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Abstract: Advertisements play an important role in communicating with target customers. A higher
advertisement frequency increases costs but may increase the chances of acquiring new customers.
Moreover, faced with a wide-ranging array of products that might fit specific needs, customers
usually buy according to expectations about value and satisfaction. When customers are satisfied
with a purchasing experience, they are more likely to buy again and share their experiences with
others. Hence, companies are concerned about increasing customer value and service satisfaction
to develop and manage customer relationships. This maintains a company’s competitive edge and
can improve its market share. In this article, we incorporate the frequency of advertisements and
the cost of customer relationship management (CRM) into the demand function under a product
life cycle (PLC). Customers can return products in the appreciation period offered by a retailer. A
profit-maximizing model is developed to analyze the joint marketing and ordering policy of each
stage of a product’s life cycle with a product return guarantee. We construct an algorithm to identify
the optimal decisions. Finally, numerical examples are presented to illustrate the proposed model,
and managerial insights are obtained from a sensitivity analysis, followed by conclusions and future
research.
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1. Introduction

After a new product is launched, its sales grow, mature, and decline throughout the
product’s life cycle. Although it is unrealistic to expect a product to sell forever, a company
may nevertheless seek to earn an adequate level of profitability to afford the effort and risk.
Product sales over a typical product life cycle comprise five distinct stages, as shown in
Figure 1. As a result, an appropriate inventory policy at each stage of a product’s life cycle
should be developed according to the level of product sales.

Over recent decades, researchers have discussed different patterns of demand match-
ing at different stages of the product life cycle. The assumption of a constant demand in
the traditional economic order quantity (EOQ) model only aligns with the maturity stage
of a product’s life cycle. In order to reflect the reality, the earlier research has generally
assumed that demand rate is a linear or exponential function, increasing during the in-
troduction and growth stages and decreasing during the decline stage. Donaldson [1]
established a classical inventory model with a linear trend in demand and no shortages
over a finite time-horizon. Henery [2] further expanded the demand rate from the work
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of Donaldson [1] to develop general log-concave demand functions. Teng and Yang [3]
developed a replenishment policy where the demand function fluctuated with time, and
it included increasing, decreasing, and log-concave demand patterns. On the other hand,
demand for a product over its life cycle may increase initially and then remain constant for
a certain period before finally declining. Hill [4] and Ahmed et al. [5] proposed a ramp-type
demand rate using the EOQ model in which the demand increased with time up to a
certain level and then became constant over the rest of the period. To depict a product
demand pattern more reasonably through a life cycle, Cheng and Wang [6] extended the
deteriorating inventory model to allow for a trapezoidal-type demand rate, which included
the stages from market introduction to decline over a product’s life cycle. Skouri and Kon-
stantaras [7] and Lin et al. [8] explored a time-varying deteriorating inventory model with
a trapezoidal-type demand rate by introducing shortages. Wu et al. [9] discussed pricing
and inventory decisions in an inventory model by considering that product freshness was
linked to expiration date, and the demand rate was a trapezoidal, multivariate function
of price and time. Inventory control requires maintaining an adequate stock level of a
product to meet customer demand and, in turn, achieving the possible lowest cost or the
highest possible profit. The analysis of the inventory models that allow for a constant rate
of demand to vary over time has broadened the field of inventory management in practice.
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In order to keep and sustain a competitive advantage, a retailer offers an appreciation
period in which customers can request a return or exchange when they are dissatisfied
with a product. According to online shopping surveys conducted by Pinkerton [10] and
Trager [11], over 70% of the respondents evaluated the return conditions of a store before
they made purchase decisions. Petersen and Kumar [12] demonstrated that a lenient
return policy builds customer trust and convenience in shopping experiences, and hence,
this leads to future repeat purchases. Yalabik et al. [13] introduced an optimal returns
system that coordinated decisions in marketing and logistics. They identified that a refund
policy decreases perceived risk and provides a protection mechanism for customers to
go ahead with a purchase. Chen and Bell [14] designed a dual-channel structure with
different returns policies—full-refund and no-returns—to examine the impact of customer
returns on a firm’s pricing and inventory decisions. They illustrated how a firm could
enhance profitability using their dual-channel structure. Akçay et al. [15] considered a
retailer who adopted a money-back guarantee policy and resold returned products by
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discounting them as open-box items. They studied the retailer’s optimal pricing, order
quantities, and refunded amounts, and how the retailer’s profit by the restock and resale of
returned products had increased. Hu et al. [16] found that a vendor would not offer a return
policy if the salvage value was zero in an inventory control problem under a consignment
contract. In the research of Priyan and Uthayakumar [17], defective recoverable products
were returned to a warehouse by a distributor, and the warehouse recovered them into
perfect products under a recovery inventory system. Ülkü and Gürler [18] introduced
a newsvendor model in which customers could decide to keep a product or exercise an
abused or normal return after using it. Li et al. [19] studied a two-tier supply chain problem
with a manufacturer and a retailer where the pricing and ordering decisions were made
along with the retailer’s product returns policy over two time periods. Assuming that
customers could return a product at any stage of the replenishment cycle, Kumari and
De [20] analyzed the impact of both returns and trade credit policies on the EOQ model,
considering resalable returns for deteriorating items. Unlike the study of Kumari and
De [20], Cheng and Ouyang [21] assumed that a retailer only offered a no-reason return
period (an appreciation period) to its customers. They investigated the optimal pricing and
ordering policies in an advanced sales system where a retailer could receive a supplier’s
trade credit. Later, considering an advance sales system within a no-reason return period
and two-phase advance sales, Cheng et al. [22] established a deteriorating EOQ model to
determine a retailer’s optimal sales periods and selling prices.

Kotler and Armstrong [23] proposed that achieving marketing goals depends on
not only attracting customers but also on maintaining and growing customer numbers.
Delivering the desired satisfactions is a key influence on future buying behavior. To
reach their target markets, companies rely heavily on advertising, which serves to inform,
persuade, and remind consumers about their products or services. Through mass media
channels, advertising effectively communicates a company’s or brand’s value proposition
to potential customers. In addition, customer relationship management is an important
business strategy for businesses looking to build strong, lasting relationships with their
customers. When customers feel that a business understands and cares about their needs,
they are more likely to stay loyal to that business. By doing so, advertising and customer
relationship management help create a positive perception of a company or brand, which,
in turn, leads to an increase in customer referrals through word of mouth. Urban [24]
developed a finite replenishment inventory model by incorporating the influence of price
variations and advertising expenditures on demand. Lee and Kim [25] examined the effects
of integrated lot sizing and marketing expenditure decisions through an extended pricing-
EOQ model context. Sadjadi et al. [26] considered an inventory model by assuming that
production rate is a linear function of demand. Their model formulation determined a
product’s selling price, production lot size, and marketing expenditure. Wang et al. [27]
established a newsvendor-type coordination model consisting of a manufacturer and a
buyer by considering the combined effect of advertising expenditure and selling price on
demand. Yadav et al. [28] investigated an inventory problem with backorders by assuming
demand to depend on the frequency of advertisements in a fuzzy environment. Rabbani
et al. [29] proposed a joint pricing and inventory control problem for non-instantaneous
deteriorating items in which the demand rate was a function of both the selling price
and the frequency of advertisements. Manna et al. [30] extended an imperfect production
inventory model by accounting for an advertisement-dependent demand rate, which
was assumed to be an increasing function of time at a decreasing rate. Shaikh et al. [31]
considered the effects of selling price and frequency of advertisements on demand in a
deteriorating inventory model which allowed for a permissible delay in payments and a
time-proportional backlogging rate. Because advertisements can spread out the popularity
of a product for all categories of customers, Khan et al. [32] expanded the deteriorating
inventory model by considering an advertisement policy with an advanced payment policy.
They assumed that the demand for a product with a maximum lifetime depended on the
frequency of advertisements, which was confined to a positive integer, and the selling
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price. San-José et al. [33] obtained an optimal advertising policy adopting a power form of
demand dependent on the selling price, time, and frequency of advertisements in a lot-size
inventory problem. Mandal and Pal [34] dealt with an EPQ model under an imperfect
production system where demand was dependent on selling price and advertisements. In
a two-level supply chain model with unreliable production process, Giri and Dash [35]
derived an optimal batch shipment policy under price, advertisement frequency, and
green-sensitive demand.

In reality, customer returns are the major category of returns in the supply chain.
Retailers should use effective CRM to communicate their return policies across multiple
channels. As a result, customer returns put pressure on a firm’s costs arising from various
activities, including CRMs and returns. In addition, advertising and CRMs are widely
used by firms to communicate with customers in a competitive environment. Motivated
by previous studies and investigations, this study aimed to address existing research gaps
by developing an inventory model that links a firm’s profit, incorporating the effects of
advertising, with a CRM and an appreciation period. In the literature, advertising models
with return policies have been extensively studied. However, there is a lack of research
investigating the effects of advertising, CRMs, and appreciation periods within a product’s
life cycle. This study endeavored to address this gap by making contributions to three
streams of literature: (1) an inventory model with a return policy, (2) an inventory model
with advertisement-sensitive demand, and (3) an inventory model with time-dependent
demand. In this paper, we discuss the inventory issues, including the product life cycle,
and we incorporate the frequency of advertisements and the cost of customer relationship
management into the demand function. In our model, a retailer offers an appreciation
period in which customers can make a request to return products when they are dissatisfied
with the products. A comparison of the present paper with the relevant literature is
provided in Table 1 to help the readers understand the contributions of our model. We
established a proper model and then provided an easy and useful algorithm to obtain
the optimal ordering and advertisement policies for a retailer to achieve its maximum
total profit. Finally, numerical examples are given to illustrate the solution procedure,
and a sensitivity analysis is performed to investigate the effects of changes in some main
parameter values on the optimal solution. This paper is organized as follows: Section 1
provides a comprehensive review of the related literature. Section 2 describes the problem
and provides the developed model in detail. Section 3 presents the theoretical results and
provides an algorithm for searching the optimal solutions. Section 4 illustrates numerical
examples and a sensitivity analysis to provide further insights. Finally, Section 5 presents
the conclusions and directions for future research.

Table 1. A comparison among the present model and related previous research.

Demand Rate

Authors Model
Type

Return
Policy

Advertisement-
Dependent

CRM Cost-
Dependent

Appreciation
Period-

Dependent
Time-Dependent

Ahmed et al. [5] EOQ No No No No Ramp type

Ahmed et al. [8] EOQ No No No No Trapezoidal type

Wu et al. [9] EOQ No No No No Trapezoidal type

Li et al. [19]
A two-tier

supply
chain

Yes No No No No

Kumari and De [20] EOQ Yes No No No
Exponential

increas-
ing/decreasing

Cheng et al. [22] EOQ Yes No No No No
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Table 1. Cont.

Demand Rate

Authors Model
Type

Return
Policy

Advertisement-
Dependent

CRM Cost-
Dependent

Appreciation
Period-

Dependent
Time-Dependent

Khan et al. [32] EOQ No DV No No No

San-Jose et al. [33] EOQ No DV No No Power pattern

Mandal and Pal [34] EPQ No DV No No No

Giri and Dash [35]
A two-level

supply
chain

No DV No No No

Present model Single
period Yes DV DV DV Mixture

Note: “DV” represents “Decision variable”.

2. Problem Description and Model Formulation
2.1. Notation and Assumptions

The mathematical model in this paper was developed using the below notation and
assumptions.

Notation:
p selling price/unit
c purchase cost/unit, where c < p
s ordering cost/order
ca cost of each advertisement
h holding cost/unit/unit time
N appreciation period
ρ return rate during the appreciation period, where 0 ≤ ρ < 1

(.)i

parameter or decision variable at the stage in the life cycle of the product,
where i = 1, 2, 3, 4 corresponds to the four stages of introduction, growth,
maturity, and decline

Mi

customer relationship management cost of stage i, i = 1, 2, 3, 4/unit of time
(we do not consider customer relationship management costs at the
introduction stage, that is, M1 = 0)

ti time length of stage i, i = 1, 2, 3, 4
T length of a product’s life cycle, T = t1 + t2 + t3 + t4

Ai
frequency of advertisements of stage i, i = 1, 2, 3 (we do not consider the
frequency of advertisements at the decline stage, that is, A4 = 0)

Qi order quantity in stage i, i = 1, 2, 3, 4
Zi(Ai, ti, Mi) retailer total profit for stage i, i = 1, 2, 3, 4, where M1 = 0 and A4 = 0
Z retailer total profit for a product’s life cycle, Z = Z1 + Z2 + Z3 + Z4
t∗i optimal length of stage i for a product’s life cycle, i = 1, 2, 3, 4
T∗ optimal product life cycle

M∗i
optimal customer relationship management cost per unit of time for stage i,
i = 2, 3, 4

A∗i optimal frequency of advertisements for stage i, i = 1, 2, 3
Q∗i optimal order quantity of stage i, i = 1, 2, 3, 4

Z∗i
retailer optimal total profit for stage i, Z∗i = Zi

(
A∗i , t∗i , M∗i

)
, i = 1, 2, 3, 4,

where M∗1 = 0 and A∗4 = 0
Z∗ retailer optimal total profit for a product’s life cycle, Z∗ = Z∗1 + Z∗2 + Z∗3 + Z∗4
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Assumptions:

(1) The demand rate is a function of time, appreciation period, customer relationship
management cost, and frequency of advertisements (see, for example, Cheng and
Wang [6], and Rabbani et al. [29]). The demand rates of different stages are as
follows:

(1.1) Product introduction stage: The marketing objective is to create product
awareness and trials. The demand rate is a function of time, appreciation
period, and frequency of advertisements, that is, D1(A1, t) = (a1 + b1N t)
(1 + A1)

λ, where a1 > 0, b1 > 0, 0 < λ < 1, and 0 < t < t1.
(1.2) Product growth stage: The marketing objective is to maximize market

share. The demand rate is a function of time, appreciation period, cus-
tomer relationship management cost, and frequency of advertisements,
that is, D2(A2, t, M2 ) =

(
a2 + Nb2(t+M2)

)
(1 + A2)

λ, where a2 > 0, b2 > 0,
0 < λ < 1, and 0 < t < t2.

(1.3) Product maturity stage: The marketing objective is to maximize profit while
defending market share. The demand rate is a function of the appreciation
period, customer relationship management cost, and frequency of advertise-
ments, that is, D3(A3, M3) = a3(N + M3)

b3(1 + A3)
λ, where a3 > 0, b3 > 0,

0 < λ < 1, and 0 < t < t3.
(1.4) Product decline stage: The marketing objective is to reduce expenditures

and extract value from the brand. Sales may plunge to zero, or they may
drop to a low level, where they will continue for many years. The demand
rate is a function of time and customer relationship management cost. that

is, D4(t, M4 ) = a4(N + M4)
(

1
b4

)t
, where a4 > 0, b4 > 1, and 0 < t < t 4.

(2) During the appreciation period N, customers can make a request to return products
if they are dissatisfied with them. In such cases, the retailer will refund the money
and the returned products will be discarded.

2.2. Mathematical Formulation

In this paper, we discuss the optimal ordering and marketing policies for four dis-
tinct stages of the product life cycle and the optimal ordering and marketing policies for
a product’s life cycle. The four distinct stages of the product life cycle are as follows:
(1) introduction, (2) growth, (3) maturity, and (4) decline. We have developed retailer
inventory models for these four distinct stages of the product life cycle, as follows:

Stage 1. Introduction

The demand rate is a function of time, appreciation period, and frequency of adver-
tisements, that is, D1(A1, t) = (a1 + b1N t)(1 + A1)

λ, where a1 > 0, b1 > 0, 0 < λ < 1, and
0 < t < t1. The order quantity in this stage is:

Q1 =
∫ t1

0
D1(A1, t)dt =

(
a1t1 +

b1N
2

t2
1

)
(1 + A1)

λ.

The total profit consists of the following elements:

(a) sales revenue (pQ1)
(b) purchasing cost (cQ1)
(c) returned product cost (pρQ1)
(d) advertisement cost (ca A1)
(e) ordering cost (s)
(f) holding cost, which is calculated by:

h
∫ t1

0
D1(A1, t)t dt = h

(
a1

2
t2
1 +

b1N
3

t3
1

)
(1 + A1)

λ.
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Therefore, a retailer’s total profit for the introduction stage is:
Z1(A1, t1) = sales revenue − purchasing cost − cost of return products − advertise-

ment cost − ordering cost − holding cost, which is determined by:

= (p− c− pρ)

(
a1t1 +

b1N
2

t2
1

)
(1 + A1)

λ − ca A1 − s

− h
(

a1

2
t2
1 +

b1N
3

t3
1

)
(1 + A1)

λ. (1)

Stage 2. Growth

The demand rate is a function of time, appreciation period, customer relationship man-
agement cost, and frequency of advertisements, that is, D2(A2, t, M2 ) =

(
a2 + Nb2(t+M2)

)
(1 + A2)

λ, where a2 > 0, b2 > 0, 0 < λ < 1, and 0 < t < t2. The order quantity in this
stage is:

Q2 =
∫ t2

0
D2(A2, t, M2)dt =

(
a2t2 +

Nb2(t2+M2)

b2 ln N
− Nb2 M2

b2 ln N

)
(1 + A2)

λ.

The total profit consists of the following elements:

(a) sales revenue (pQ2)
(b) purchasing cost (cQ2)
(c) return products cost (pρQ2)
(d) advertisement cost (ca A2)
(e) customer relationship management cost ((1− ρ)M2Q2)
(f) ordering cost (s)
(g) holding cost, which is calculated by:

h
∫ t2

0
D2(A2, t, M2)t dt = h

[
a2

2
t2
2 +

Nb2(t2+M2)

b2 ln N
t2 −

Nb2(t2+M2)

b2
2(ln N)2 +

Nb2 M2

b2
2(ln N)2

]
(1 + A2)

λ

Therefore, a retailer’s total profit for the growth stage is:
Z2(A2, t2, M2) = sales revenue − purchasing cost − cost of return products − adver-

tisement cost − cost of customer relationship management − ordering cost − holding cost,
which is determined by:

= [p− c− pρ− (1− ρ)M2]

(
a2t2 +

Nb2(t2+M2)

b2 ln N
− Nb2 M2

b2 ln N

)
(1 + A2)

λ

− ca A2 − s− h

[
a2

2
t2
2 +

Nb2(t2+M2)

b2 ln N
t2 −

Nb2(t2+M2)

b2
2(ln N)2 +

Nb2 M2

b2
2(ln N)2

]
(1 + A2)

λ (2)

Stage 3. Maturity

The demand rate is a function of the appreciation period, customer relationship manage-
ment cost, and frequency of advertisements, that is, D3(A3, M3) = a3(N + M3)

b3(1 + A3)
λ,

where a3 > 0, b3 > 0, 0 < λ < 1, and 0 < t < t3. The order quantity in this stage is:

Q3 =
∫ t3

0
D3(A3, M3)dt = a3(N + M3)

b3(1 + A3)
λt3.

The total profit consists of the following elements:

(a) sales revenue (pQ3)
(b) purchasing cost (cQ3)
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(c) return products cost (pρQ3)
(d) advertisement cost (ca A3)
(e) customer relationship management cost ((1− ρ)M3Q3)
(f) ordering cost (s)
(g) holding cost, which is calculated by:

h
∫ t3

0
D3(A3, M3)tdt =

h
2

a3(N + M3)
b3(1 + A3)

λt2
3.

Therefore, a retailer’s total profit for the maturity stage is:
Z3(A3, t3, M3) = sales revenue − purchasing cost − cost of return products—

advertisement cost − cost of customer relationship management—ordering cost—holding
cost, which is determined by:

= [p− c− pρ− (1− ρ)M3]a3(N + M3)
b3(1 + A3)

λt3 − ca A3

−s− h
2 a3(N + M3)

b3(1 + A3)
λt2

3.
(3)

Stage 4. Decline

The demand rate is a function of time and customer relationship management cost,

that is, D4(t, M4 ) = a4(N + M4)
(

1
b4

)t
, where a4 > 0, b4 > 1, and 0 < t < t 4. The order

quantity in this stage is calculated by:

Q4 =
∫ t4

0
D4(t, M4 )dt =

a4(N + M4)

ln b4

(
1− b−t4

4

)
.

The total profit consists of the following elements:

(a) sales revenue (pQ4)
(b) purchasing cost (cQ4)
(c) return products cost (pρQ4)
(d) customer relationship management cost ((1− ρ)M4Q4)
(e) ordering cost (s)
(f) holding cost, which is calculated by:

h
∫ t4

0
D4(t, M4 )t dt = ha4(N + M4)

[
1

(ln b4)
2 −

t4b−t4
4

ln b4
−

b−t4
4

(ln b4)
2

]
.

Therefore, a retailer’s total profit for the decline stage is:
Z4(t4, M4) = sales revenue − purchasing cost − cost of return products—cost of

customer relationship management − ordering cost − holding cost, which is determined
by:

= [p− c− pρ− (1− ρ)M4]
a4(N+M4)

ln b4

(
1− b−t4

4

)
−s− ha4(N + M4)

[
1

(ln b4)
2 −

t4b
−t4
4

ln b4
− b

−t4
4

(ln b4)
2

]
.

(4)

Furthermore, a retailer’s total profit for a product’s life cycle is:

Z(A1, A2, A3, t1, t2, t3, t4, M2, M3, M4) = Z1(A1, t1) + Z2(A2, t2, M2)
+Z3(A3, t3, M3) + Z4(t4, M4).

(5)

3. Theoretical Results

In this section, the solution procedure is presented and an algorithm is established
to determine the optimal solution to the aforementioned cases. The goal was to max-
imize retailer total profit. First, we found the optimal solution that could maximize
the retailer total profit for the four distinct stages of the product life cycle. We, then
proceeded to use the software program Mathematica 13.0 to obtain the optimal solu-
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tion, A∗1 , A∗2 , A∗3 , t∗1 , t∗2 , t∗3 , t∗4 , M∗2 , M∗3 , M∗4 , and the maximum retailer total profit
for a product’s life cycle, Z∗

(
A∗1 , A∗2 , A∗3 , t∗1 , t∗2 , t∗3 , t∗4 , M∗2 , M∗3 , M∗4

)
. Then, for fixed

Ai, i = 1, 2, 3, we obtained the optimal solution that could maximize retailer total profit
for the four distinct stages of the product life cycle, as follows:

Stage 1. Introduction

To maximize the total profit, for fixed A1 = A∗1 , taking the first-order and second-order
derivatives of Z1(t1|A1) in (1) with respect to t1, we obtain

∂Z1

∂t1
= (p− c− pρ− ht1)(a1 + b1Nt1)(1 + A1)

λ, (6)

and
∂2Z1

∂t2
1

= [(p− c− pρ)b1N − h(a1 + 2b1Nt1)](1 + A1)
λ. (7)

If ∂2Z1
∂t2

1
< 0, then Z1(t1|A1) is a concave function of t1 and Z1(t1|A1) has its maximum

value at
t1 =

p− c− pρ

h
. (8)

Stage 2. Growth

To maximize the total profit, for fixed A2 = A∗2 , taking the first-order derivative of
Z2(t2, M2|A2) in (2) with respect to t2 and M2, respectively, we obtain

∂Z2

∂t2
= [p− c− pρ−M2(1− ρ)− ht2]

[
a2 + Nb2(t2+M2)

]
(1 + A2)

λ (9)

and
∂Z2
∂M2

= +[p− c− pρ−M2(1− ρ)]Nb2 M2
(

Nb2t2 − 1
)
(1 + A2)

λ

−h
[
t2Nb2(t2+M2) − Nb2(t2+M2)

b2 ln N + Nb2 M2
b2 ln N

]
(1 + A2)

λ

−(1− ρ)
[

a2t2 +
Nb2(t2+M2)−Nb2 M2

b2 ln N

]
(1 + A2)

λ.

(10)

The optimal solution of (t2, M2) must simultaneously satisfy ∂Z2
∂t2

= 0 and ∂Z2
∂M2

= 0.
In addition,

∂2Z2
∂t2

2
= [p− c− pρ−M2(1− ρ)]Nb2(t2+M2)b2 ln N(1 + A2)

λ

−h
[

a2 + Nb2(t2+M2) + t2Nb2(t2+M2)b2 ln N
]
(1 + A2)

λ,
(11)

∂2Z2
∂M2

2
= [p− c− pρ−M2(1− ρ)]b2 ln N

[
Nb2(t2+M2) − Nb2 M2

]
(1 + A2)

λ

−2(1− ρ)
[

Nb2(t2+M2) − Nb2 M2
]
(1 + A2)

λ

−h
[
t2Nb2(t2+M2)b2 ln N − Nb2(t2+M2) + Nb2 M2

]
(1 + A2)

λ,

(12)

and
∂2Z2

∂M2∂t2
= [p− c− pρ−M2(1− ρ)− ht2]Nb2(t2+M2)b2 ln N(1 + A2)

λ

−(1− ρ)
[

a2 + Nb2(t2+M2)
]
(1 + A2)

λ.
(13)

Due to the complexity of the problem, we could not find a simple result in which the
Hessian matrix was a positive value. However, using Equations (11)–(13), we could check
this condition by using the software Mathematica 13.0 in numerical examples.

Stage 3. Maturity

To maximize the total profit, for fixed A3 = A∗3 , taking the first-order derivative of
Z3(t3, M3|A3) in (3) with respect to t3 and M3, respectively, we obtain

∂Z3

∂t3
= [p− c− pρ−M3(1− ρ)− ht3]a3(N + M3)

b3(1 + A3)
λ (14)
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and

∂Z3
∂M3

= [p− c− pρ−M3(1− ρ)]a3b3(N + M3)
b3−1(1 + A3)

λt3

− h
2 a3b3(N + M3)

b3−1(1 + A3)
λt2

3 − (1− ρ)a3(N + M3)
b3(1 + A3)

λt3.
(15)

The optimal solution of (t3, M3) must simultaneously satisfy ∂Z3
∂t3

= 0 and ∂Z3
∂M3

= 0.
We obtain

t3 =
p− c− pρ−M3(1− ρ)

h
(16)

and

M3 =

(
p− c− pρ− h

2 t3

)
b3 − (1− ρ)N

(1− ρ)(1 + b3)
. (17)

In addition,
∂2Z3

∂t2
3

= −ha3(N + M3)
b3(1 + A3)

λ < 0, (18)

∂2Z3
∂M2

3
= [p− c− pρ−M3(1− ρ)]a3b3(b3 − 1)(N + M3)

b3−2(1 + A3)
λt3

−2(1− ρ)a3b3(N + M3)
b3−1(1 + A3)

λt3

− h
2 a3b3(b3 − 1)(N + M3)

b3−2(1 + A3)
λt2

3,

(19)

and

∂Z3
∂t3∂M3

= [p− c− pρ−M3(1− ρ)]a3b3(N + M3)
b3−1 (1 + A3)

λ

−(1− ρ)a3(N + M3)
b3(1 + A3)

λ − ha3b3(N + M3)
b3−1(1 + A3)

λt3
= {[p− c− pρ−M3(1− ρ)− ht3]b3 − (1− ρ)(N + M3)}

×a3(1 + A3)
λ(N + M3)

b3−1.

(20)

Due to the complexity of the problem, we were unable to find a simple result in which
the Hessian matrix was a positive value. However, using Equations (18)–(20), we could
check this condition by using the software Mathematica 13.0 in numerical examples.

Stage 4. Decline

To maximize the total profit, taking the first-order derivative of Z4(t4, M4) in (4) with
respect to t4 and M4, respectively, we obtain

∂Z4

∂t4
= [p− c− pρ−M4(1− ρ)− ht4]a4(N + M4)b

−t4
4 (21)

and
∂Z4
∂M4

= [p− c− pρ− (1− ρ)(2M4 + N)] a4
ln b4

(
1− b−t4

4

)
−ha4

[
1

(ln b4)
2 −

t4b
−t4
4

ln b4
− b

−t4
4

(ln b4)
2

]
.

(22)

The optimal solution of (t4, M4) must simultaneously satisfy ∂Z4
∂t4

= 0 and ∂Z4
∂M4

= 0.
We obtain

t4 =
p− c− pρ−M4(1− ρ)

h
(23)

and

M4 =
(1− ρ)(p− N)− c

2(1− ρ)
− h

2(1− ρ)

[
1

ln b4
−

t4b−t4
4

1− b−t4
4

]
. (24)

In addition,
∂2Z4

∂M2
4
= −2(1− ρ)a4

1− b−t4
4

ln b4
< 0, (25)
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∂2Z4

∂t2
4

= −{[p− c− pρ−M4(1− ρ)− ht4] ln b4 + h}a4(N + M4)b
−t4
4 < 0, (26)

and
∂2Z4

∂t4∂M4
= a4b−t4

4 [p− c− pρ− (1− ρ)(2M4 + N)− ht4]. (27)

Due to the complex nature of the problem, we could not find a simple result in which
the Hessian matrix was a positive value. However, using Equations (25)–(27), we could
check this condition by using the software Mathematica 13.0 in numerical examples.

Algorithm 1. Solution Procedure

Step 1. Input the values of parameters
Step 2. Introduction stage

2.1 Set i = 0 and A1,i = 0.

2.2 Using Equation (8), t1,i is obtained, and substituting t1,i into Equation (7), if ∂2Z1
∂t2

1
< 0,

then, by substituting t1,i into Equation (1), Z1,i is obtained. Otherwise, Z1,i= 0.
2.3 Let i = i +1 and A1,i+1 = i + 1. Using Equation (8), t1,i+1 is obtained, and

substituting t1,i+1 into Equation (7), if ∂2Z1
∂t2

1
< 0, then, by substituting t1,i+1 into

Equation (1), Z1,i+1 is obtained. Otherwise, Z1,i+1= 0.
2.4 If Z1,i+1 > Z1,i, we can proceed to 2.3. Otherwise, Z1,i = Z∗1 , t1,i = t∗1 , and A1,i = A∗1 .

Proceed to Step 6.

Step 3. Growth stage

3.1 Set i = 0 and A2,i = 0.
3.2 Using Equations (9) and (10), and by simultaneously solving ∂Z2

∂t2
= 0 and ∂Z2

∂M2
= 0,

we obtain t2,i and M2,i. Substituting t2,i and M2,i into Equations (11)–(13), if the
Hessian matrix has a positive value, then, by substituting t2,i and M2,i into (2), Z2,i is
obtained. Otherwise, Z2,i= 0.

3.3 Let i = i +1 and A2,i+1 = i + 1. Using Equations (9) and (10), and by simultaneously
solving ∂Z2

∂t2
= 0 and ∂Z2

∂M2
= 0, we obtain t2,i+1 and M2,i+1. Substituting t2,i+1 and

M2,i+1 into Equations (11)–(13), if the Hessian matrix has a positive value, then, by
substituting t2,i+1 and M2,i+1 into (2), Z2,i+1 is obtained. Otherwise, Z2,i+1= 0.

3.4 If Z2,i+1 > Z2,i, we can proceed to 3.3. Otherwise, Z2,i = Z∗2 , t2,i = t∗2 , M2,i = M∗2 ,
and A2,i = A∗2 . Proceed to Step 6.

Step 4. Maturity stage

4.1 Set i = 0 and A3,i = 0.
4.2 Using Equations (16) and (17), we obtain t3,i and M3,i. Substituting t3,i and M3,i into

Equations (18)–(20), if the Hessian matrix has a positive value, then, by substituting
t3,i and M3,i into (3), Z3,i is obtained. Otherwise, Z3,i= 0.

4.3 Let i = i +1 and A3,i = i + 1. Using Equations (16) and (17), we obtain t3,i+1 and
M3,i+1. Substituting t3,i+1 and M3,i+1 into Equations (18)–(20), if the Hessian matrix
has a positive value, then, by substituting t3,i+1 and M3,i+1 into (3), Z3,i+1 is
obtained. Otherwise, Z3,i+1= 0.

4.4 If Z3,i+1 > Z3,i, we can proceed to 4.3. Otherwise, Z3,i = Z∗3 , t3,i = t∗3 , M3,i = M∗3 ,
and A3,i = A∗3 . Proceed to Step 6.

Step 5. Decline stage

5.1 Using Equations (23) and (24), we obtain t4 and M4.
5.2 Substituting t4 and M4 into Equations (25)–(27), if the Hessian matrix has a positive

value, then t4 = t∗4 and M4 = M∗4 . Otherwise, Z4= 0.
5.3 By substituting t∗4 and M∗4 into (4), Z∗4 is obtained. Proceed to Step 6.

Step 6. Z∗ = Z
(

A∗1 , A∗2 , A∗3 , t∗1 , t∗2 , t∗3 , t∗4 , M∗2 , M∗3 , M∗4
)
= Z∗1

(
A∗1 , t∗1

)
+ Z∗2

(
A∗2 , t∗2 , M∗2

)
+Z∗3

(
A∗3 , t∗3 , M∗3

)
+ Z∗4

(
t∗4 , M∗4

)
.
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4. Numerical Examples

Example 1. A retailer offers customers an appreciation period. We established proper models for
four different stages of a product’s life cycle and incorporated the frequency of advertisements and
the cost of customer relationship management into the demand function. The given parameter values
were as follows:

p = $27/unit, c = $7/unit, h = $1.2/unit/day, ρ = 0.05, N = 7 days, λ = 0.6, ca = $300,
s = $200, a1 = 3, a2 = 2, a3 = 2, a4 = 2, b1 = 0.1, b2 = 0.13, b3 = 0.85, and b4 = 1.05.

By applying the solution procedure in Algorithm 1, we determined that the optimal solution was(
A∗1 , A∗2 , A∗3 , t∗1 , t∗2 , t∗3 , t∗4 , M∗2 , M∗3 , M∗4

)
= 4, 7, 15, 15.54, 13.93, 14.80, 13.56, 2.03, 0.94, 2.50,

Z
(

A∗1 , A∗2 , A∗3 , t∗1 , t∗2 , t∗3 , t∗4 , M∗2 , M∗3 , M∗4
)

= 7717.06, and the optimal order quantity of each
stage of a product’s life cycle was

(
Q∗1 , Q∗2 , Q∗3 , Q∗4

)
= (344.5, 855.2, 909.1, 188.5) units.

Example 2. We discussed the effects of changing the values of the parameters (the selling price p,
the purchase cost c, the holding cost h, the return rate ρ, the appreciation period N, and the cost of
each advertisement ca) on the optimal solution. The remaining parameter values were identical to
those in Example 1. The sensitivity analysis was performed by changing p ∈ {25, 26, 27, 28, 29},
c ∈ {5, 6, 7, 8, 9}, h ∈ {1.0, 1.1, 1.2, 1.3, 1.4}, ρ ∈ {0.01, 0.02, 0.05, 0.1, 0.15}, N ∈
{ 5, 6, 7, 8, 9}, and ca ∈ {200, 250, 300, 350, 400} (one at a time) while keeping the remaining
parameters unchanged. We followed the algorithms, and the computational results are shown in
Tables 1 and 2.

Table 2. Effects of the parameters on A∗i , t∗i , and M∗i .

Parameter A*
1 A*

2 A*
3 t*

1 t*
2 t*

3 t*
4 M*

2 M*
3 M*

4

p 25 2 2 8 13.96 13.96 13.68 12.57 0.00 0.35 1.75
26 3 4 11 14.75 14.75 14.24 13.07 0.00 0.64 2.12
27 4 7 15 15.54 13.93 14.80 13.56 2.03 0.94 2.50
28 6 13 20 16.33 12.30 15.35 14.05 5.10 1.24 2.88
29 9 23 26 17.13 11.65 15.91 14.54 6.92 1.54 3.26

c 5 9 25 27 17.21 11.60 15.96 14.59 7.09 1.57 3.30
6 6 13 21 16.38 12.25 15.38 14.08 5.21 1.26 2.90
7 4 7 15 15.54 13.93 14.80 13.56 2.03 0.94 2.50
8 3 4 11 14.71 14.71 14.21 13.04 0.00 0.63 2.10
9 2 2 8 13.88 13.88 13.63 12.52 0.00 0.31 1.71

h 1.0 9 31 25 18.65 18.65 17.75 16.17 0.00 0.94 2.62
1.1 6 14 19 16.95 16.95 16.14 14.75 0.00 0.94 2.55
1.2 4 7 15 15.54 13.93 14.80 13.56 2.03 0.94 2.50
1.3 3 4 12 14.35 10.92 13.66 12.55 4.69 0.94 2.46
1.4 2 2 10 13.32 9.33 12.68 11.68 5.88 0.94 2.42

ρ 0.01 6 13 21 16.44 16.34 15.59 14.26 0.12 1.03 2.64
0.02 6 11 19 16.22 15.41 15.39 14.09 0.99 1.01 2.61
0.05 4 7 15 15.54 13.93 14.80 13.56 2.03 0.94 2.50
0.10 2 3 10 14.42 12.46 13.80 12.68 2.61 0.82 2.32
0.15 1 1 6 13.29 11.69 12.81 11.79 2.26 0.68 2.12

N 5 2 3 8 15.54 15.54 13.68 12.57 0.00 2.35 3.75
6 3 5 11 15.54 15.54 14.24 13.07 0.00 1.64 3.12
7 4 7 15 15.54 13.93 14.80 13.56 2.03 0.94 2.50
8 5 11 20 15.54 11.25 15.35 14.05 5.42 0.24 1.88
9 6 17 26 15.54 10.11 15.54 14.54 6.86 0.00 1.26

ca 200 13 21 44 15.54 13.93 14.80 13.56 2.03 0.94 2.50
250 7 12 25 15.54 13.93 14.80 13.56 2.03 0.94 2.50
300 4 7 15 15.54 13.93 14.80 13.56 2.03 0.94 2.50
350 2 5 10 15.54 13.93 14.80 13.56 2.03 0.94 2.50
400 2 3 7 15.54 13.93 14.80 13.56 2.03 0.94 2.50
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From Tables 2 and 3, we obtained the following results:

(1) A higher selling price value p resulted in a higher optimal frequency of advertisements
for stage i, A∗i ; a higher optimal customer relationship management cost value for
stage i, M∗i ; a higher retailer optimal total profit value for stage i, Z∗i ; a higher value
for retailer total profit for a product life cycle Z∗; and an optimal order quantity of
each stage for a product life cycle Q∗i . This suggests that when a selling price is higher,
a retailer should increase the frequency of advertisements and customer relationship
management cost.

(2) A higher purchase cost value c resulted in a lower optimal frequency of advertisements
for stage i, A∗i ; a lower optimal customer relationship management cost value for
stage i„ M∗i ; a lower retailer optimal total profit value for stage i, Z∗i ; a lower value for
retailer total profit for a product life cycle Z∗; and an optimal order quantity of each
stage for a product life cycle , Q∗i . This suggests that when a purchase cost is higher,
a retailer should consider decreasing the frequency of advertisements and customer
relationship management cost.

(3) In addition, a higher holding cost value h resulted in a lower optimal frequency of
advertisements for stage I, A∗i ; a lower optimal length of stage i for a product life cycle
t∗i ; a lower retailer optimal total profit value for stage i, Z∗i ; a lower value for retailer
total profit for a product life cycle Z∗; and an optimal order quantity of each stage for
a product life cycle Q∗i . This suggests a retailer should consider reducing their order
quantity to avoid incurring higher holding costs. Additionally, they may also need to
shorten the length of stage i of the product life cycle.

(4) Moreover, a higher return rate value for ρ resulted in a lower optimal frequency of
advertisements for stage i, A∗i ; a lower optimal length of stage i for a product life
cycle t∗i ; a lower retailer optimal total profit value for stage i, Z∗i ; a lower value for
retailer total profit for a product life cycle Z∗; and an optimal order quantity for each
stage of a product life cycle Q∗i . This suggests that retailers should consider reducing
their order quantity to avoid incurring higher costs associated with returned products.
Additionally, they may also need to shorten the length of stage i of a product’s life
cycle to mitigate the impact of returns on their overall profits.

(5) A higher appreciation period value N resulted in a higher optimal frequency of
advertisements for stage i, A∗i ; a higher retailer optimal total profit value for stage i,
Z∗i ; a higher value for retailer total profit for a product life cycle Z∗; and an optimal
order quantity for each stage of a product life cycle Q∗i . This suggests that when an
appreciation period is longer, a retailer may need to consider increasing the frequency
of advertisements and the order quantity of each stage of a product’s life cycle to
maximize their profits.

(6) A higher cost value of each advertisement ca resulted in a lower optimal frequency of
advertisements for stage i, A∗i ; a lower retailer optimal total profit value for stage i, Z∗i ;
a lower value for retailer total profit for a product life cycle Z∗; and an optimal order
quantity for each stage of a product life cycle Q∗i . As a result, one straightforward
management approach for retailers could be to reduce the frequency of advertisements
for stage i, A∗i , to avoid incurring higher advertisement costs. Additionally, a retailer
may explore alternative advertising strategies to reduce the cost per advertisement.
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Table 3. Effects of the parameters on Z∗, Z∗i , and Q∗i .

Parameter Z* Z*
1 Z*

2 Z*
3 Z*

4 Q*
1 Q*

2 Q*
3 Q*

4

p 25 4481.00 614.01 726.02 1974.28 1166.69 212.8 307.4 557.1 164.4
26 5857.46 831.83 1108.14 2588.95 1328.53 276.6 500.4 712.7 176.3
27 7717.06 1122.35 1722.82 3370.07 1501.82 344.5 855.2 909.1 188.5
28 10,408.37 1504.11 2864.78 4352.66 1686.81 457.6 1619.1 1145.7 201.0
29 14,424.88 2000.63 4961.96 5578.49 1883.80 613.2 2920.2 1422.8 213.8

c 5 14,957.40 2062.19 5266.02 5723.95 1905.24 618.1 3149.2 1464.0 215.1
6 10,580.61 1527.04 2946.32 4410.37 1696.88 459.5 1642.6 1182.3 201.7
7 7717.06 1122.35 1722.82 3370.07 1501.82 344.5 855.2 909.1 188.5
8 5774.39 818.03 1083.24 2553.39 1319.73 275.3 495.6 710.0 175.7
9 4357.50 592.84 695.57 1918.79 1150.31 210.7 301.6 552.7 163.2

h 1.0 15,773.50 2189.95 6560.35 5258.98 1764.23 707.4 3806.5 1459.8 215.0
1.1 10,429.25 1534.74 3105.83 4164.96 1623.72 486.9 1615.2 1133.8 200.9
1.2 7717.06 1122.35 1722.82 3370.07 1501.82 344.5 855.2 909.1 188.5
1.3 6139.31 850.83 1116.69 2776.72 1395.07 264.4 561.7 740.9 177.5
1.4 5082.40 666.88 790.16 2324.52 1300.84 197.3 360.7 622.3 167.7

ρ 0.01 10,563.00 1563.92 2857.64 4450.71 1690.73 462.6 1378.9 1170.7 198.1
0.02 9755.01 1440.42 2514.89 4156.98 1642.73 452.2 1226.0 1089.0 195.7
0.05 7717.06 1122.35 1722.82 3370.07 1501.82 344.5 855.2 909.1 188.5
0.10 5277.48 734.18 930.86 2334.85 1277.59 224.2 450.5 668.4 176.2
0.15 3645.92 488.30 518.40 1580.10 1067.12 154.2 229.1 465.9 163.5

N 5 4832.35 766.22 925.16 1974.28 1166.69 206.9 344.1 557.1 164.4
6 6121.17 933.79 1269.90 2588.95 1328.53 273.6 548.2 712.7 176.3
7 7717.06 1122.35 1722.82 3370.07 1501.82 344.5 855.2 909.1 188.5
8 9880.66 1333.93 2507.25 4352.66 1686.81 419.7 1517.4 1145.7 201.0
9 12,720.67 1569.24 3712.59 5555.04 1883.80 499.2 2500.9 1453.6 213.7

ca 200 12,369.85 1878.43 2981.26 6008.35 1501.82 639.0 1569.2 1690.7 188.5
250 9428.28 1394.09 2183.23 4349.15 1501.82 456.7 1144.5 1216.5 188.5
300 7717.06 1122.35 1722.82 3370.07 1501.82 344.5 855.2 909.1 188.5
350 6638.66 956.50 1435.07 2745.27 1501.82 253.6 719.7 726.1 188.5
400 5936.66 856.50 1254.07 2324.26 1501.82 253.6 564.2 599.8 188.5

5. Conclusions

Advertising, return policies, and customer relationship management (CRM) are all
crucial components of running a successful business. Advertising increases brand aware-
ness, builds brand credibility, and drives sales and revenue. Meanwhile, a return policy
helps build trust with customers by assuring them that they can purchase with confidence,
and it can improve customer satisfaction by addressing their needs. A return policy can
also encourage sales by giving customers the confidence to try a product without fear of
being stuck with something they do not want. Additionally, CRMs can help businesses
deliver personalized, responsive, and proactive customer service, which can increase cus-
tomer satisfaction and loyalty. Incorporating the frequency of advertisements and the cost
of CRMs into the demand function under the product life cycle (PLC) can help retailers
understand how these factors impact consumer behavior. Retailers can also offer return
guarantees during the appreciation period to further boost customer confidence in their
products. If customers are dissatisfied and return products, retailers can refund the money
and discard the returned products. Overall, by effectively utilizing advertising, return
policies, and CRMs, businesses can improve customer satisfaction, drive sales, and build
loyal customer bases.

In this paper, we discussed the optimal ordering and marketing policies for four
distinct stages of the product life cycle and the optimal ordering and marketing policies for
a product’s life cycle. The four distinct stages of the product life cycle include introduction,
growth, maturity, and decline. We provided an easy and useful algorithm to identify the
optimal ordering and advertisement policies. Finally, numerical examples are provided
to illustrate the solution procedure. The results of the sensitivity analysis showed that



Mathematics 2023, 11, 1555 15 of 16

a retailer needs to increase the frequency of advertisements and increase the customer
relationship management cost when a product’s selling price is higher. However, a retailer
should decrease the frequency of advertisements and decrease the customer relationship
management cost when a product’s purchase cost, holding cost, or return rate is higher.
In addition, a retailer needs to reduce their order quantity to avoid higher holding costs
(or higher costs of return products) and shorten the length of stage i of the product life
cycle when the holding cost (or return rate) is higher. A retailer needs to increase the
frequency of advertisements and the order quantity of each stage of a product’s life cycle
when the appreciation period is longer. However, retailers need to reduce the frequency of
advertisements to avoid higher advertisement costs when the cost of each advertisement
is higher. A retailer can also find alternative means of advertising to reduce such costs.
For future research, it would be worthwhile to consider a real market situation in which
retailers incorporate some hidden items, such as interest earned, the interest charged,
and transportation costs. Additionally, it would be beneficial to explore how varying
advertisement costs and advertising policies can impact each stage of a product’s life cycle.
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