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Abstract: The lifetime performance index is commonly utilized to assess the lifetime performance of
products. Based on the testing procedure for the lifetime of products following Chen distribution, an
experimental design for progressive type I interval censoring is determined to achieve the desired
power level while minimizing total experimental cost. For fixed inspection interval lengths and an
unfixed number of inspection intervals, the required number of inspection intervals and sample
sizes to achieve the minimum experimental costs are computed and presented in a table format. For
unfixed termination times, the required number of inspection intervals, minimum sample sizes, and
equal interval lengths are obtained and presented in a table format, while the minimum experimental
costs are achieved. Finally, a practical example is presented to demonstrate the utilization of this
experimental design for collecting samples and conducting a testing procedure to evaluate the lifetime
performance of products.

Keywords: Chen distribution; progressive type I interval censoring; maximum likelihood estimator;
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1. Introduction

During the pandemic, there was an increase in demand for advanced technological
devices, such as laptops, desktops, and mobile phones. The high lifespan of high-tech
products can be a key factor in attracting more consumers and enhancing the brand’s
market value. The process capability index CL was introduced by Montgomery [1] to
assess the quality of larger-the-better characteristics, such as lifespan, the hardness of
smart phone cases, battery capacity, and more. In many cases, the experimenters may
not have access to complete data, resulting in the need to handle censored data. The
two most common types of censoring are type I censoring and type II censoring. Type I
censoring occurs when a life test is terminated at a fixed time point, and the number of
failure units is random. Type II censoring occurs when a study is terminated when a
predetermined fixed number of failure units is observed so that the termination time is
random. Progressive censoring possesses the characteristic of permitting the removal of
units at certain time points that may not necessarily be the ultimate termination point.
More inferences about the progressive censored data can be seen in Balakrishnan and
Aggarwala [2], Aggarwala [3], Balakrishnan [4], and Balakrishnan and Cramer [5]. For the
progressive type II censored sample, Laumen and Cramer [6] studied the inferences for
the lifetime performance index following the gamma distributions. Bdair et al. [7] studied
the estimation and prediction for flexible Weibull distribution based on the progressive
type II censored sample. Panahi [8] investigated the interval estimation of Kumaraswamy
parameters based on progressively type II censored data and record values. EL-Sagheer [9]
studied the estimation of parameters of Weibull–Gamma distribution for the progressively
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censored sample. Lee et al. [10] assessed the lifetime performance index for the exponential
distribution model. Wu et al. [11] tested the lifetime performance index based on the
Bayesian approach. The advantage of progressive type I interval censoring is that it is very
convenient for quality personnel to conduct the life test and collect the censored data in
practical situations. Under this type of censoring, Wu and Lin [12] used the maximum
likelihood estimator for the lifetime performance index to develop a testing procedure for
exponential lifetime distribution. Wu et al. [13] conducted an experimental analysis for the
sampling design of Gompertz life time distribution based on progressive type I interval
sampled data. For products following the Chen lifetime distribution, Wu [14] developed
a testing procedure for the lifetime performance index under progressive type I interval
censoring. The research goal of this study is to investigate the experimental plan for the
progressive type I interval censoring design for products following the Chen distribution
based on the testing procedure proposed in Wu [14]. In Section 2, we introduce and
summarize a testing procedure along with the test power to assess whether the lifetime
performance of a production process achieves the desired target index for the lifetime of
products following the Chen distribution. Section 3 determines the minimum number of
inspection intervals required to minimize the total cost under a pre-specified power level
and level of significance for either a fixed or unfixed total experimental time, with the
aim of achieving the lowest total cost. Additionally, one real-life example is presented to
demonstrate the testing procedure. Finally, we conclude the study by summarizing all
relevant findings in Section 4.

2. The Introduction of the Testing Procedure for the Lifetime Performance Index
in Wu [14]

Chen [15] presented a new two-parameter lifetime distribution with a bathtub shape
or increasing failure rate function called Chen distribution. Let U be the lifetime of products
following a Chen distribution with the probability density function (pdf) and the failure
rate function defined as:

fU(u) = kβuβ−1euβ
exp

{
k(1− euβ

)
}

, 0 ≤ u ≤ ∞, k > 0, β > 0 (1)

and
rU(u) = kβuβ−1euβ

. (2)

Chen indicated that this distribution has an increasing failure rate function when
β ≥ 1 and a bathtub shape failure rate function when β < 1. After the transformation from
U to Y by Y = eUβ − 1, β > 0, the pdf of the new variable Y is an exponential distribution
with failure rate k. The mean and standard deviation of Y are µ = 1/k and σ = 1/k. If
LU is the specified lower specification limit for U, then L = eLU

β − 1 is the specified lower
specification limit for Y. The lifetime performance index proposed by Montgomery [11] is
defined as:

CL =
µ− L

σ
, (3)

where µ is denoted as the process mean, σ is regarded as the process standard deviation, and
L is the specified lower specification limit. Substituting µ and σ with the mean and standard
deviation of Y into Equation (3), we obtain the lifetime performance index CL = 1 − kL.

Subsequently, the calculation of the conforming rate is performed as Pr = P(U ≥ LU) =
P(Y ≥ L) = exp(−kL) = exp(CL − 1) , −∞ < CL < 1 and the value of Pr increases as
CL increases. The relationship between Pr and CL is displayed in Figure 1.
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To obtain the sample using the progressive type I interval censoring scheme, the
following steps are followed:

Step 1: Put n products on a life test at the starting time 0. Set the termination time as T
and the number of inspections as m. Then, we decide the observation time points t1, . . . ,
tm, where tm = T.

Step 2: Observe the number of failure units Xi and removed Ri units with the removing
rate of pi, where Ri follows a binomial distribution denoted as bin(n−∑i

j=1 Xj−∑i−1
j=1 Rj, pi),

I = 1, . . . , m. Wu [14] obtained the maximum likelihood of k as the numerical solution of
the following log-likelihood equation

d
dk

ln L(k) =
m

∑
i=1

Xi
(yi − yi−1) e−k(yi−yi−1)

1− e−k(yi−yi−1)
−

m

∑
i=1

(Ri yi + Xi yi−1)

=
m

∑
i=1

Xi

(
eti

β − eti−1
β
)

e−k(eti
β−eti−1

β
)

1− e−k(eti
β−eti−1

β
)

−
m

∑
i=1

(
Ri (eti

β − 1) + Xi (eti−1
β − 1)

)
= 0 (4)

Its asymptotic variance is the reciprocal of the Fisher’s information, given by

I(k) = −E[
d2 ln L(k)

dk2 ]=
n
k2

m

∑
i=1

ln2(1− qi)

qi

i−1

∏
j=1

(
1− pj

) i

∏
l=1

(1− q) (5)

where qi = 1− exp(− k(eti
β − eti−1

β
)).

To facilitate data collection, we considered the case of equal interval lengths ti − ti−1 = t
and p1 = . . . = pm−1 = p i = 1, . . . , m. That is, ti = it, i = 1, . . . , m, and qi = 1− exp(− k(e(it)

β −
e((i−1)t)β

)). Then, Equation (4) is reduced to

d
dk

ln L(k) =
m

∑
i=1

Xi
ln(1− qi)(1− qi)

qi
−

m

∑
i=1

(
Ri

(
e(it)

β

− 1
)
+ Xi

(
e((i−1)t)β

− 1
))
≡ 0 (6)

The information number in (5) is reduced to

I(k) =
n
k2

m

∑
i=1

ln2(1− qi)

qi
(1− p)i−1

i

∏
l=1

(1− q) (7)
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Furthermore, we have k̂ d→
n→∞

N(k, g(k)) where g(k) = I−1(k) is the asymptotic variance

of k̂.
Due to the property of the invariance of MLE, the MLE of CL can be acquired as

ĈL = 1− k̂L (8)

Let c0 be the desired level of the lifetime performance index to make the process capa-
ble. Then, we want to test H0 : CL ≤ c0 (the process is not capable) vs. Ha : CL > c0 (the
process is capable). Under the level of significance α, the MLE of CL found as ĈL = 1− k̂L
is utilized as the test statistic. The critical region for this right-sided test is

{
ĈL
∣∣ĈL > C0

L
}

,

where the critical value C0
L is determined as C0

L = 1− L
(

k0 + Z1−α

√
g(k0)

)
and Zα rep-

resents the 1 − α percentile of the standard normal distribution. Moreover, the power
function denoted by h(c1) of this test at the point of CL = c1 > c0 is obtained as

h(c1)= Φ

(
k0 − k1 + Z1−α

√
g(k0)√

g(k1)

)
(9)

where Φ(·) is the cdf of the standard normal distribution, k0 = 1−c0
L and k1 = 1−c1

L .

3. Reliability Sampling Design

The objective of this section is to identify the optimal sampling design for progressive
type I interval sampling for products’ lifetime following the Chen distribution, given that
the parameters of the Chen distribution may have different structures. In Section 3.1, for
the fixed experimental time T, we determine the required minimal number of inspection
intervals based on the criterion of minimum total cost so that the required sample size
can be calculated to reach the specified test power of the level α testing procedure. In
Section 3.2, for the unfixed experimental time T, we determine the required minimal
number of inspection intervals and the equal length of intervals to minimize the total
experimental cost so that the required sample size can be calculated under the specified
test power of the level α testing procedure.

Consider the following function w(k) = I(k)/n = 1
k2

m
∑

i=1

ln2(1−qi)
qi

(1− p)i−1 i
∏
l=1

(1− q),

which is not a function of sample size n. The power function can be rewritten as

h(c1)= Φ
(

k0−k1+Z1−α

√
g(k0)√

g(k1)

)
= Φ

(
k0−k1+Z1−α

√
w−1(k0)/n√

w−1(k1)/n

)
.

In order to attain the pre-specified power 1-β or the probability of type II error β at c1
under the level of significance α, assign the above power function to 1-β at c1, and then the
sample size is determined as

n = ceiling

(
Zβ

√
w−1(k1) + Zα

√
w−1(k0)

k1 − k0

)2

(10)

where ceiling(x) is a ceiling function mapping x to the smallest integer, which is greater than
or equal to x.

3.1. The Minimal Required m for Fixed T

In numerous practical situations, the experimenters aim to minimize the number of
inspection intervals m so that they do not need to frequently gather data for the progressive
type I interval sampling. Suppose that the upper limit of m is m0 for experimenters, the
value of m must satisfy m ≤ m0. If the value for m0 is not predetermined, the default
value of 30 is utilized for m. In this subsection, our aim is to find the optimal value of m,
denoted as m*, that minimizes the total cost incurred during the progressive type I interval
censoring procedure. Similar to Huang and Wu [16], we consider the following costs:
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1. Inspection cost CI: the cost for operating a single inspection station;
2. Sample cost Cs: the cost for obtaining one unit of sample;
3. Operation cost Co: the cost incurred for conducting the experiment per unit of time,

which encompasses expenses such as the personnel cost, the depreciation of test
equipment, and other related costs.

Taking into account all of these expenses, the overall cost of conducting this experi-
ment is

TC(m) = mCI + ceiling

(
Zβ

√
w−1(k1) + Zα

√
w−1(k0)

k1 − k0

)2

Cs + TC0 (11)

Here is the Algorithm 1 that utilizes the numeration method to search for the optimal (m, n):

Algorithm 1: Utilize the numeration method to search for the optimal (m, n)

Step 1: Specify the pre-assigned values of m = 1, c0, c1, α, β, p, T, L, and m0 (the default value is 30)
and CI = aCo, Cs = bCo, Co.
Step 2: Compute the sample size n in Equation (11) first and then compute the related total cost
TC(m) in Equation (12).
Step 3: If m < m0, then m = m + 1 and go to Step 2; otherwise go to Step 4.
Step 4: For a array of total costs TC(1), . . . , TC(m0), The optimal solution of m* is the minimum m
value, such that TC(m*) = TC* = min

m≤m0
TC(m), and then the related sample size n* in Equation (11)

is computed.
Step 5: Calculate the value of k0 = 1−c0

L followed by determining the critical value

C0
L = 1− L

(
k0 + Z1?α

√
g(k0)

)
.

Consider Co = 1, a = 2, and b = 1. For testing H0 : CL ≤ 0.8 with β = 0.15, α = 0.05,
p = 0.01, c1 = 0.95, L = 0.1, and T = 0.8, the curve of total cost with m = 1:m0 is displayed in
Figure 2a. It can be seen that the minimum total cost occurred at m = 2, with a total cost
of 13.8. For a different set up of parameters β = 0.25, α = 0.05, p = 0.05, c1 = 0.90, another
curve of total cost with m = 1:m0 is displayed in Figure 2b. You can see that the minimum
total cost occurred at m = 2, with a total cost of 25.8.
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For testing H0 : CL ≤ 0.80, the required minimal inspection intervals m* and the
related sample size n* to yield the minimum total cost TC(m*) with m < 50 are tabulated in
Tables A1 and A2 at the conditions of α = 0.01, 0.05, 0.1, β = 0.25, 0.20, 0.15, p = 0.01, 0.025,
0.05, 0.15, 0.25 for c1 = 0.825, 0.85 and c1 = 0.875, 0.90 respectively. Tables A1 and A2 also
contain the relevant critical values.
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Looking at Table A2, suppose that the experimenter wants to conduct the level 0.01
hypothesis test with c0 = 0.80 and 1 − β = 0.85 at c1 = 0.90, p = 0.05. We find that the
required minimal number of inspection intervals is 2 and the sample size is determined
as 14 with the minimum total cost TC* = 18.8 and the critical value of 0.877235.

From Tables A1 and A2, the optimal number of inspection intervals m is nonincreasing
when c1 is increasing and the range of m is 2~6. In Figure 3, the plot of the minimum total
cost TC* vs. c1 for α = 0.01, 0.05, 0.1 at β = 0.25 and p = 0.05 is displayed. In Figure 4, the
plot of the minimum total cost TC* vs. 1 − β = 0.75, 0.80, 0.85 at α = 0.1 and p = 0.05 is
displayed. In Figure 5, the plot of the minimum total cost TC* vs. p = 0.05, 0.075, 0.1 is
displayed at α = 0.1 and β = 0.25. From Figure 3, it can be observed that, as the level of
significance increases, there is a decrease in the minimum total cost TC*. From Figure 4, it
can be observed that, as the test power increases, there is an increase in the minimum total
cost TC*. From Figure 5, it can be observed that, as the removal rate p increases, there is
an increase in the minimum total cost TC*. Furthermore, these three figures show that the
minimum total cost TC* is a deceasing function of c1. According to Tables A1 and A2, the
required minimal number of inspection intervals is inversely proportional to c1.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 17 
 

 

required minimal number of inspection intervals is 2 and the sample size is determined 
as 14 with the minimum total cost TC* = 18.8 and the critical value of 0.877235. 

From Tables A1 and A2, the optimal number of inspection intervals m is nonincreas-
ing when 1c  is increasing and the range of m is 2~6. In Figure 3, the plot of the minimum 
total cost TC* vs. 1c  for α  = 0.01, 0.05, 0.1 at β  = 0.25 and p = 0.05 is displayed. In Fig-
ure 4, the plot of the minimum total cost TC* vs. 1 − β  = 0.75, 0.80, 0.85 at α  = 0.1 and p 
= 0.05 is displayed. In Figure 5, the plot of the minimum total cost TC* vs. p = 0.05,0.075,0.1 

is displayed at α  = 0.1 and β  = 0.25. From Figure 3, it can be observed that, as the level 
of significance increases, there is a decrease in the minimum total cost TC*. From Figure 
4, it can be observed that, as the test power increases, there is an increase in the minimum 
total cost TC*. From Figure 5, it can be observed that, as the removal rate p increases, there 
is an increase in the minimum total cost TC*. Furthermore, these three figures show that 
the minimum total cost TC* is a deceasing function of 1c . According to Tables A1 and A2, 
the required minimal number of inspection intervals is inversely proportional to 1c . 

 
Figure 3. The minimum total cost curve for α  = 0.01, 0.05, 0.1. 

 
Figure 4. The minimum total cost for 1 − β  = 0.75, 0.80, 0.85. 

Figure 3. The minimum total cost curve for α = 0.01, 0.05, 0.1.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 17 
 

 

required minimal number of inspection intervals is 2 and the sample size is determined 
as 14 with the minimum total cost TC* = 18.8 and the critical value of 0.877235. 

From Tables A1 and A2, the optimal number of inspection intervals m is nonincreas-
ing when 1c  is increasing and the range of m is 2~6. In Figure 3, the plot of the minimum 
total cost TC* vs. 1c  for α  = 0.01, 0.05, 0.1 at β  = 0.25 and p = 0.05 is displayed. In Fig-
ure 4, the plot of the minimum total cost TC* vs. 1 − β  = 0.75, 0.80, 0.85 at α  = 0.1 and p 
= 0.05 is displayed. In Figure 5, the plot of the minimum total cost TC* vs. p = 0.05,0.075,0.1 

is displayed at α  = 0.1 and β  = 0.25. From Figure 3, it can be observed that, as the level 
of significance increases, there is a decrease in the minimum total cost TC*. From Figure 
4, it can be observed that, as the test power increases, there is an increase in the minimum 
total cost TC*. From Figure 5, it can be observed that, as the removal rate p increases, there 
is an increase in the minimum total cost TC*. Furthermore, these three figures show that 
the minimum total cost TC* is a deceasing function of 1c . According to Tables A1 and A2, 
the required minimal number of inspection intervals is inversely proportional to 1c . 

 
Figure 3. The minimum total cost curve for α  = 0.01, 0.05, 0.1. 

 
Figure 4. The minimum total cost for 1 − β  = 0.75, 0.80, 0.85. 
Figure 4. The minimum total cost for 1 − β = 0.75, 0.80, 0.85.



Mathematics 2023, 11, 1554 7 of 16
Mathematics 2023, 11, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 5. The minimum total cost for p = 0.01, 0.025, 0.05. 

3.2. The minimal Required m, t, and n When the Interval Time of the Experiment Is Unfixed 
When the equal interval time t is not fixed, we would like to determine the optimal 

(m,t) to yield the minimum total cost incurred for the progressive type I interval censored 
sampling. The total cost becomes 

TC(m,t)= m CI + 
( ) ( )

2

01

0
1

1
1















−
+ −−

kk
kwZkwZ

ceiling αβ  Cs + mt Co. (12)

We use the numeration method to search for the optimal (m,t), and the steps of the 
algorithm are as follows: 

Step 1: Specify the pre-assigned values of m = 1, c0, c1, α , β  and p, L and m0 (the 
default value is 30), and the costs CI = aCo, Cs = bCo, Co. 

Step 2: Determine the optimal solution, denoted as t*, to minimize the total cost 
TC(m,t), as described in Equation (12). Put m = m and t = t* in Equation (11) so that the 
sample size n can be computed. Subsequently, the corresponding total cost TC(m,t*) in 
Equation (12) is computed. 

Step 3: If m < m0, then let m = m + 1 and go to Step 2; otherwise go to Step 4. 
Step 4: For an array of total costs TC(1,t*), …, TC(m0,t*), the optimal solution of m* is 

the minimum value of m such that TC(m*,t*) = TC** = 
0

min
mm≤

TC(m,t*) is achieved. Put m = 

m* and t = t* in Equation (11), and then the related sample size n* in Equation (11) can be 
computed. 

Step 5: Calculate the value of 
L
ck 0

0
1−=  followed by determining the critical value 

of ( )( )010
0 1 kgZkLCL α−+−= . 

Consider Co = 1, a = 2, and b = 1. For testing 08.0:0 ≤LCH  when β  = 0.25, α  = 0.05, 
p = 0.025, c1 = 0.9, m0 = 50, L = 0.05, T = 0.8, we plot m = 1:m0 against its corresponding total 
cost in Figure 6a. We find that the curve is a concave upward curve and the minimum 
total cost occurred at m = 2 with a total cost of 25.563. For another set up of parameters β
=0.15, α = 0.01, p= 0.05, c1 = 0.875, another curve of total cost with m = 1:m0 is given in 
Figure 6b. It can be seen that it is a concave upward curve and the minimum total cost 

Figure 5. The minimum total cost for p = 0.01, 0.025, 0.05.

3.2. The minimal Required m, t, and n When the Interval Time of the Experiment Is Unfixed

When the equal interval time t is not fixed, we would like to determine the optimal
(m,t) to yield the minimum total cost incurred for the progressive type I interval censored
sampling. The total cost becomes

TC(m, t) = mCI + ceiling

(
Zβ

√
w−1(k1) + Zα

√
w−1(k0)

k1 − k0

)2

Cs + mtCo. (12)

We use the numeration method to search for the optimal (m,t), and the steps of the
algorithm are as follows:

Step 1: Specify the pre-assigned values of m = 1, c0, c1, α, β and p, L and m0 (the default
value is 30), and the costs CI = aCo, Cs = bCo, Co.

Step 2: Determine the optimal solution, denoted as t*, to minimize the total cost
TC(m,t), as described in Equation (12). Put m = m and t = t* in Equation (11) so that the
sample size n can be computed. Subsequently, the corresponding total cost TC(m,t*) in
Equation (12) is computed.

Step 3: If m < m0, then let m = m + 1 and go to Step 2; otherwise go to Step 4.
Step 4: For an array of total costs TC(1,t*), . . . , TC(m0,t*), the optimal solution of m*

is the minimum value of m such that TC(m*,t*) = TC** = min
m≤m0

TC(m,t*) is achieved. Put

m = m* and t = t* in Equation (11), and then the related sample size n* in Equation (11) can
be computed.

Step 5: Calculate the value of k0 = 1−c0
L followed by determining the critical value of

C0
L = 1− L

(
k0 + Z1−α

√
g(k0)

)
.

Consider Co = 1, a = 2, and b = 1. For testing H0 : CL ≤ 0.8 when β = 0.25, α = 0.05,
p = 0.025, c1 = 0.9, m0 = 50, L = 0.05, T = 0.8, we plot m = 1:m0 against its corresponding
total cost in Figure 6a. We find that the curve is a concave upward curve and the minimum
total cost occurred at m = 2 with a total cost of 25.563. For another set up of parameters
β = 0.15, α = 0.01, p = 0.05, c1 = 0.875, another curve of total cost with m = 1:m0 is given in
Figure 6b. It can be seen that it is a concave upward curve and the minimum total cost
occurred at m = 4 with a total cost of 81.962. For other combinations of setups, we can also
find similar patterns.
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For testing H0 : CL ≤ 0.8, the required minimum inspection intervals m*, the inspection
interval time length t*, and sample size n* to yield the minimum total cost TC(m*,t*) are
tabulated in Tables A3 and A4 at α = 0.01, 0.05, 0.1, β = 0.25, 0.20, 0.15, p = 0.01, 0.025,
0.05, 0.15, 0.25 for c1 = 0.825, 0.85, and c1 = 0.875, 0.90, respectively, under the constraint of
m < m0, with m0 = 50. Tables A3 and A4 also contain the relevant critical values.

Looking at Table A4, if the experimenter wants to conduct a level 0.05 hypothesis
test under a power of 0.75 at c1 = 0.90 and p = 0.05, the minimum required sample size
is obtained as 21, the minimum number of inspection intervals is obtained as 2, and the
optimal inspection interval time length is 0.28. For this case, the minimum total cost is
TC** = 25.55 and the relevant critical value is 0.881071.

From Tables A3 and A4, the optimal required minimal number of inspection intervals
is inversely proportional to c1 and the range of m is 2~10. The optimal length of inspection
interval t* is within 0.15 and 0.22 unit of times for c1 = 0.825. The values of t* are within
0.18 and 0.28 units of time for c1 = 0.875. The values of t* are within 0.21 and 0.37 units
of time for c1 = 0.875. The values of t* are within 0.23 and 0.37 units of time for c1 = 0.90.
Figure 7 displays a graph showing the relationship between the minimum total cost TC**
and c1 for α = 0.01, 0.05, 0.1 at β = 0.25, and p = 0.05. Figure 8 displays a graph showing
the relationship between the minimum total cost TC** and c1 for 1 − β = 0.75, 0.80, 0.85
at α = 0.1, and p = 0.05. Figure 9 displays a graph showing the relationship between the
minimum total cost TC** and c1 for p = 0.01, 0.025, 0.05, 0.15, 0.25 at α = 0.1 and β = 0.25.
From Figures 7 and 8, it can be seen that the minimum total cost TC** is a decreasing
function of α or an increasing function of 1 − β. From Figure 9, it can be seen that, as the
removal rate p increases, there is an increase in the minimum total cost TC**. Furthermore,
the minimum total cost TC** deceases as c1 increases.

3.3. Example

The dataset utilized in this study, obtained from Xie and Lai [17], comprises the failure
times (measured in number of cycles in 100,000 times) of n = 18 electronic devices, which
are provided as 0.05, 0.11, 0.21, 0.31, 0.46, 0.75, 0.98, 1.22, 1.45, 1.65, 1.95, 2.24, 2.45, 2.93,
3.21, 3.30, 3.50, and 4.20.

To test the goodness of fit of the Chen distribution, we employ the Gini statistic
suggested by Gill and Gastwirth [18]. The p-value of this test is a function of β and the
p-value versus the β value from 0 to 1.0 is given in Figure 10. From Figure 10, the value of
β = 0.64 is determined with the largest p-value of 0.9788521. The large p-value indicated
that the data fitted the Chen distribution very well. We also conducted the Kolmogorov-
Smirnov test (ks. test in R) with a p-value of 0.781, which fitted the Chen distribution
as well.
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Using this example, the implementation of Sections 3.1 and 3.2 is given as follows:
Suppose we want to test H0 : CL ≤ 0.8. Refer to Section 3.1, the case of α = 0.1, the power
1 − β = 0.75 at c1 = 0.90, p = 0.05 and T = 0.8 is considered, where the termination time of
experiment T is fixed. From Table A2, we can find that the optimal sampling design is
m* = 2, n* = 17 with critical value C0

L = 0.870090 and a minimum total cost of 21.8 units
under the cost setup of Co = 1, a = 2, and b = 1.

The procedure for testing is executed in the following manner:

Step 1 Take a random sample of size n = 17 from the data set. Observe the progressive
type I interval censored sample (X1,X2) = (4,1) at the pre-set observation time points
(t1,t2) = (0.4,0.8) with censoring schemes of (R1,R2) = (1,11).

Step 2 Obtain the MLE of k as
ˆ
k = 0.3155534, and then we can obtain the test statistic

ĈL = 1− k̂L = 0.9684447.
Step 3 Compare the test statistic with the critical value. We have ĈL = 0.9684447 > C0

L =
0.870090. It can be inferred that the lifetime performance index of product surpasses
the required level of 0.80.

Refer to Section 3.2, the case of α = 0.10, the power 1− β = 0.85 at c1 = 0.95 is considered.
We can find that the optimal sampling design is m* = 2, n* = 16, and t* = 0.34 with critical
value C0

L =0.9266319 and a minimum total cost of 20.682 units under the cost setup of
Co = 1, a = 2, and b = 1 from our software.

The procedure for testing is executed in the following manner:

Step 1 Take a random sample of size n = 17 from the data set. Observe the progressive
type I interval censored sample (X1,X2) = (4,1) at the pre-set observation time points
(t1,t2) = (0.34,0.68) with censoring schemes of (R1,R2) = (0,12).

Step 2 Obtain the MLE of k as
ˆ
k = 0.3052468, and then we can obtain the test statistic

ĈL = 1− k̂L = 0.9694753.
Step 3 Comparing the test statistic with the critical value, we have ĈL = 0.9694753 >

C0
L = 0.9266319. As a result, we arrived at the same conclusion of rejecting the

null hypothesis.

4. Conclusions

The evaluation of the lifetime performance index for products is a crucial subject
in various manufacturing industries, particularly when the product’s lifetime follows a
Chen distribution. To facilitate the collection of data, a sample was collected using the
progressive type I interval censoring scheme. Our investigation aimed to determine the
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minimum number of inspection intervals required to achieve the given test power with a
minimum total cost for a level α test when the total experimental time was fixed. When
the total experimental time was not fixed, the required minimum sample size, number
of inspection intervals, and the equal inspection interval time length were determined to
achieve the given test power with a minimum total cost for a level α test under progressive
type I interval censoring. The influences of various structures of level α, the power, and
p on the minimum total cost were analyzed for the given c1 value. Nine figures for the
total cost vs. c1 value in the alternative hypothesis were displayed and analyzed. We also
observed that, in all cases, the minimum total cost decreased as c1 increased.
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Appendix A

Table A1. The optimal m*, n*, related total cost TC* and the critical value for c1 = 0.825, 0.85 and
p = 0.01, 0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.80.

c1 0.825 0.85

α β p m* n* TC* C0
L m* n* TC* C0

L

0.01 0.25 0.010 6 745 757.8 0.817927 4 177 185.8 0.837169
0.025 5 760 770.8 0.817926 4 179 187.8 0.837135
0.050 5 777 787.8 0.817918 4 181 189.8 0.837218
0.150 3 828 834.8 0.817948 3 193 199.8 0.837176
0.250 3 863 869.8 0.817928 3 201 207.8 0.837149

0.20 0.010 6 668 680.8 0.818932 4 160 168.8 0.839094
0.025 5 681 691.8 0.818937 4 162 170.8 0.839035
0.050 5 696 706.8 0.818932 4 165 173.8 0.838981
0.150 3 743 749.8 0.818947 3 175 181.8 0.839041
0.250 3 774 780.8 0.818931 3 182 188.8 0.839040

0.15 0.010 6 605 617.8 0.819893 4 147 155.8 0.840786
0.025 5 617 627.8 0.819895 4 148 156.8 0.840840
0.050 5 631 641.8 0.819883 4 151 159.8 0.840748
0.150 3 673 679.8 0.819908 3 160 166.8 0.840830
0.250 3 701 707.8 0.819892 3 167 173.8 0.840755

0.05 0.25 0.010 6 465 477.8 0.816044 4 108 116.8 0.833644
0.025 5 474 484.8 0.816049 4 109 117.8 0.833648
0.050 4 487 495.8 0.816043 3 113 119.8 0.833679
0.150 3 517 523.8 0.816060 3 118 124.8 0.833617
0.250 3 538 544.8 0.816055 3 123 129.8 0.833577

0.20 0.010 5 407 417.8 0.817209 4 95 103.8 0.835873
0.025 5 413 423.8 0.817194 4 96 104.8 0.835853
0.050 4 423 431.8 0.817214 3 100 106.8 0.835801
0.150 3 450 456.8 0.817214 3 104 110.8 0.835808
0.250 3 468 474.8 0.817214 3 108 114.8 0.835833
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Table A1. Cont.

c1 0.825 0.85

α β p m* n* TC* C0
L m* n* TC* C0

L

0.15 0.010 6 356 368.8 0.818336 3 87 93.8 0.838078
0.025 5 363 373.8 0.818340 3 88 94.8 0.837975
0.050 4 373 381.8 0.818331 3 89 95.8 0.837949
0.150 3 396 402.8 0.818350 3 93 99.8 0.837866
0.250 3 412 418.8 0.818346 2 99 103.8 0.838114

0.10 0.25 0.010 5 345 355.8 0.814563 3 81 87.8 0.830747
0.025 5 350 360.8 0.814552 3 81 87.8 0.830839
0.050 4 358 366.8 0.814578 3 82 88.8 0.830804
0.150 3 381 387.8 0.814576 3 86 92.8 0.830680
0.250 3 397 403.8 0.814562 2 91 95.8 0.830973

0.20 0.010 5 293 303.8 0.815803 3 69 75.8 0.833314
0.025 5 297 307.8 0.815797 3 70 76.8 0.833174
0.050 4 305 313.8 0.815794 3 71 77.8 0.833104
0.150 3 323 329.8 0.815831 3 74 80.8 0.833074
0.250 3 337 343.8 0.815805 2 78 82.8 0.833455

0.15 0.010 5 252 262.8 0.817040 3 61 67.8 0.835431
0.025 5 255 265.8 0.817049 3 61 67.8 0.835537
0.050 4 262 270.8 0.817041 3 62 68.8 0.835425
0.150 3 278 284.8 0.817064 3 64 70.8 0.835564
0.250 3 290 296.8 0.817037 2 69 73.8 0.835570

Table A2. The optimal m*, n*, related total cost TC* and the critical value for c1 = 0.875, 0.90 and
p = 0.01, 0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.85.

c1 0.875 0.90

α β p m* n* TC* C0
L m* n* TC* C0

L

0.01 0.25 0.010 3 75 81.8 0.858004 3 39 45.8 0.880437
0.025 3 76 82.8 0.857793 3 40 46.8 0.879663
0.050 3 76 82.8 0.858082 3 40 46.8 0.880060
0.150 3 80 86.8 0.857743 2 44 48.8 0.880105
0.250 2 85 89.8 0.858175 2 45 49.8 0.879954

0.20 0.010 3 69 75.8 0.860473 2 39 43.8 0.884001
0.025 3 69 75.8 0.860654 3 37 43.8 0.882829
0.050 3 70 76.8 0.860520 3 37 43.8 0.883242
0.150 3 73 79.8 0.860448 2 41 45.8 0.882984
0.250 2 78 82.8 0.860730 2 41 45.8 0.883764

0.15 0.010 3 64 70.8 0.862791 3 34 40.8 0.886148
0.025 3 64 70.8 0.862979 2 37 41.8 0.886359
0.050 3 65 71.8 0.862804 2 37 41.8 0.886555
0.150 3 68 74.8 0.862631 2 38 42.8 0.886197
0.250 2 72 76.8 0.863210 2 39 43.8 0.885885

0.05 0.25 0.010 3 45 51.8 0.852946 2 25 29.8 0.874182
0.025 3 45 51.8 0.853104 2 25 29.8 0.874283
0.050 3 46 52.8 0.852786 2 25 29.8 0.874452
0.150 2 50 54.8 0.853131 2 26 30.8 0.873680
0.250 2 51 55.8 0.853103 2 26 30.8 0.874373

0.20 0.010 3 40 46.8 0.856158 2 23 27.8 0.877341
0.025 2 43 47.8 0.856640 2 23 27.8 0.877446
0.050 3 41 47.8 0.855912 2 23 27.8 0.877622
0.150 2 45 49.8 0.856005 2 23 27.8 0.878338
0.250 2 46 50.8 0.855914 2 24 28.8 0.877410
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Table A2. Cont.

c1 0.875 0.90

α β p m* n* TC* C0
L m* n* TC* C0

L

0.15 0.010 3 36 42.8 0.859195 2 21 25.8 0.880940
0.025 2 39 43.8 0.859474 2 21 25.8 0.881050
0.050 3 37 43.8 0.858857 2 21 25.8 0.881234
0.150 2 40 44.8 0.859403 2 21 25.8 0.881984
0.250 2 41 45.8 0.859226 2 22 26.8 0.880852

0.10 0.25 0.010 2 34 38.8 0.849561 2 17 21.8 0.870090
0.025 3 32 38.8 0.849065 2 17 21.8 0.870185
0.050 2 35 39.8 0.849025 2 18 22.8 0.868363
0.150 2 35 39.8 0.849478 2 18 22.8 0.868994
0.250 2 36 40.8 0.849245 2 18 22.8 0.869642

0.20 0.010 2 30 34.8 0.852762 2 16 20.8 0.872247
0.025 2 30 34.8 0.852833 2 16 20.8 0.872345
0.050 2 31 35.8 0.852092 2 16 20.8 0.872510
0.150 2 31 35.8 0.852573 2 16 20.8 0.873179
0.250 2 32 36.8 0.852232 2 16 20.8 0.873867

0.15 0.010 2 27 31.8 0.855616 2 14 18.8 0.877235
0.025 2 27 31.8 0.855691 2 14 18.8 0.877340
0.050 2 27 31.8 0.855818 2 14 18.8 0.877516
0.150 2 28 32.8 0.855318 2 15 19.8 0.875579
0.250 2 28 32.8 0.855838 2 15 19.8 0.876289

Table A3. The optimal (m*,t*), n*, total cost TC** and the critical value for c1 = 0.825,0.85 and p = 0.01,
0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.80.

c1 0.825 0.85

α β p m* t* n* TC** C0
L m* t* n* TC** C0

L

0.01 0.15 0.010 10 0.14 702 723.36 0.817978 6 0.18 167 180.08 0.837372
0.025 8 0.17 719 736.38 0.817985 5 0.21 171 182.07 0.837391
0.050 7 0.20 739 754.37 0.817982 5 0.22 174 185.09 0.837367
0.150 5 0.27 796 807.34 0.817984 4 0.27 186 195.09 0.837368
0.250 5 0.29 836 847.44 0.817973 4 0.31 194 203.24 0.837387

0.20 0.010 9 0.15 632 651.34 0.818984 6 0.20 151 164.18 0.839282
0.025 9 0.16 643 662.43 0.818983 5 0.22 155 166.10 0.839262
0.050 7 0.20 663 678.38 0.818985 5 0.21 158 169.07 0.839238
0.150 6 0.25 712 725.50 0.818980 4 0.27 169 178.06 0.839203
0.250 5 0.29 750 761.44 0.818975 4 0.31 176 185.26 0.839252

0.25 0.010 9 0.15 573 592.35 0.819937 5 0.20 141 152.01 0.840983
0.025 8 0.17 585 602.38 0.819938 5 0.22 142 153.12 0.841020
0.050 7 0.18 602 617.30 0.819938 5 0.21 145 156.04 0.840959
0.150 5 0.26 648 659.28 0.819930 4 0.26 155 164.04 0.840953
0.250 5 0.29 680 691.43 0.819928 3 0.31 164 170.92 0.840931

0.05 0.15 0.010 8 0.16 441 458.30 0.816111 5 0.22 103 114.09 0.833883
0.025 8 0.17 448 465.36 0.816109 5 0.23 104 115.14 0.833897
0.050 6 0.21 463 476.28 0.816111 4 0.25 108 117.00 0.833837
0.150 5 0.26 496 507.32 0.816107 3 0.30 116 122.91 0.833820
0.250 4 0.30 523 532.19 0.816098 3 0.33 120 126.98 0.833832

0.20 0.010 8 0.16 384 401.30 0.817265 5 0.21 91 102.06 0.836050
0.025 8 0.17 390 407.39 0.817266 4 0.24 94 102.98 0.836036
0.050 7 0.19 401 416.35 0.817262 4 0.23 96 104.90 0.835931
0.150 5 0.26 432 443.30 0.817259 4 0.28 100 109.12 0.836031
0.250 4 0.31 455 464.23 0.817261 3 0.32 106 112.95 0.835992
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Table A3. Cont.

c1 0.825 0.85

α β p m* t* n* TC** C0
L m* t* n* TC** C0

L

0.25 0.010 7 0.17 341 356.19 0.818390 4 0.21 84 92.85 0.838071
0.025 7 0.17 346 361.22 0.818393 4 0.24 84 92.95 0.838121
0.050 7 0.20 353 368.41 0.818396 4 0.25 85 94.00 0.838141
0.150 5 0.25 381 392.24 0.818381 3 0.27 92 98.82 0.838054
0.250 4 0.30 401 410.19 0.818384 3 0.30 95 101.89 0.838044

0.10 0.15 0.010 7 0.17 327 342.20 0.814632 4 0.22 77 85.89 0.830936
0.025 7 0.17 332 347.21 0.814629 4 0.25 77 85.99 0.831018
0.050 6 0.20 341 354.22 0.814630 4 0.26 78 87.02 0.831024
0.150 5 0.26 365 376.30 0.814629 3 0.30 84 90.90 0.830965
0.250 4 0.29 385 394.18 0.814621 3 0.32 87 93.95 0.830953

0.20 0.010 7 0.17 278 293.20 0.815869 4 0.24 66 74.95 0.833370
0.025 6 0.20 284 297.22 0.815874 3 0.29 69 75.87 0.833391
0.050 6 0.20 290 303.21 0.815865 3 0.27 70 76.82 0.833330
0.150 4 0.28 313 322.12 0.815868 3 0.28 73 79.83 0.833249
0.250 4 0.30 327 336.20 0.815862 3 0.32 75 81.95 0.833338

0.25 0.010 7 0.18 239 254.23 0.817112 3 0.28 60 66.83 0.835706
0.025 6 0.19 245 258.11 0.817096 4 0.24 58 66.97 0.835744
0.050 5 0.22 252 263.10 0.817105 3 0.28 61 67.83 0.835685
0.150 5 0.26 267 278.28 0.817104 3 0.32 63 69.95 0.835767
0.250 4 0.28 282 291.13 0.817093 3 0.29 66 72.86 0.835591

Table A4. The optimal (m*,t*), n*, total cost TC** and the critical value for c1 = 0.875, 0.90 and p = 0.01,
0.025, 0.05, 0.15, 0.25 under m0 = 30, L = 0.1 and c0 = 0.80.

c1 0.875 0.90

α β p m* t* n* TC** C0
L m* t* n* TC** C0

L

0.01 0.15 0.010 4 0.21 72 80.86 0.858158 3 0.26 39 45.78 0.880480
0.025 4 0.24 72 80.95 0.858235 3 0.28 39 45.83 0.880627
0.050 4 0.24 73 81.96 0.858230 3 0.25 40 46.74 0.880226
0.150 3 0.28 79 85.83 0.858019 3 0.29 41 47.86 0.880481
0.250 3 0.33 81 87.98 0.858239 2 0.31 45 49.63 0.880063

0.20 0.010 4 0.22 66 74.86 0.860656 3 0.28 36 42.83 0.883677
0.025 4 0.24 66 74.96 0.860825 3 0.23 37 43.70 0.883314
0.050 4 0.24 67 75.96 0.860781 3 0.25 37 43.76 0.883415
0.150 3 0.29 72 78.88 0.860732 3 0.29 38 44.87 0.883598
0.250 3 0.29 75 81.87 0.860607 2 0.37 41 45.74 0.883592

0.25 0.010 4 0.22 61 69.88 0.863093 3 0.25 34 40.75 0.886296
0.025 3 0.26 64 70.77 0.863016 3 0.27 34 40.80 0.886387
0.050 4 0.24 62 70.97 0.863185 2 0.32 37 41.65 0.886264
0.150 3 0.28 67 73.83 0.863001 2 0.31 38 42.63 0.886147
0.250 3 0.31 69 75.93 0.863103 2 0.31 39 43.62 0.886001

0.05 0.15 0.010 3 0.25 45 51.75 0.853037 2 0.30 25 29.61 0.874037
0.025 3 0.26 45 51.78 0.853136 2 0.31 25 29.62 0.874068
0.050 3 0.29 45 51.87 0.853318 2 0.32 25 29.64 0.874201
0.150 3 0.29 47 53.86 0.853148 2 0.30 26 30.59 0.873748
0.250 2 0.34 51 55.68 0.853011 2 0.34 26 30.69 0.874244

0.20 0.010 3 0.26 40 46.77 0.856188 2 0.28 23 27.55 0.877466
0.025 3 0.27 40 46.82 0.856313 2 0.28 23 27.56 0.877600
0.050 3 0.25 41 47.74 0.856028 2 0.29 23 27.58 0.877662
0.150 3 0.29 42 48.86 0.856223 2 0.34 23 27.68 0.878102
0.250 2 0.31 46 50.63 0.855990 2 0.30 24 28.61 0.877649
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Table A4. Cont.

c1 0.875 0.90

α β p m* t* n* TC** C0
L m* t* n* TC** C0

L

0.25 0.010 3 0.27 36 42.80 0.859184 2 0.28 21 25.55 0.881071
0.025 2 0.34 39 43.68 0.859205 2 0.28 21 25.56 0.881211
0.050 3 0.25 37 43.74 0.858979 2 0.29 21 25.58 0.881276
0.150 2 0.35 40 44.71 0.859213 2 0.35 21 25.70 0.881722
0.250 2 0.35 41 45.69 0.859100 2 0.30 22 26.59 0.881101

0.10 0.15 0.010 2 0.37 34 38.75 0.849386 2 0.37 17 21.74 0.869842
0.025 3 0.26 32 38.79 0.849094 2 0.27 18 22.54 0.868511
0.050 3 0.29 32 38.86 0.849262 2 0.28 18 22.56 0.868540
0.150 2 0.39 35 39.78 0.849421 2 0.31 18 22.63 0.868954
0.250 2 0.36 36 40.72 0.849135 2 0.37 18 22.74 0.869499

0.20 0.010 2 0.34 30 34.67 0.852513 2 0.26 16 20.52 0.872750
0.025 2 0.35 30 34.70 0.852598 2 0.27 16 20.53 0.872667
0.050 3 0.29 28 34.87 0.852663 2 0.27 16 20.55 0.872881
0.150 2 0.34 31 35.67 0.852415 2 0.31 16 20.62 0.873136
0.250 2 0.32 32 36.64 0.852231 2 0.37 16 20.73 0.873715

0.25 0.010 2 0.29 27 31.59 0.855595 2 0.29 14 18.58 0.877207
0.025 2 0.30 27 31.60 0.855599 2 0.30 14 18.59 0.877212
0.050 2 0.31 27 31.63 0.855682 2 0.31 14 18.62 0.877327
0.150 2 0.29 28 32.58 0.855473 1 0.43 17 19.43 0.877249
0.250 2 0.34 28 32.68 0.855741 1 0.43 17 19.43 0.877249

References
1. Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley and Sons Inc.: New York, NY, USA, 1985.
2. Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods and Applications; Birkhäuser: Boston, MA, USA, 2000.
3. Aggarwala, R. Progressive interval censoring: Some mathematical results with applications to inference. Commun. Stat.-Theory

Methods 2001, 30, 1921–1935.
4. Balakrishnan, N. Progressive Censoring Methodology: An Appraisal (with Discussions). Test 2007, 16, 211–296. [CrossRef]
5. Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring; Birkhäuser: Boston, MA, USA, 2014.
6. Laumen, B.; Cramer, E. Inference for the lifetime performance index with progressively Type-II censored samples from gamma

distributions. Econ. Qual. Control 2015, 30, 59–73. [CrossRef]
7. Bdair, O.M.; Abu Awwad, R.R.; Abufoudeh, G.K.; Naser, M.F.M. Estimation and Prediction for Flexible Weibull Distribution

Based on Progressive Type II Censored Data. Commun. Math. Stat. 2020, 8, 255–277. [CrossRef]
8. Panahi, H. Interval estimation of Kumaraswamy parameters based on progressively type II censored sample and record values.

Miskolc Math. Notes 2020, 21, 319. [CrossRef]
9. EL-Sagheer, R.M. Estimation of parameters of Weibull–Gamma distribution based on progressively censored data. Stat. Pap. 2018,

59, 725–757. [CrossRef]
10. Lee, W.C.; Wu, J.W.; Hong, C.W. Assessing the lifetime performance index of products with the exponential distribution under

progressively type II right censored samples. J. Comput. Appl. Math. 2009, 231, 648–656. [CrossRef]
11. Wu, J.W.; Lee, W.C.; Lin, L.S.; Hong, M.L. Bayesian test of lifetime performance index for exponential products based on the

progressively type II right censored sample. J. Quant. Manag. 2011, 8, 57–77.
12. Wu, S.F.; Lin, Y.P. Computational testing algorithmic procedure of assessment for lifetime performance index of products with

one-parameter exponential distribution under progressive type I interval censoring. Math. Comput. Simul. 2016, 120, 79–90.
[CrossRef]

13. Wu, S.F.; Liu, T.H.; Lai, Y.H.; Chang, W.T. A study on the experimental design for the lifetime performance index of Rayleigh
lifetime distribution under progressive type I interval censoring. Mathematics 2022, 10, 517. [CrossRef]

14. Wu, S.F. The performance assessment on the lifetime performance index of products following Chen lifetime distribution based
on the progressive type I interval censored sample. J. Comput. Appl. Math. 2018, 334, 27–38. [CrossRef]

15. Chen, Z. A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat. Probab. Lett. 2000,
49, 155–161. [CrossRef]

16. Huang, S.R.; Wu, S.J. Reliability sampling plans under progressive type-I interval censoring using cost functions. IEEE Trans.
Reliab. 2008, 57, 445–451. [CrossRef]

http://doi.org/10.1007/s11749-007-0061-y
http://doi.org/10.1515/eqc-2015-0008
http://doi.org/10.1007/s40304-018-00173-0
http://doi.org/10.18514/MMN.2020.2649
http://doi.org/10.1007/s00362-016-0787-2
http://doi.org/10.1016/j.cam.2009.04.018
http://doi.org/10.1016/j.matcom.2015.06.013
http://doi.org/10.3390/math10030517
http://doi.org/10.1016/j.cam.2017.11.022
http://doi.org/10.1016/S0167-7152(00)00044-4
http://doi.org/10.1109/TR.2008.928239


Mathematics 2023, 11, 1554 16 of 16

17. Xie, M.; Lai, C.D. Reliability analysis using an additiveWeibull model with bathtub-shaped failure rate function. Reliab. Eng. Syst.
Saf. 1995, 52, 87–93. [CrossRef]

18. Gail, M.H.; Gastwirth, J.L. A scale-free goodness of fit test for the exponential distribution based on the Gini Statistic. J. R. Stat.
Soc. B 1978, 40, 350–357. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/0951-8320(95)00149-2
http://doi.org/10.1111/j.2517-6161.1978.tb01048.x

	Introduction 
	The Introduction of the Testing Procedure for the Lifetime Performance Index in Wu B14-mathematics-2278980 
	Reliability Sampling Design 
	The Minimal Required m for Fixed T 
	The minimal Required m, t, and n When the Interval Time of the Experiment Is Unfixed 
	Example 

	Conclusions 
	Appendix A
	References

