions under low visibility and mixed traffic
conditions have not been considered. In addition, empirical data for learning in such
environments are difficult to obtain.

Reinforcement learning not only avoids the use of large amounts of manually marked
driving data but also simulates complex lane changes. Therefore, people pay more and
more attention to solving lane change decisions by reinforcement learning. Chen et al. [34]
designed a hierarchical deep reinforcement learning algorithm to learn lane-changing
behavior in dense traffic. Jiang et al. [35] formulated the lane-changing behavior as a
POMDP process and proposed a combination of recurrent neural network (RNN) and
deep Q network (DQN), which is solved according to the global maximum reward. To
overcome the limitations of discrete action space in ordinary reinforcement learning algo-
rithms, Wang et al. [36] established the vehicle lane change behavior under continuous
action based on deep deterministic policy gradient (DDPG). Lv et al. [37] developed an
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improved deep reinforcement learning algorithm based on DDPG with well-defined re-
ward functions for autonomous driving tasks in highway scenarios where an autonomous
vehicle merges into two-lane road traffic flow and realizes the lane-changing maneuvers.
Kim et al. [38] proposed a new reinforcement learning-based lane change decision-making
technique that uses a safety inspection module and augmented data. Wang et al. [39]
studied how to learn a harmonious deep reinforcement learning-based lane-changing
strategy for autonomous vehicles without Vehicle-to-Everything (V2X) communication
support. Ammourah et al. [40] proposed a reinforcement learning-based framework for
mandatory lane changing of automated vehicles in a non-cooperative environment that
utilized the double deep Q-learning algorithm structure that takes relevant traffic states as
input and outputs the optimal actions (policy) for the automated vehicle. He proposed [41]
a novel observation adversarial reinforcement learning approach for robust lane change
decision-making of autonomous vehicles. Additionally, a constrained observation-robust
Markov decision process is presented to model lane change decision-making behaviors
of autonomous vehicles under policy constraints and observation uncertainties. In low
visibility and mixed traffic, reinforcement learning algorithms can not only adapt to the
randomness of drivers but also enable collaboration between CAVs in the absence of com-
munication. Therefore, a reinforcement learning algorithm is applied in this paper to solve
the lane change decision problem in this complex environment.

In low-visibility weather, on-board sensors can be disturbed. For example, the func-
tionality of both cameras and LIDAR can be severely degraded in dense fog [42,43]. The
sensors can only provide partial information about the observation, which may result in
the CAV not obtaining enough information for decision-making. Therefore, it is necessary
to consider lane change decisions under partial observation in low-visibility conditions.

In addition, in low visibility, drivers have an increased reaction time and a reduced
ability to perceive risks [44,45]. Drivers tend to reduce the headway time distance and
shorten the following distance until the view becomes better or they spot the vehicle in
front of them [46].

Over the past few years, the rapid arrival of the era of intelligent technology has led
to breakthroughs in fuzzy logic technology. Compared to other technologies, fuzzy logic
technology has passed through several stages and is more mature, attracting people to
research on fuzzy logic technology. Huang et al. [47] distinguished the main differences
between interval type 2 (IT2), generalized type 2 (GT2) and interval type 3 (IT3) fuzzy
logic systems (FLS) and illustrated the design of IT3-FLS through online identification,
offline time series modeling and robot control systems. Jomaa et al. [48] developed a
fuzzy logic method to control the actuators that are installed inside the greenhouse for
heating, ventilation, humidification and the physical model of the greenhouse used in the
Simulink/Matlab environment, which was carefully designed to simulate temperature and
indoor humidity. Huang et al. [49] proposed a simple but practical fuzzy logic position
tracking controller for a wheeled mobile robot and used particle swarm optimization to
turn the parameters of the scaling and membership functions to optimize this controller.
Rajagiri et al. [50] designed and developed a fuzzy logic controller in MATLAB Simulink to
operate the DC motor. It is experimentally demonstrated that the proposed fuzzy controller
results in a better response compared to the normal response of a DC motor. In summary,
fuzzy logic technology, as a mature control technique, has broad application prospects and
good control performance, especially in the field of intelligent technology where it has been
widely applied and researched. With the continuous development and improvement of
technology, it is believed that fuzzy logic technology will play its advantages in more fields,
such as the research area of mixed traffic flow control of CAV and HDV, and bring more
convenience and practical application effects to people.

In summary, the existing research has addressed the lane change decision problem for
CAV by various modeling tools and algorithms. However, to our best knowledge, there is
no research on the lane change decision for CAV in low-visibility mixed traffic conditions.
This paper aims at formulating the lane change decision for CAV as a partially observed
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problem and solved it using a reinforcement learning algorithm. Numerical experiments
are conducted to test the effectiveness and practicality of our algorithm.

3. Problem Formulation

A typical lane change scenario is shown in Figure 1. Lane 1 is the current lane and lane
2 is the target lane. Vehicle A is the CAV preparing to change lanes. Vehicle B and vehicle D
are the vehicles ahead of CAV A in the target lane and current lane, respectively, and we do
not consider the types of these two vehicles. Vehicle L and vehicle C are the vehicles behind
CAV A in the current lane and the target lane, respectively. In fact, the decision timing of
CAV A’s lane change is mainly influenced by these two vehicles. This paper focuses on the
effect of CAV A lane change when vehicle L and vehicle C are HDVs in low visibility.

Figure 1. The typical lane change scenario.

In this paper, we assume that the area affected by the lane change is the sensing
area of the CAV, i.e., when the CAV changes lanes, the safety judgment will be made for
the vehicles in the sensing area. Before describing the problem, the driving behavior of
the HDV is modeled: First, we analyzed the influence of low visibility and mixed traffic
conditions on drivers. Then, we propose a driver longitudinal control model containing
five states under low-visibility mixed traffic conditions. Based on the above, we describe
the lane change decision problem to be studied.

3.1. The Longitudinal Control Model for Drivers in Low-Visibility Mixed Traffic Conditions

In the lane change scenario shown in Figure 1, we present the car following states of
HDV L and HDV C under low visibility mixing conditions and the reaction states of HDV
C when CAV A is changing lanes.

3.1.1. The Influence of Low Visibility and Mixed Traffic Conditions on Drivers

In low visibility, if the driver cannot make a quick and accurate judgment of the
surroundings within his or her safe sight distance, the driver will become hesitant about
the next driving operation, which will cause a delay in the driver’s reaction. Obviously,
the reaction delay of the driver is closely related to the safety sight distance and visibility
without considering the driver’s age, personality and gender. In this paper, we use the
stopping sight distance dis0 to represent the safety sight distance, as shown in Equation (1):

dis0 = vel0 × t0 +
(vel0/3.6)2

2umax
(1)

where vel0 indicates the current velocity, t0 indicates the normal reaction time and umax
indicates the absolute value of the maximum deceleration.

Quantifying the driver’s reaction delay using visibility and safety sight distance in
normal weather. To ensure the absolute safety of the vehicle, we express the safety sight
distance of the vehicle in low visibility by twice the safety sight distance in normal weather
minus the visibility disv, as shown in Equation (2):

vel0 × (t0 + td) +
(vel0/3.6)2

2umax
≤ 2dis0 − disv (2)
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where td indicates the driver’s reaction delay due to restricted vision. The left side of the
formula indicates the safe driving distance required in the case of a delayed driver reaction.
From the above Equation, the smaller the safety sight distance and the greater the visibility,
the smaller the driver’s reaction delay.

In mixed traffic conditions, drivers’ trust in CAVs can affect their driving behavior [51].
In low visibility, drivers have fewer targets to refer to, therefore, drivers’ trust in CAVs
will be even more important. For example, in low-visibility car-following, drivers tend to
follow CAVs at smaller distances when the trust level is high. On the contrary, drivers will
treat the behavior of CAVs with caution.

We assume that the trust factor p obeys a standard normal distribution p ∼ N (0, 1),
and β (p) denotes the cumulative probability density of p. We let the range of values of p
be (−3, 3), which can cover most of the driver aggressiveness. Then we use the distribution
function of β (p) to represent the degree of trust of drivers in CAV. When the trust factor p
is large or small, the probability of the distribution of β (p) is small. When p is near 0, the
probability of the distribution of β (p) is large. Additionally, in this paper, we assume that
the CAVs under traffic conditions can be clearly recognized by the drivers.

3.1.2. The Car following States

Considering the reaction delay and the level of confidence, we classify the car following
states of HDVs under low-visibility mixed traffic conditions into four types as shown in
Figure 2.

Figure 2. The four car-following states of HDVs under mixed driving conditions in low visibility.

State 1: At the current velocity of the vehicle, the safety sight distance is greater than
the visibility and there is no other vehicle in front of the HDV within the visibility range.
In this state, the driver has a reaction delay. In addition, since the driver cannot see the
situation within the safe time distance, the driver tends to look for the vehicle that he can
follow ahead in order to get a sense of security [52], therefore, the driver executes a smaller
acceleration b1, as shown in Equation (3):

a(t) = b1(b1 > 0) (3)

where a(t) is the acceleration taken at moment t.
State 2: At the current velocity of the vehicle, the safety sight distance of the vehicle

is greater than the visibility and there is a CAV in front of the HDV within the visibility
range. The HDV will choose to follow the CAV in this state. But when the state of the CAV
changes, the HDV will have a reaction delay. In addition, the driver’s trust in the CAV
also affects the following state of the HDV. We use the modified full velocity difference
following model (MFVD) to represent the behavior of the HDV in this state, as shown in
Equations (4)–(7) [53]:

ai(t) = K[V(∆xi(t), veli(t), p)− veli(t)] + λ∆vi(t) (4)
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V(∆xi(t), veli(t), p)
= vellim

2 [tanh(∆xi(t)− he(veli(t), p))
+tanh(he(veli(t), p))]

(5)

he(veli(t), p) = (1− β(p))(T + τi)veli(t) + hc (6)

∆xi(t) = xi−1(t)− xi(t) (7)

where K(K > 0) is the sensitivity coefficient of headway spacing, V is a reasonable value of
speed, ai(t) is the acceleration taken at moment t of the i-th HDV, λ(λ > 0) is the response
coefficient of velocity difference and ∆xi(t) is the distance between the i-th HDV and the
vehicle in front of it. ∆vi(t) is the velocity difference between the i-th HDV and the vehicle
in front of it. he(veli(t), p) denotes the following distance expected by the i-th HDV with
trust factor p at a velocity of veli(t). T is the driver’s normal reaction time, τi is the driver’s
reaction delay and hc is the safe following distance with respect to the vehicle type.

State 3: At the current velocity of the vehicle, the visibility is greater than the safety
sight distance, and there is no other vehicle in front of the HDV within the visibility range.
In this state, since the driver can see the traffic conditions within the safety sight distance,
the driver will execute a smaller acceleration b2 until the safety sight distance is greater
than the visibility or the vehicle ahead is detected within the visibility. We assume that b2 is
greater than b1, as shown in Equation (8):

a(t) = b2(b2 > b1) (8)

State 4: At the current velocity of the vehicle, the safety sight distance is less than the
visibility, and there is a vehicle in front of the HDV within the visibility range. Similar to
state 2, the driver chooses to follow the vehicle ahead, we also use MFVD to represent this;
different from state 2 is that the driver has no reaction delay.

3.1.3. The Response Model to Lane Change

In fact, drivers can see the driving conditions in the adjacent lane in the visibility
range. This section describes the state of drivers’ reactions to the lane change of vehicles in
adjacent lanes. As in Figure 1, HDV C will react to the lane change of CAV A. We refer to
Yu et al.’s description of the driver’s lane change response: the more aggressive the driver,
the greater the concern for spatial benefits. Conversely, there is a greater concern for their
own safety interests, as shown in Equations (9)–(18) [10]:

max
(

fw(a, a0)
(
(1− β(q))×Usafety(a) + β(q)×Uspace(a) + 1

)
− 1
)

(9)

amin ≤ a ≤ amax (10)

fw(a, a0) = e−(Tl
2× (a−a0)

2

w1
+

(v+a×Tl−vd)
2

w2
) (11)

Usafety(a) =
1
2
(
S ft=Tl − S ft=0

)
(12)

Uspace(a) =
1
2
(
SPt=Tl − SPt=0

)
(13)

S ft =

{
2|Th1,t|

Tb
− 1, −Tb ≤ Th1,t ≤ Tb

1, others
(14)

SPt =


−1,Th2 ≤ −3

2Th2,t

3
+ 1,−3 < Th2,t ≤ 0

1,Th2 > 0

(15)
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Th1,t=0 =
PA,t=0 − PC,t=0

vC,t=0
(16)

Th1,t=Tl
=


PA,t=Tl

−PC,t=Tl
vC,t=0+aTl

, PA,t=Tl > PC,t=Tl
PC,t=Tl

−PA,t=Tl
vA,t=0+aATl

, others
(17)

Th2,t =


PC,t−PA,t

vA,t
, PA,t ≤ PC,t

PC,t−PA,t
vC,t

, others
(18)

The objective function (9) maximizes security benefits and space benefits. Constraint (10)
is an acceleration constraint, where amax is the value of the maximum acceleration or
minimum deceleration that can be taken, and amin is the value of the minimum acceleration
or maximum deceleration that can be taken. fw(a, a0) is the penalty for acceleration and
velocity change, as shown in Equation (11). The security benefits Usa f ety(a) and space
benefits Uspace(a) are calculated as shown in Equations (12) and (13). S ft is the safety
factor, as shown in Equation (14). SPt is the space factor, as shown in Equation (15). Tl
is the time for vehicles in adjacent lanes to change lanes. a and a0 are the acceleration at
the current moment and the next moment, respectively. w1 and w2 are the weight values
of acceleration change and velocity change, respectively. vd is the desired acceleration.
Th1 is the time headway between vehicle C and vehicle L, including the time headway at
the initial moment Th1,t=0, the time headway at the moment of lane change completion
Th1,t=Tl

and aA is the acceleration of the CAV A, as shown in Equations (16) and (17). Th2,t
is the evaluation index of the spatial factor, as shown in Equation (18). Tb denotes the safe
time headway. PA,t and PC,t denote the longitudinal position of vehicle A and vehicle C
at moment t, respectively. vA,t and vC,t denote the longitudinal velocity of vehicle A and
vehicle C at moment t, respectively. Please refer to the literature [10] for details of the driver
response model.

3.1.4. The FSM Model

We compose an FSM model of the driver’s four following states and response states
to lane change in low visibility and mixed traffic conditions, as shown in Figure 3. The
inputs to the model are whether there is a vehicle ahead in visibility c, whether the safety
sight distance is greater than visibility g and whether there is a lane changing vehicle in the
adjacent lane in visibility r. When the input is 1, it means certainty, and when the input is 0,
it means negation. The output of the model is the five states in the FSM.

Figure 3. The FSM model of HDV in low visibility and mixed traffic conditions.
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3.2. The Lane Change Decision Problem

In this section, we first give the rule-based lane change decision method. In a typical
lane change scenario as shown in Figure 1, CAV A usually only needs to consider the safe
distance FBA(t) from vehicle B and vehicle D ahead, as shown in Equation (19):

FBA(t) =
v2

A(t)
2a(t)

− v2
B(t)

2amax
(19)

where vA and vB are the current velocities of vehicle A and vehicle B at moment t, respec-
tively. Considering the driver’s comfort, the deceleration or acceleration value of CAV A
should not be too large, as shown in Equation (20):

a(t) = amin +
vA(t)
vlim

(amax − amin) (20)

where vlim is the limited velocity. The safety distance FDA(t) between vehicle A and vehicle
D is also calculated by Equations (19) and (20).

Within the sensing range of CAV A, if vehicle C is behind the target lane, then CAV A
needs to focus on HDV C when changing lanes. There are mainly two cases, one is when
the distance between CAV A and HDV C is greater than a specific value FCA(t), as shown
in Equation (21). In this case, CAV A can directly change lanes without being affected by
HDV C.

FCA(t) = vC(t)T +
amaxT2

2
+

(vC(t) + amaxT)2

2amin
− vA

2(t)
2amax

(21)

Another case is the distance between CAV A and HDV C is less than FCA. Under the
hard rule, CAV A will drop the lane change. Otherwise, CAV A needs to interact with HDV
C and change lanes at the right time according to HDV C’s response. We usually do not
need to consider the interference of vehicle L.

In low visibility, although the sensing module will be disturbed, CAV A can still
perceive the position of vehicle B, vehicle C and vehicle D most of the time. However,
outside of visibility, HDV C cannot find CAV A preparing to change lanes, which will result
in no normal interaction between the two vehicles. Therefore, according to Figure 2, we
divide the lane change problem of CAV A into four situations based on the relationship
between visibility and safety sight distance and the presence or absence of preceding
vehicles in visibility, as shown in Figure 4.

Figure 4. The four lane change scenarios for CAV A in low visibility and mixed traffic conditions.

Figure 4 shows four lane change scenarios for CAV A. Scenario (a) is a lane change
situation where the safety sight distance of HDV C is greater than visibility and vehicle B is
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not within visibility. Scenario (b) is a lane change situation where the safety sight distance
of HDV C is greater than the visibility and the vehicle ahead is visible. Scenario (c) is a lane
change situation where the safety sight distance of HDV C is greater than the visibility and
vehicle B is not within visibility. Scenario (d) is a lane change situation where the safety
sight distance of HDV C is greater than the visibility and vehicle B is not within visibility.

For the lane change in the above special scenarios, the rule-based lane change strategy
ensures the absolute safety of the lane change vehicles; therefore, it is still valid. However,
it is sometimes too conservative to use a uniform strategy to solve all scenarios; therefore,
we try to use reinforcement learning to adopt a corresponding lane change strategy for
each scenario.

To show the current problem and the solution method more clearly, we list a schematic
diagram, as shown in Figure 5.

Figure 5. The flow diagram of the problem formulation and methodological logic framework of this paper.

4. Solution Methodology

In this section, first, we use POMDP to describe the CAV A lane change problem in
Section 3. Then, we develop a modified DDPG algorithm to solve this problem.

4.1. The POMDP Mathematical Model

Subject to extreme environments, CAV perceives an increased probability of missing or
incorrect information; therefore, we use POMDP to describe this process. Typically, POMDP
consists of a seven-tuple < S, A, T, R, Z, O, γ >, where X is the set of all environmental
states st at moment t. A is the set of all possible actions at at moment t.

T is the transfer function; T(st, at−1, st−1) = P(st|at−1, st−1) denotes the probabil-
ity of taking action at−1 in state st−1 to get the state of moment t as st. R is the re-
ward function; r(s, a) denotes the reward received for taking action a in state s. Z is
the set of all possible observation states zt at moment t. O is the observation function;
O(st, at−1, zt−1) = P(st|at−1, zt−1) denotes the probability of taking action at−1 to get the
state of moment t as st when the observation value is zt−1. γ is the discount factor.
Based on the POMDP mathematical model, the lane change problem for CAV is described
as follows:

• State S: State of the entire lane change system, including CAV A and surrounding
vehicles. The system coordinate is shown in Figure 1, based on which, the state
information can be described by the longitudinal position, lateral position and velocity
of all vehicles, as shown in Equation (22):

st = (xA,t, xB,t, xD,t, xC,t, xL,t, yA,t, yB,t, yD,t, yC,t, yL,t, vA,t, vB,t, vD,t, vC,t, vL,t) (22)
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where the velocity limit is related to the current visibility of the highway.
• Action A: The longitudinal acceleration and steering angle of the CAV are used as

defined action parameters, as shown in Equation (23):

at = (ut, δt) (23)

• Transfer function T: The dynamic model of the lane change system, which is difficult
to describe precisely.

• Observation Z: Due to the influence of the environment or the physical limitations of
the sensor itself, CAV A can only obtain the information about other vehicles when
sensor noise is present or missing. Z is defined as:

zt =
(

xA,t
′, xB,t

′, xD,t
′, xC,t

′, xL,t
′, yA,t

′, yB,t
′, yD,t

′, yC,t
′, yL,t

′, vA,t
′, vB,t

′, vD,t
′, vC,t

′, vL,t
′) (24)

• Reward function R: The reward function is the key to achieve the goal of lane change.
We design the reward function from the perspective of safety, efficiency and comfort:

Rcom = −α· .
ux,t

2
+ β· .

uy,t
2 (25)

where Rcom denotes the reward function of the comfort level.
.

ux,t is the longitudinal
acceleration rate.

.
uy,t is the lateral acceleration rate. α and β are the weighting factors

of the longitudinal acceleration rate and the lateral acceleration rate, respectively. The
comfort reward is introduced mainly to reduce sudden acceleration and deceleration
of the CAV A.

In terms of efficiency, the goal is to get the CAV to the centerline of the target lane as
quickly as possible without exceeding the velocity limit, as shown in Equations (26)–(29):

Rtim = −∆t (26)

Rpos = −|yt − y∗| (27)

Rspe = −|vt − v∗| (28)

Re f f = ω1·Rtim + ω2·Rpos + ω3·Rspe (29)

where Rtim denotes the reward function for the lane change time. ∆t denotes the lane
change time. Rpos denotes the reward function for position. yt is the current lateral position
of the vehicle. y∗ is the target lane centerline. Rspe denotes the reward function for lane
change velocity. vt is the current longitudinal velocity of the vehicle. v∗ is the limiting
velocity at the current visibility. Re f f denotes the reward function for efficiency, and ω1, ω2,
ω3 are the weights of efficiency, position and velocity, respectively.

Safety is a necessary condition for the vehicle to change lanes. Therefore, when a
collision occurs, we give a larger penalty. The safety reward function Rsa f is shown in
Equation (30):

Rsa f = −m (30)

where m denotes a larger penalty.

• Discount factor γ: We use the action value function to evaluate the goodness of the
current action, and the value function Qtarget is updated to consider future rewards
with discounts γ, as shown in Equation (31):

Qtarget = rt + γ ∑
st+1∈S

P(st, at, st+1)V(st+1) (31)

where rt is the reward corresponding to the state st and action at at moment t.
P(st, at, st+1) is a dynamic model of the system that represents the probability of
the system changing from state st+1 to state st after taking action at.
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4.2. The Modified DDPG Algorithm

DDPG is a deep reinforcement learning algorithm that performs continuous control.
To obtain better training stability, the algorithm is designed with four networks, including
the value network, the strategy network and their respective target networks, as shown in
Figure 6.

Figure 6. The framework of DDPG algorithm.

In Figure 6, θ and θ are the parameters of the policy network and the target policy
network, respectively. W and w are the parameters of the value network and the target
value network, respectively. µ denotes the strategy network.

The decision-making of DDPG is a deterministic behavior. To ensure that the environ-
ment is fully explored during training and thus improves training efficiency, we construct
random actions by adding an Ornstein–Uhlenbeck (OU) noise with a mean of 0 and a
standard deviation of 0.6. The goal of the value network is to continuously update the
parameter w, so that its evaluation of taking action at under state st is increasingly accurate.
The parameter w is updated by timing differences as shown in Equations (32) and (33):

L(w) =
1
N

N

∑
t=1

(
Yt −Q(s, a|w)|s=st ,a=at

)2
(32)

Yt = rt + γQ
(
s, µ(s

∣∣θ)∣∣w)∣∣s=st+1,a=at+1
(33)

where N is the number of experiences used for the update. Q denotes the value function.
Yt is the target value, which is the sum of the reward rt at the current time step and the
future reward with discount γ, as shown in Equation (33).

To ensure the stability of Yt during training, we use the target network to calculate
the future reward and take a soft update to update the parameters w and θ, as shown in
Equations (34) and (35):

θ = τθ + (1− τ)θ (34)

w = τw + (1− τ)w (35)

where τ is the soft update parameter.
The goal of the strategy network is to make the value network score its strategies

as high as possible, and the parameters θ are updated by gradient descent, as shown in
Equation (36):



Mathematics 2023, 11, 1556 13 of 24

∇θ J =
1
N

N

∑
i=1
∇aQ(s, a|w)|s=st ,a=at∇θµ(s|θ)|s=st (36)

However, when the randomness of the environment is large, the complexity of rein-
forcement learning increases, which makes the training process difficult to converge. As
shown in Figure 4, the lane change problem is divided into four scenarios based on the
relationship between visibility and safe sight distance. In each scenario, the CAV lane-
changing strategy needs to learn and complete two tasks, including adapting to different
aggressiveness of HDV C and different initial states of CAV A. The combination of these
two randomness can complicate the training process.

Therefore, we combine parameter-based transfer learning (TL) with DDPG to split the
original complex training task into two subtasks. The first subtask is for CAV A to complete
the lane change task for different trust levels of HDV C. Based on the first subtask, the
second subtask is for CAV A to learn to complete the lane change at different lane change
initial states. In each scenario, the first subtask training converges and then the second
subtask learning is performed. Separate training of the tasks will help CAV to complete the
lane changing strategy faster. The lane change learning process is shown in Figure 7.

Figure 7. The learning process of lane changing strategy based on DDPG and TL.

5. Numerical Experiments
5.1. Experiment Design

First, we compared the DDPG and the modified DDPG algorithm so as to verify the
effectiveness of the modified algorithm. Second, we tested the modified DDPG algorithm
by adjusting the aggressiveness of the HDV driver and the initial lane change state of the
CAV A in the four lane change scenarios. Finally, based on some selected metrics, we
compared rule-based and DDPG-based lane change algorithms by designing some specific
lane change scenarios.

All experiments were performed in MATLAB2021a on a computer equipped with an
AMD Ryzen CoreTM16@ 2.90 GHz and 16.0 GB RAM. In addition, the vehicle model used
the classical kinematic-based bicycle model. The position of the vehicle is represented by
the position of the vehicle’s center of gravity, and the lane width is 3 m. In addition, we
assumed that the normal reaction time of the driver is 0.3 s. The goal of the lane change
was from the centerline of lane 1 (1.5 m) to the centerline of lane 2 (4.5 m).

Based on the typical lane changing scenario in Figure 1, four lane-changing scenarios
were designed. The specific parameter settings for scenario 1 are shown in Table 1. When
the visibility is 50 m and the initial velocity of HDV C is 18 m/s, the reaction delay is
0.522 s and the safety sight distance is 68.79 m, obtained by Equations (1) and (2). The
safety distance between CAV A and HDV B is 10.5 m, obtained by Equations (19) and (20).
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Scenarios 2, 3 and 4 have the same parameters as Table 1 except for the initial velocity of
HDV C and the initial longitudinal position of vehicle B, as shown in Tables 2–4. When
the initial speed of vehicle C is 14 m/s, its safe sight distance is 37 m, which is less than
visibility. Therefore, the driver has no reaction delay.

Table 1. Parameter setting for scenario 1.

Parameter Value Parameter Value

Visibility V
Initial velocity of CAV A va

50 m
14 m/s

Limit velocity vlim
Initial velocity of HDV C vc

16 m/s
18 m/s

Initial velocity of HDV B vb
Initial longitudinal position of HDV B xb
Initial longitudinal position of HDV C xc
Initial lateral position of HDV B yb
Initial lateral position of HDV D yd
* Aggression factor of HDV C q

14 m/s
100 m
0 m
4.5 m
1.5 m
−3~3

Initial velocity of HDV D vd
Initial longitudinal position of HDV D xd
Initial lateral position of CAV A ya
Initial lateral position of HDV C yc
Initial longitudinal position of CAV A xa

14 m/s
100 m
1.5 m
4.5 m
15~85 m

∗ We assume that the driver’s trust factor p and aggression factor q are equal.

Table 2. Parameter setting for Scenario 2.

Parameter Value Parameter Value

Initial velocity of HDV C vc 18 m/s Initial longitudinal position of HDV B xb 40 m

Table 3. Parameter setting for Scenario 3.

Parameter Value Parameter Value

Initial velocity of HDV C vc 14 m/s Initial longitudinal position of HDV B xb 100 m

Table 4. Parameter setting for Scenario 4.

Parameter Value Parameter Value

Initial velocity of HDV C vc 14 m/s Initial longitudinal position of HDV B xb 40 m

5.2. An Effectiveness Analysis of the Modified DDPG

As shown in Figure 8, the blue line represents the reward based on the DDPG algo-
rithm, and the red line represents the reward of the modified DDPG algorithm. Obviously,
when trained based on the original DDPG algorithm, the CAV learns poorly and only gets
stable reward reporting around 450 episodes, while the modified DDPG can converge to a
stable reward around 370 episodes.

5.3. Testing of the Modified DDPG Algorithm

In this paper, we mainly focus on whether the modified DDPG can enable CAV A
to choose the appropriate lane change opportunity in each specific scenario. Therefore,
in this section, we selected several combinations of driver aggression q (trust factor p)
and the initial position xa of CAV, as shown in the Table 5. In addition, after lane change
decision, trajectory optimization and tracking are completed based on polynomial and
model predictive control, which is not the focus of this paper.

Table 5. Test combination of q and xa.

xa(m)

q 10 30 70
−3 (−3, 10) \ \
3 (3, 10) (3, 30) (3, 70)
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Figure 8. Reward changes based on DDPG algorithm and modified DDPG algorithm in scenario 1.

In order to facilitate the discussion during lane change, we subdivide the state of HDV
C into the following 13 types.

1. The longitudinal spacing between CAV A and HDV C is greater than the visibility.
State 1: visibility is less than the safe sight distance of HDV C and there is no vehicle
ahead in visibility.
State 2: visibility is less than the safe sight distance of HDV C and there is a vehicle
ahead in visibility.
State 3: visibility is greater than the safe sight distance of HDV C and there is no
vehicle ahead in visibility.
State 4: visibility is greater than the safe sight distance of HDV C and there is a vehicle
ahead in visibility.

2. The longitudinal spacing between CAV A and HDV C is less than the visibility.
State 5: CAV A is in the lane change state.
State 6: CAV A has not started lane change, visibility is less than the safe sight distance
of HDV C and there is no vehicle ahead in visibility.
State 7: CAV A has not started lane change, visibility is less than the safe sight distance
of HDV C and there is a vehicle ahead in visibility.
State 8: CAV A has not started lane change, visibility is greater than the safe sight
distance of HDV C and there is no vehicle ahead in visibility.
State 9: CAV A has not started lane change, visibility is greater than the safe sight
distance of HDV C and there is a vehicle ahead in visibility.
State 10: CAV A completes lane change, visibility is less than the safe sight distance of
HDV C and there is no vehicle ahead in visibility.
State 11: CAV A completes lane change, visibility is less than the safe sight distance of
HDV C and there is a vehicle ahead in visibility.
State 12: CAV A completes lane change, visibility is greater than the safe sight distance
of HDV C and there is no vehicle ahead in visibility.
State 13: CAV A completes lane change, visibility is greater than the safe sight distance
of HDV C and there is a vehicle ahead in visibility.

Figure 9 shows the results of the lane change test in scenario 1. In (a), (b) and (c), q
is 3 and xa is 10 m. In (d), (e) and (f), q is −3, and xa is 10 m. In (g), (h) and (i), q is 3 and
xa is 30 m. In (j), (k) and (l), q is 3 and xa is 70 m. As shown in (a), when q is 3, CAV A
learns to accelerate during the lane change and also makes itself a sufficiently longitudinal
distance from HDV C when the lane change is completed. In contrast, HDV C chooses to
yield when q is −3. In this case, considering safety and efficiency, CAV A will change the
lane decisively, as shown in (d) and (e). Simultaneously, the longitudinal spacing between
CAV A and HDV C is less than the visibility at the end of the lane change, as shown in



Mathematics 2023, 11, 1556 16 of 24

(c) and (f). When the initial longitudinal position of CAV A is 30 m, CAV A is able to
complete the lane change by proper acceleration, as shown in (g) and (h). Due to the
acceleration of HDV C during the lane change, the safety sight distance of HDV C is greater
than the visibility when CAV A has just completed the lane change, as shown in (i). When
the initial longitudinal position of CAV A is 70 m, CAV A has enough space for lane change,
even if q of HDV C is 3, and CAV A can complete the lane change quickly, as shown in
(j) and (k). At this moment, the longitudinal spacing between HDV C and CAV A has been
greater than the visibility during the whole lane change, as shown in (l).

Figure 9. Test results in scenario 1.

Different from scenario 1, the longitudinal position of HDV B in scenario 2 is 40 m.
Figure 10 shows the results of the lane change test in scenario 2. In (a), (b) and (c), q is −3
and xa is 10 m. In (d), (e) and (f), q is 3 and xa is 10 m. In (g), (h) and (i), q is 3 and xa is 30 m.
When CAV A has just finished the lane change, HDV C is in state 11 due to the acceleration.
Comparing (a) and (b), we can find that CAV A chooses to accelerate and complete the lane
change after 50 m when HDV C is more aggressive.

After that, HDV C comes to the car following state shown in Figure 3 and comes to
state 13, as shown in (f). When CAV A changes lanes at 30 m, CAV A can complete the lane
change by accelerating appropriately. However, different from scenario 1, CAV A needs to
maintain the distance from vehicle B. The results of lane change are shown in (g) and (h).
In scenarios 3 and 4, the initial velocity of HDV C is smaller. Compared with scenarios 1
and 2, only the initial state of HDV C is different, as shown in Figure 11. While CAV A can
easily learn the lane change strategy, the specific lane change test results are not given here.
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Figure 10. Test results in scenario 2.

Figure 11. Test results of the state of HDV C in scenario 3 and scenario 4.

5.4. Comparison with the Rule-Based Lane Change Decision Algorithm

To further demonstrate the advantages of the modified DDPG algorithm for lane
change in this particular environment, this section compares the rule-based lane change
decision with the modified DDPG algorithm. In each of the four scenarios, we take any
value in the range of (−3, 3) as q of HDV C, and any value in the longitudinal range between
HDV C and vehicle B as the initial longitudinal position of CAV A. In each scenario, we
conducted 100 test experiments for each decision algorithm and counted the success rate,
collision rate and failure rate, as shown in Table 6. In addition, the threshold processing
is done for the lane change trajectory learned by the DDPG algorithm so that it can make
the wheel steering reduce to 0 after reaching the target lane. The rule-based lane change
decision will guarantee the absolute safety of the lane change. When the current conditions
cannot achieve the guaranteed safe lane change, CAV A will stay in the current lane.

As shown in Table 6, firstly, the smaller the initial velocity of HDV C, the larger the
longitudinal range of the lane change and the higher the success rate. For example, the
success rate of scenario 3 can reach 98.5%, while the success rate of Scenario 2 is only 93.1%.
Secondly, the success rate of lane change based on the modified DDPG is higher than that
of the rule-based in all four scenarios and reaches more than 90%, which indicates that
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the modified DDPG is well adapted to the randomness of low visibility and mixed traffic
conditions. Thirdly, for the collision cases that occur with the modified DDPG, we analyze
that they are caused by the incomplete learning of the DDPG in some cases. Additionally,
the incomplete cases are due to the fact that CAV A cannot really complete the lane change
under the vehicle kinematic constraints in the current stochastic environment. Especially in
scenario 2, the incomplete rate reaches 2.3%. The larger initial velocity of HDV C and the
smaller initial lane change range increase the learning difficulty of the CAV lane change
strategy. Fourth, we can find that the rule-based lane change decision method requires
higher lane change conditions. When CAV A cannot achieve the lane change condition
described in Section 3.2, CAV A will continue to drive in the current lane. In particular, the
lane change failure rate reaches 59.4% for HDV C with an initial velocity of 18 m/s and an
initial lane change range of 40 m.

Table 6. Performances of the modified DDPG and the rule-based lane change decision algorithms.

Scenario
The Modified DDPG The Rule-Based

Success Collision Unfinished Success Unfinished

Scenario 1 97.2% 1.8% 1% 85.4% 14.6%
Scenario 2 93.1% 4.6% 2.3% 40.6% 59.4%
Scenario 3 98.5% 0.4% 1.1% 91.1% 8.9%
Scenario 4 95.8% 2.6% 1.6% 68.9% 31.1%

Two special scenarios are selected to illustrate the two decision algorithms and give
the historical trajectory, velocity, steering and yaw variation of the vehicle, respectively.
In test scenario 1, the q of HDV C is −3, the initial vC is 18 m/s, vA is 14 m/s, the initial
longitudinal spacing between HDV C and CAV A is 20 m, the reaction time T is 0.3 s and
the absolute values of amax and amin are 3 m/s2.

According to Equation (21), the rule-based lane change decision is executed when the
longitudinal spacing between HDV C and CAV A reaches 32.4 m, which is obviously not
satisfied. The CAV A stays in the current lane with no change in speed, steering angle
and heading angle throughout the process. The trajectory of CAV A is the red line, and
the tracks of other vehicles are blue lines, as shown in Figures 12 and 13. However, the
modified DDPG finds the lower aggressiveness of HDV C and completes the lane change
just at the beginning of the lane change, as shown in Figures 14 and 15. In test scenario 2,
the q of HDV C is 3, the initial vC is 14 m/s and the initial longitudinal spacing between
HDV C and CAV A is 10 m. Other conditions are the same as in test scenario 1. Similarly,
the rule-based lane change decision will not be executed because the distance condition
is not satisfied, as shown in Figures 16 and 17. However, based on the modified DDPG
decision algorithm, CAV A accelerates at the beginning. At around 2.7 s, vA approaches
18 m/s, and CAV A begins to change lanes, as shown in Figures 18 and 19.

To better illustrate the effect of the modified DDPG, the emergency lane change
scenario and the non-emergency lane change scenario are also selected. The success rate
and time for lane change are given, respectively, and compared with both rule-based and
DQN-based.

The comparison results are shown in Table 7 and Figure 20. The success rate of the
proposed method is 90.36% and the time required is 5.2 s in the emergency lane change
scenario, both of which are better than the rule-based 45.12% and 7.6 s and the DQN-based
68.23% and 6.2 s. The comparison results are shown in Table 8 and Figure 21. The success
rate of the proposed method is 92.15% and the time required is 5.8 s in the non-emergency
lane change scenario. The success rate of the proposed method is better than the rule-based
47.98% and the DQN-based 64.58%, but the time required is only better than the rule-based
7.3 s and slightly weaker than the DQN-based 5.7 s. Overall, our proposed algorithm is
clearly superior in both emergency and non-emergency lane change scenarios.
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Figure 12. The result of the trajectories of test scenario 1 based on the rule-based lane change decision.

Figure 13. The velocity, steering and yaw of test scenario 1 based on the rule-based lane change decision.

Figure 14. The result of the trajectory of test scenario 1 based on the modified DDPG.

Figure 15. The velocity, steering and yaw of test scenario 1 based on the modified DDPG.

Figure 16. The result of the trajectory of test scenario 2 based on the rule-based lane change decision.
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Figure 17. The velocity, steering and yaw of test scenario 2 based on the rule-based lane change decision.

Figure 18. The result of the trajectory of test scenario 2 based on the modified DDPG.

Figure 19. The velocity, steering and yaw of test scenario 2 based on the modified DDPG.

Table 7. Comparison of modified DDPG and rule-based and DQN-based in the emergency lane
change scenario.

Success Rate for Lane Change Time for Lane Change

Our Method 90.36% 5.2 s
Rule-based 45.12% 7.6 s
DQN-based 68.23% 6.2 s
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Figure 20. The success rate and time for lane change of the emergency lane change scenario based on
three methods.

Table 8. Comparison of modified DDPG and rule-based and DQN-based in the non-emergency lane
change scenario.

Success Rate for Lane Change Time for Lane Change

Our Method 92.15% 5.8 s
Rule-based 47.98% 7.3 s
DQN-based 64.58% 5.7 s

Figure 21. The success rate and time for lane change of the non-emergency lane change scenario
based on three methods.

6. Conclusions

In this paper, we present a lane change decision problem for CAVs in low visibility
and mixed traffic conditions.

We first consider the effects of low visibility and mixed traffic conditions on the CAV,
and then propose an FSM model to describe the driving states of the HDV. Secondly, we
use the modified DDPG algorithm to learn the lane change decision of the CAV. Finally,
we verify that the modified DDPG converges faster. It is worth noting that the modified
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DDPG is more adaptive to the environment and can find more lane change opportunities
compared to the rule-based lane change decision.

In the future, obtaining the actual driving data of HDV n low visibility and mixed
traffic conditions can be further considered. It is also possible to further explore the issues
of lane change decisions and overtaking decisions for multiple lanes in low visibility and
mixed traffic conditions. On the basis of vehicle micro-control, the traffic operation rule
and vehicle scheduling in this environment can continue to be studied.
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