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Abstract: In multi-criteria decision-making (MCDM) research, the criteria weights are crucial compo-
nents that significantly impact the results. Many researchers have proposed numerous methods to
establish the weights of the criterion. This paper provides a modified technique, the fuzzy method
based on the removal effects of criteria (MEREC) by modifying the normalization technique and
enhancing the logarithm function used to assess the entire performance of alternatives in the weight-
ing process. Since MCDM problems intrinsically are ambiguous or complex, fuzzy theory is used
to interpret the linguistic phrases into triangular fuzzy numbers. The comparative analyses were
conducted through the case study of staff performance appraisal at a Malaysian academic institution
and the simulation-based study is used to validate the effectiveness and stability of the presented
method. The results of the fuzzy MEREC are compared with those from a few different objective
weighting techniques based on the correlation coefficients, outlier tests and central processing unit
(CPU) time. The results of the comparative analyses demonstrate that fuzzy MEREC weights are
verified as the correlation coefficient values are consistent throughout the study. Furthermore, the
simulation-based study demonstrates that even in the presence of outliers in the collection of alter-
natives, fuzzy MEREC is able to offer consistent weights for the criterion. The fuzzy MEREC also
requires less CPU time compared to the existing MEREC techniques. Hence, the modified method is a
suitable alternative and efficient for computing the objective criteria weights in the MCDM problems.

Keywords: decision making; fuzzy MEREC; criteria weights; objective weights

MSC: 03E72; 90B50

1. Introduction

Multi-criteria decision-making (MCDM) is a well-known multidisciplinary field in opera-
tions research. Terms such as multi-attribute decision making (MADM) and multi-objective de-
cision making (MODM) have been used to describe the classification of MCDM [1]. The most
frequently used terminologies are MADM and MCDM, both of which belong to the same
class model. MODM problems often deal with the issues of selecting an optimal solution from
a group of practical solutions, while considering numerous objectives and several constraints,
parameters, and variables. Approaches to solving MODM problems frequently involve solv-
ing linear and nonlinear programming models. Additionally, MCDM or MADM concentrates
on problems with discrete decision spaces, where the numbers of alternative decisions and
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attributes are fixed [2–6]. The study of this paper is primarily concerned with this subset
of MCDM.

The necessity of evaluating a finite number of alternatives while considering multiple
and contradictory qualities might arise in practical situations [7–10]. In this case, the
supplementary information of decision makers is gathered, together with the crucial data,
and merged into a decision matrix. The decision matrix includes assessments of several
options depending on the criteria that are utilized to choose one or more alternatives for
the final ranking, screening, and selection [7].

There are numerous proposed MCDM techniques and algorithms that have been
applied in various problems. Sawik et al. [11] proposed combining simulation and opti-
mization to deal with the automated parcel locker (APL) network. Concerning this matter,
the multiple criteria simulation–optimization model, which examines the evolution of the
population, e-shoppers, APL users, and parcel demand, is based on agent-based model-
ing, which can determine the number and position of APLs. Another study proposed
by Dönmez et al. [12] assesses the effectiveness of the most widely used multi-objective
programming scalarization techniques in the literature when applied to the aircraft se-
quencing and scheduling problem (ASSP). These techniques include the weighted sum
approach, weighted goal programming, the ε-constraint method, the elastic constraint
method, weighted Tchebycheff, and augmented weighted Tchebycheff. The presented
methods could provide more effective air traffic control in terminal maneuvering regions
when numerous objectives need to be optimized.

A methodology was developed by Lad et al. [13] for prioritizing the bridges to im-
prove their resilience for bridge resilience assessment. The methodology is divided into
three phases: (i) determine criteria importance through intercriteria correlation (CRITIC)
technique to compute the criteria weights, (ii) evaluate the prioritization of each bridge
using five techniques, including the technique for order of preference by similarity to the
ideal solution, VIKOR (Vise Kriterijumska Optimizacija I Kompromisno Resenje), addi-
tive ratio assessment, complex proportional assessment and multi-objective optimisation
method by ratio analysis, and (iii) integrate the results of all five techniques using CRITIC
and the weighted sum method. In the first phase, the determination of criteria importance
is related to the study of this paper. A number of techniques have been developed to find
criteria weights. These techniques can be divided into three groups: subjective, objective,
and hybrid weighting approaches. The method presented in this paper could potentially
be applied to the methodology of bridge resilience assessment, as it falls into the same
category as the CRITIC technique, which is a form of the objective weighting technique.
In this matter, the components that required by presented objective weighting technique
are the elements of decision matrix generated from the evaluation of alternatives based on
specified criteria.

In a recent 2021 study, a novel objective weighting technique called MEREC (method
based on the removal effects of criteria) was proposed to determine the criteria weights [14].
In order to determine the weights, this method takes advantage of changes in each alter-
native’s performance for each criterion. The criterion with more variants is given higher
weight [15]. In order to determine criteria weights, the method considers how each crite-
rion’s removal will affect the performance of the alternatives overall. When removing a
criterion significantly affects the overall performance of the alternatives, it is given more
weight. However, this method only focuses on the crisp evaluation in which the data of the
decision matrix are in the form of numerical values. The decision makers always find it
difficult to measure the alternative due to the fact that the evaluation process is carried out
in a variety of situations, where it is challenging to exactly assess performance ratings and
weights. Decision makers also tend to make strong predictions for qualitative forecasting
but struggle with quantitative problem solving. The utilized logarithmic function is a little
more complicated than necessary, which increases the time needed to finish the evaluation
process and also requires a revision.
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Thus, this study enhances the previous weighting method by applying the fuzzy set
theory to the evaluation process. This theory is applied in this situation because decision
makers must deal with human judgment variability during the evaluation process. This oc-
curs, for example, when evaluating qualitative attributes, such as character, teamwork and
innovation typically described in uncertainty and with subjective information. Therefore, it
is evident that using a fuzzy technique will help to tackle this issue. This study improves
the previous algorithms by modifying the normalization technique and presenting the
enhanced logarithm function to measure the overall performance of alternatives.

In order to investigate the method computationally and make comparisons with vari-
ous other methods of objective weighting, a numerical example is employed. Additionally,
by comparing the results of the fuzzy MEREC with those of the previous techniques,
a simulation-based study was performed to conduct a more thorough comparison. The nor-
mal distribution is used to provide symmetrical data for the analysis. The outlier test is
deployed to exhibit the stability of the fuzzy MEREC results in determining the criteria
weights for the simulation results. The findings of the comparative analysis indicate that
the weights generated by the fuzzy MEREC are comparable to other objective weighting
methods. Furthermore, the analysis shows that the fuzzy MEREC may provide consistent
weights for the criteria, even when there are outliers in the set of alternatives.

The remainder of this paper is organized as follows. Section 2 discusses a few related
works. The studies on the use of objective weighting methods and their current reviews are
covered in Section 3. Fuzzy MEREC is presented in detail in Section 4. Using computational
analysis, Section 5 investigates the proposed methodology by presenting the findings
of a comparison between the fuzzy MEREC and other objective weighting techniques
(MEREC, entropy, and statistical variance) using an MCDM problem. Results from the
simulation-based analysis are presented, where they are used to assess the stability, accuracy,
and reliability of the findings produced by fuzzy MEREC. Finally, conclusions are discussed
in Section 6.

2. Related Works
2.1. MCDM Methods

MCDM techniques have been used to assess, choose, and rank a variety of criteria [16].
The MCDM technique is a qualitative evaluation that places a strong emphasis on the
subjective nature of criteria. Information about the chosen criteria and the preferred criteria
must be provided [17]. Due to resource constraints, MCDM enables decision makers to
identify the components of the variables that produce the ideal operating environment [18].
Due to its efficacy in solving decision-related problems, this methodology has been used
in a wide range of sectors. Numerous improvements have been made to the approach in
recent years.

In the literature, many MCDM methodologies and procedures have been proposed.
AHP (analytic hierarchy process), PROMETHEE (Preference Ranking Organization
Method for Enrichment of Evaluations), VIKOR, WASPAS (Weighted Aggregated Sum
Product Assessment), WSM (weighted sum model), TOPSIS (Technique for Order of Pref-
erence by Similarity to Ideal Solution), EDAS (Evaluation based on Distance from Aver-
age Solution), BWM (best–worst method), COPRAS (complex proportional assessment),
and ELECTRE (Elimination Et Choix Traduisant la Realité) are a few of the well-known
MCDM techniques that have been employed by numerous scholars across various fields of
study [19–24].

Among the other MCDM techniques that have been the focus of researchers recently
are the multi-granularity computing method and the graph method. In their work to deal
with practical risk-based uncertain group decision making issues, Zhang et al. [25] extended
the idea of multigranulation decision–theoretic rough sets into the hesitant fuzzy linguistic
environment within the two-universe model. Due to excessive information fusion rules
and the instability of the information analysis mechanisms, the methods from granular
computing (GrC) generally lack sufficient semantic interpretations for multi-attribute group
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decision making (MAGDM). So, Zhang et al. [26] used a standard GrC framework called
multigranulation probabilistic models to improve the semantics of GrC-based MAGDM
techniques. Three-way decisions (3WD) have been intensively researched in addressing
realistic MADM due to their capabilities in reducing decision risks with the addition of the
non-commitment option. Since the existing 3WD model cannot effectively deal with the
MADM issue with an incomplete high-order fuzzy information system, Zhang et al. [27]
concentrated on the study of a feasible MAGDM approach based on the multi-granularity
3WD paradigm under an incomplete Pythagorean fuzzy environment.

It is essential to provide corresponding information analysis tools for MADM in
dual hesitant fuzzy (DHF) information systems. This is because in the real world, dual
hesitant fuzzy sets (DHFSs) serve as an important mechanism for measuring hesitant and
imprecise information that are significant elements of information depicting the MADM.
Furthermore, when expressing correlations between attributes via edges between vertices
in fuzzy information systems, the idea of fuzzy graphs (FGs) performs well, providing the
ability to address correlational MADM problems. Thus, Bai et al. [28] used this opportunity
to explore FGs in the DHF environment, and further studied effective ways to deal with
difficult MADM circumstances. Linguistic quantization is a crucial component of decision
making, and numerous techniques as well as areas of study are directed to minimize the
semantic loss linguistic quantization produces. In addition, the directed graph (digraph)
is a data structure that has a high degree of universality and scalability, allowing the
model to be applied to various areas of group decision making. To prevent linguistic
quantization, Fu et al. [29] proposed using a group decision-making method based on a
digraph, and conducting decision analysis in the direction of hesitant fuzzy sets using the
weight of the digraph.

When using MCDM approaches, there are typically four steps involved in the evalua-
tion process: (i) identifying the alternatives and criteria pertinent to the issue, (ii) calculating
the weight of each criterion, (iii) assessing the alternatives’ performance in relation to the
criteria function, and (iv) measure the alternatives depending on their overall performance
relative to all criteria [30,31]. The second step, (ii), is the main subject of this paper.

2.2. Weight Determination Methods
2.2.1. Subjective Weight

Most researchers utilize criteria weight when tackling MCDM issues. According to
Baker et al. [32], assigning weights to each criterion has benefits and drawbacks. The benefit
is that decision makers can explain the relative weightage of the criteria. Applying various
weightages based on various viewpoints can help people comprehend the potential power
of the solution. Weighting has the drawback of being constrained by the knowledge
and potential bias of those doing the weighting itself. The decision makers also have
difficulty maintaining consistency when performing evaluations, as it depends on their
perception. Although the criteria weight is optional for alternative selection methods, it
can assist in making complex selections because all criteria are unlikely to have the same
importance value.

Theoretically, each criterion is distinctive in having a certain significance and impor-
tance. For instance, when selecting employees, the knowledge, abilities, and competences
criteria may be heavily weighted. Although the other criteria are also important when
selecting employees, in this case, the former criteria are more significant than the others.
Humans naturally provide a variety of opinions during the review process. Due to this
situation, researchers have introduced and generalized various mathematical techniques
for determining the weight of a criteria. The techniques for obtaining criteria weights are
varied. According to recent studies, subjective, objective, and hybrid weighting methods
are the three categories into which these techniques can be classified [33–36].

The decision-makers’ assessments and preferences are the sole basis for determin-
ing the subjective weights [37–39]. In general, the term “subjective weighting” refers
to the action of allocating subjective preferences to the decision criteria that are estab-
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lished depending by the decision-makers’ perception, knowledge and technical skills [40].
The weighted least square method, eigenvector method, AHP method, direct ranking, Del-
phi method, pairwise comparisons, point allocation, and SMART (Simple Multi-attribute
Ranking Technique) are frequently used to measure subjective weight [15,41–44]. The prin-
cipal weakness in these techniques is that they progressively lose their effectiveness once
the number of criteria increases, meaning that decision makers have to use their thoughts
to describe their preferences, and having additional criteria makes these decisions less
precise [31].

2.2.2. Objective Weight

The determination of criteria weights in objective weighting approaches is not in-
fluenced by the decision-makers’ preferences [15,45]. Using a decision matrix, objective
weighting methods produce criteria weights through a particular computing technique.
Since objective weight is based on a quantitative evaluation, its accuracy is undeniable,
and using it is practical and reliable. It is also generally agreed that using subjective weight
can be helpful in everyday situations. This is because challenges with decision making
always include the utilization of vague and ambiguous information that are based on
human judgments. However, the objective weight is preferred when a credible subjective
weight cannot be determined, or the decision-makers’ preferences significantly impact the
outcomes [40,46]. Additionally, employing the objective weight can help circumvent some
constraints of subjective weighting [39]. Numerous researchers have suggested objective
weighting techniques, such as the entropy method, linear goal-programming technique,
statistical variance method, standard deviation method, SECA (Simultaneous Evaluation
of Criteria and Alternatives), and CRITIC (Criteria Importance Through Inter-criteria
Correlation) [15,47–51].

One of the objective weighting techniques that are frequently employed in MCDM situ-
ations is Shannon’s entropy. It is a generic measure of informational uncertainty developed
using the probabilistic model [52]. For assessing the relative intensity of distinct criteria
that exhibit the ordinary intrinsic information given to the decision makers, Shannon’s
entropy is best suited [53]. Shannon developed a basic explanation of entropy measure
in information theory after Shannon and Weaver [54] proposed this idea for the first time
in communication theory [55]. Numerous fields, including mathematics [56], spectrum
analysis [57] and economics, have used this idea [58].

In addition, several researchers have of late employed the statistical variance method
as an objective weighting method. Rao and Patel [49] suggested this technique for the
problem of material selection. The statistical variance concept of determining the criteria
weight is significantly easier to understand than the entropy technique because it requires
less computation [59]. The studies by Singh and Kumar [60], Mahapatara et al. [61],
and Mohanty and Mahapatra [62] all attest to its integrity.

2.2.3. Hybrid Weight

Considering the significance of subjective and objective weights, some researchers
have blended and integrated both to establish a hybrid weighting technique. The hybrid
methods could deliver more precise weights since they consider both the perceptions of the
decision makers and the information from the decision matrix [63–66]. The decision-makers’
preferences and judgments must be used in all discussed ways to assess the importance
of each criterion’s weight. Each approach has pros and cons and can be effective in
various circumstances.
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3. Preliminaries
3.1. Fuzzy Sets

Definition 1 ([67]). Let M = {z1, z2, . . . , zn} represent a set of finite discourses. A membership
function µM(zi) describes a fuzzy set M defined on Z as

M = {(zi, µM(zi)) : µM(zi) ∈ [0, 1]; ∀zi ∈ Z}, (1)

where the function value µM(zi) is referred to as the degree of membership of zi to M in Z.

Definition 2 ([67,68]). ã = (k, l, m) is a representation of a triangular fuzzy number (TFN) and
illustrated in Figure 1. The µã(z) membership function of a TFN ã has the following definition:

µã(z) =



0 , if z < k,
z− k
l − k

, if k ≤ z < l,
m− z
m− l

, if l ≤ z ≤ m,

0 , if z > m.

(2)

Figure 1. TFN with membership function.

Definition 3 ([69]). The following definitions apply to the TFN’s arithmetic operations,
Φ̃ = (φ1, φ2, φ3) and Ψ̃ = (ψ1, ψ2, ψ3), when k is a positive real number:

1. Addition: Φ̃(+)Ψ̃ = (φ1 + ψ1, φ2 + ψ2, φ3 + ψ3).
2. Subtraction: Φ̃(−)Ψ̃ = (φ1 − ψ3, φ2 − ψ2, φ3 − ψ1).
3. Multiplication:

Φ̃(×)Ψ̃ = (min(φ1ψ1, φ1ψ3, φ3ψ1, φ3ψ3), φ2ψ2, max(φ1ψ1, φ1ψ3, φ3ψ1, φ3ψ3)),
c(×)φ = (c× φ1, c× φ2, c× φ3).

4. Division:
Φ̃(÷)Ψ̃ = (min(φ1/ψ1, φ1/ψ3, φ3/ψ1, φ3/ψ3), φ2/ψ2,
max(φ1/ψ1, φ1/ψ3, φ3/ψ1, φ3/ψ3)).

3.2. Reviews of the Logarithmic Function

In information theory, Shannon and Weaver [70] were the first to establish the concept
of a divergence measure. The said measure is a logarithmic function and defined as follows.
Suppose that ∆n = {P = (p1, p2, . . . , pn) : pi ≥ 0, i = 1, 2, . . . , n; ∑n

i=1 pi = 1}, n ≥ 2
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is a collection of n-complete probability distributions. The definition of entropy for any
probability distribution P = (p1, p2, . . . , pn) ∈ ∆n is

H(P) = −
n

∑
i=1

pi log(pi). (3)

Following this, Kullback and Leibler [71] expanded on this idea to determine the
divergence measure of P = (p1, p2, . . . , pn) ∈ ∆n from Q = (q1, q2, . . . , qn) ∈ ∆n as

KL(P : Q) =
n

∑
i=1

pi log
(

pi
qi

)
. (4)

Kullback [72] then came up with the following proposal for the symmetric diver-
gence measure:

K(P : Q) = KL(P : Q) + KL(Q : P) =
n

∑
i=1

(pi − qi) log
(

pi
qi

)
. (5)

This motivated Bhandari et al. [73] to propose the following fuzzy divergence measure
of fuzzy set A ∈ FS(X) from fuzzy set B ∈ FS(X):

I(A, B) =
n

∑
i=1

[
µA(xi) log

(
µA(xi)

µB(xi)

)
+ (1− µA(xi)) log

(
1− µA(xi)

1− µB(xi)

)]
. (6)

The second part of Equation (6) contains the logarithmic function for the measure
of two sets. Inspired by that, the method presented in this study will focus on the single
set, where the following logarithmic function will be used for the computations in the
next section:

f (r) = ln(1− r), (7)

where r is the normalized value of the decision matrix such that r ∈ [0, 1) and f (r) is the
logarithmic function that is used to measure the overall performance of the alternatives.

4. The Fuzzy MEREC

The criteria weights in an MCDM problem are presented in this section using an
improved approach called the fuzzy MEREC method. The fuzzy MEREC employs the
removal effect of each criterion on the alternatives’ performance to determine the criteria
weights, just like the original MEREC. The criteria with more significant effects on the
performance will be given more weight. An enhanced logarithm function is used to
determine the performance of the alternatives in this study. To assess the impacts of every
criterion removal, the measure of absolute deviation is also employed, which shows the
changes between the overall performance of an alternative and its performance when a
criterion is removed. The details of the fuzzy MEREC method for calculating objective
weights are as follows:

Step 1: Construct a fuzzy decision matrix F̃ =
(

ξ̃
(u)
ijk

)
m×n

.

The decision makers, E = {E1, E2, . . . , Ek}, will provide the realistic evaluations of the
alternative A = {A1, A2, . . . , Am} for criterion C = {C1, C2, . . . , Cn}, which is represented
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by fuzzy numbers ξ̃
(u)
ij =

(
fij, gij, hij

)
, (i = 1(1)m; j = 1(1)n) in Table 1. These are

obtained from linguistic variables and illustrated as follows:

(8)

for Eu(u = 1(1)k).

Table 1. Linguistic terms used and their fuzzy numbers.

Linguistics Terms Fuzzy Numbers

Terrible (T) (0, 0, 1)
Medium Terrible (MT) (0, 1, 2)

Very Poor (VP) (1, 2, 3)
Poor (P) (2, 3, 4)

Medium Fair (MF) (3, 4, 5)
Fair (F) (4, 5, 6)

Medium Good (MG) (5, 6, 7)
Good (G) (6, 7, 8)

Very Good (VG) (7, 8, 9)
Medium Excellent (ME) (8, 9, 10)

Excellent (E) (9, 10, 10)

Step 2: Aggregate the fuzzy evaluations of alternatives via the equations provided:

ξ̃ij =
1
k

[
ξ̃
(1)
ij (+)ξ̃

(2)
ij (+) . . . (+)ξ̃

(k)
ij

]
, i = 1(1)m; j = 1(1)n. (9)

It is important to note that each expert’s preference in this study is taken to be equal
because they all possess an equivalent level of expertise.

Step 3: Normalize the fuzzy decision matrix.
Normalization attempts to reduce the disparity between the magnitude of attributes

and dimensions, with the normalized value falling within [0, 1]. As a result, the technical
issues caused by various measurement components can be removed [74,75]. If the MCDM
problems contain non-beneficial criteria, normalization is also required to ensure that they
are comparable to the beneficial criteria. The normalization of the initial data associated
with each criterion is computed by dividing it by the magnitude of the most prevalent
criterion. The component of a normalized decision matrix r̃ijk produced by the TFN

ξ̃
(u)
ij =

(
fij, gij, hij

)
is provided by [76]

r̃ij =

(
fij

hmax
j

,
gij

hmax
j

,
hij

hmax
j

)
, i = 1(1)m; j = 1(1)n, for benefit criteria, and (10)

r̃ij =

(
f min
j

hij
,

f min
j

gij
,

f min
j

fij

)
, i = 1(1)m; j = 1(1)n, for cost criteria. (11)

Step 4: Defuzzify the fuzzy decision matrix.
The decision matrix component is in the TFN form. To run the model, the fuzzy num-

bers must be properly defuzzified to provide crisp values. The process of defuzzification
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converts fuzzy values again into crisp values. Distinct defuzzification techniques lead
to various formulas or processes, which produce various defuzzified values that might
help produce various ranking outcomes [77,78]. The mean of the maxima, the graded
mean integration representation (GMIR), the center of mass and the centroid methods are
a few of the defuzzification techniques that are accessible [78,79]. In this study, the crisp
value, Crisp(ã) for TFN ã = (a1, a2, a3) was determined using the GMIR value, defined
as follows:

Crisp(ã) =
a1 + 4a2 + a3

6
. (12)

Step 5: Determine the alternatives’ overall performance.
In this step, the enhanced logarithm function is employed to calculate the overall

performances of the alternatives. It is derived from a non-linear function pioneered by
Shannon and Weaver [70] and variants have been researched [71–73]. The computation is
performed using the following equation:

Si =
1
n

n

∑
j=1

ln(1− rij), i = 1(1)m. (13)

Step 6: Determine the alternatives’ performance by eliminating each criterion.
Similar to the preceding step, this step also uses the logarithm function. The perfor-

mance of the alternatives is determined based on removing each criterion separately in
this step as opposed to Step 5. Since there are m sets of performances and n criteria, let S

′
ij

indicate the overall performance of ith alternative to the elimination of the jth criterion.
The computation of this step is made using the following equation:

S
′
ij =

1
n

n

∑
k=1,k 6=j

ln(1− rij), i = 1(1)m; j = 1(1)n. (14)

Step 7: Calculate the aggregate of the absolute deviations.
Based on the values generated from Steps 5 and 6, the calculation of the elimination

effect of the jth criterion is performed in this step. Let dj represent the result of eliminating
the jth criterion. The following formula can be used to determine the values of dj:

dj =
m

∑
i=1
|S′ij − Si|. (15)

Step 8: Identify the final criteria weights.
In this step, the elimination effects, dj from Step 7 are used to determine each criterion’s

objective weight. The weight of the jth criterion is denoted by the symbol wj. For the
purpose of calculation wj, the following equation is applied:

wj =
dj

∑n
k=1 dk

. (16)

5. Numerical Experiments

In this section, the fuzzy MEREC results are validated and shown to be consis-
tent with those of existing objective weighting techniques through comparative analysis.
The simulation-based study is also included to assess the constancy of the fuzzy MEREC
results. The evaluation of the criteria weights and the statistical tests were carried out using
Microsoft Visual C++ and Microsoft Excel software, respectively. Among numerous tech-
niques in the literature, only three existing objective weighting techniques were selected to
calculate the criteria weights and conduct the analysis. The first weighting technique is the
original MEREC since this paper focused on its modifications and improvements that could
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be suggested. The other two weighting techniques are selected among the well-known
methods in MCDM: entropy and statistical variance.

5.1. Comparative Case Study

The data from the staff performance appraisal case study at a Malaysian academic
institution are compared to analyze and verify the effectiveness of the method presented in
this study. Table 2 displays the information, consisting of 15 alternatives and 13 sub-criteria
grouped into 4 main criteria.

Table 2. Assessments of staff performance against the sub-criteria.

C11 C12 C13 C14 C15 C21 C22 C23 C31 C32 C33 C34 C41

A1 ME VG VG VG VG ME ME ME ME ME ME ME VG
A2 E VG ME ME ME ME ME ME ME ME ME VG VG
A3 ME ME ME ME ME ME ME ME ME ME ME ME VG
A4 E ME ME ME ME ME ME E E E E E ME
A5 E ME ME ME VG ME ME ME E ME ME ME ME
A6 ME VG ME ME ME ME ME ME ME ME ME ME VG
A7 E ME ME ME ME ME ME ME ME ME ME ME ME
A8 E ME ME ME ME ME ME ME E E E ME VG
A9 E ME ME ME ME ME ME ME E ME ME E ME
A10 E ME ME ME ME ME ME ME ME ME ME ME ME
A11 ME ME ME ME ME ME ME ME ME ME ME ME VG
A12 E ME VG VG ME ME ME ME ME ME ME ME ME
A13 ME ME ME ME ME ME ME ME ME ME ME ME ME
A14 E ME ME ME ME E ME ME ME ME ME ME E
A15 ME ME ME ME ME ME ME ME ME ME VG VG VG

The weights assigned to each sub-criteria by each technique are displayed in Table 3
along with the associated Pearson correlation coefficients (r). These weights are also
graphically shown in Figure 2. The r values in Table 3 show the relationship between fuzzy
MEREC results and those of the other techniques considered.

Table 3. The sub-criteria weights and correlation coefficients for each technique.

Entropy Statistical Variance MEREC Fuzzy MEREC

w11 0.282 0.282 0.163 0.277
w12 0.224 0.224 0.208 0.178
w13 0.184 0.184 0.221 0.182
w14 0.144 0.144 0.198 0.182
w15 0.166 0.166 0.211 0.182

w21 0.442 0.445 0.258 0.339
w22 0.183 0.181 0.390 0.322
w23 0.375 0.374 0.353 0.339

w31 0.294 0.297 0.132 0.271
w32 0.179 0.180 0.148 0.248
w33 0.219 0.217 0.381 0.243
w34 0.308 0.306 0.339 0.239

w41 1.000 1.000 1.000 1.000

r 0.962 0.961 0.927

Consider a correlation coefficient value involving two variables that is greater than 0.4.
For this situation, it is concluded that they have a moderate relationship, and a significant
association exists if the number is greater than 0.6 [80]. The values of r displayed in
Table 3 show that the fuzzy MEREC weights correlate highly with the MEREC, entropy,
and statistical variance weights. It indicates that the fuzzy MEREC can be used as an
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alternative technique for determining the criteria weights since its weights differ slightly
from the weights of other methods. Figure 2 demonstrates that the trend of fuzzy MEREC
in differing criteria weights is comparable to the other approaches taken into account in the
comparative analysis. It is noted that entropy and statistical variance are the well-known
methods in MCDM problems, and their results are very close to each other as in Figure 2.
It is also seen that the criteria weights of the fuzzy MEREC are more likely to follow the
trend of the entropy and statistical variance methods. Hence, the results from the fuzzy
MEREC can be used to create the criteria weights in MCDM problems that are credible
and dependable.

Figure 2. The sub-criteria weights for each technique.

5.2. Simulation-Based Analysis

The stability of the fuzzy MEREC approach is examined in this sub-section utilizing
simulation-based analysis. In order to evaluate the fuzzy MEREC technique’s efficiency
against that of the MEREC, entropy, and statistical variance approaches, a variety of decision
matrices were generated. This analysis has two categories: the validation of the method
presented in this study and the selection of the most effective method out of all the ones
being compared through an outlier test. The presented method is validated by finding
the correlation coefficients between the fuzzy MEREC and the existing methods similar to
the previous part. For the outlier test, the consistency of the criteria weights is examined
in the presence of outliers in the data set of alternatives. Concerning this test, several
data elements are modified into other values that differ significantly from the original.
After performing the algorithms, the weights obtained are compared with the original
weights for the fuzzy MEREC and the three existing methods. The four types of generated
decision matrices are given as follows:

• Category S: 50 alternatives and 10 sub-criteria classified into three main criteria;
• Category M: 100 alternatives and 15 sub-criteria classified into four main criteria;
• Category L: 200 alternatives and 20 sub-criteria classified into four main criteria;
• Category XL: 400 alternatives and 25 sub-criteria classified into five main criteria.

For the simulation, a decision matrix is created twenty times for each case (twenty
sets in each case). The matrix values exhibit a normal distribution with a mean of 5 and a
standard deviation of 1. These obtained decision matrices are used to obtain criteria weights
for the fuzzy MEREC and other techniques. The average criteria weights established by the
fuzzy MEREC and the other approaches taken into account for the generated category S,
M, L and XL decision matrices as well as the associated Pearson correlation coefficients (r)
are displayed in Tables 4–7 and Table 8, respectively.
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Table 4. The average sub-criteria weights and correlation coefficients for each technique related to
category S.

Entropy Statistical Variance MEREC Fuzzy MEREC

w11 0.325 0.325 0.332 0.330
w12 0.341 0.340 0.341 0.343
w13 0.334 0.334 0.327 0.328

w21 0.323 0.323 0.315 0.331
w22 0.345 0.343 0.368 0.337
w23 0.333 0.334 0.317 0.332

w31 0.250 0.252 0.224 0.255
w32 0.241 0.242 0.230 0.250
w33 0.238 0.240 0.241 0.254
w34 0.270 0.266 0.305 0.242

Table 5. The average sub-criteria weights and correlation coefficients for each technique related to
category M.

Entropy Statistical Variance MEREC Fuzzy MEREC

w11 0.188 0.188 0.187 0.200
w12 0.197 0.197 0.196 0.202
w13 0.210 0.210 0.213 0.195
w14 0.195 0.197 0.183 0.204
w15 0.210 0.208 0.221 0.200

w21 0.339 0.338 0.347 0.335
w22 0.338 0.342 0.302 0.326
w23 0.323 0.321 0.351 0.339

w31 0.252 0.251 0.263 0.251
w32 0.243 0.244 0.244 0.253
w33 0.254 0.255 0.242 0.246
w34 0.251 0.250 0.251 0.250

w41 0.330 0.332 0.312 0.324
w42 0.328 0.329 0.339 0.336
w43 0.341 0.339 0.349 0.340

Table 6. The average sub-criteria weights and correlation coefficients for each technique related to
category L.

Entropy Statistical Variance MEREC Fuzzy MEREC

w11 0.168 0.167 0.174 0.166
w12 0.163 0.164 0.151 0.169
w13 0.169 0.169 0.172 0.163
w14 0.167 0.166 0.184 0.168
w15 0.166 0.166 0.167 0.168
w16 0.167 0.168 0.152 0.166

w21 0.257 0.258 0.242 0.251
w22 0.245 0.245 0.253 0.247
w23 0.245 0.244 0.249 0.245
w24 0.254 0.253 0.256 0.258

w31 0.140 0.140 0.138 0.142
w32 0.142 0.142 0.134 0.145
w33 0.139 0.139 0.143 0.139
w34 0.142 0.143 0.129 0.142
w35 0.147 0.147 0.163 0.146
w36 0.150 0.150 0.137 0.143



Mathematics 2023, 11, 1544 13 of 20

Table 6. Cont.

Entropy Statistical Variance MEREC Fuzzy MEREC

w37 0.140 0.140 0.156 0.144

w41 0.327 0.327 0.350 0.329
w42 0.331 0.331 0.302 0.342
w43 0.342 0.341 0.348 0.330

Table 7. The average sub-criteria weights and correlation coefficients for each technique related to
category XL.

Entropy Statistical Variance MEREC Fuzzy MEREC

w11 0.166 0.167 0.158 0.170
w12 0.168 0.168 0.155 0.166
w13 0.168 0.168 0.173 0.163
w14 0.169 0.168 0.169 0.174
w15 0.162 0.163 0.154 0.163
w16 0.167 0.167 0.191 0.164

w21 0.248 0.248 0.246 0.257
w22 0.252 0.252 0.233 0.248
w23 0.251 0.251 0.254 0.250
w24 0.249 0.249 0.267 0.246

w31 0.142 0.142 0.135 0.145
w32 0.141 0.140 0.160 0.144
w33 0.143 0.143 0.130 0.142
w34 0.144 0.144 0.158 0.141
w35 0.147 0.147 0.143 0.142
w36 0.142 0.142 0.146 0.137
w37 0.141 0.141 0.130 0.149

w41 0.253 0.254 0.231 0.235
w42 0.245 0.245 0.258 0.254
w43 0.249 0.248 0.251 0.257
w44 0.253 0.253 0.260 0.254

w51 0.245 0.246 0.258 0.255
w52 0.246 0.246 0.233 0.242
w53 0.253 0.253 0.258 0.254
w54 0.255 0.254 0.252 0.250

Table 8. The correlation coefficients for each technique related to category S, M, L and XL.

Category Method Entropy Statistical Variance MEREC Fuzzy MEREC

S

Entropy 1.000
Statistical Variance 0.999 1.000

MEREC 0.934 0.922 1.000
Fuzzy MEREC 0.961 0.969 0.834 1.000

M

Entropy 1.000
Statistical Variance 0.999 1.000

MEREC 0.970 0.964 1.000
Fuzzy MEREC 0.987 0.986 0.974 1.000
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Table 8. Cont.

Category Method Entropy Statistical Variance MEREC Fuzzy MEREC

L

Entropy 1.000
Statistical Variance 0.999 1.000

MEREC 0.983 0.982 1.000
Fuzzy MEREC 0.997 0.997 0.978 1.000

XL

Entropy 1.000
Statistical Variance 0.999 1.000

MEREC 0.971 0.970 1.000
Fuzzy MEREC 0.992 0.992 0.973 1.000

Based on Table 8 and Figure 3, since all the values of the correlation coefficient between
the fuzzy MEREC and the three existing methods across all categories are higher than
0.8, it is clear that there is a significant relationship between the results. Additionally,
as mentioned earlier, the fuzzy MEREC is the modified method of the MEREC. Hence, a
more detailed comparison of those two approaches can be made based on the results. It is
shown that the correlation coefficient values between the fuzzy MEREC and the two well-
known methods, entropy and statistical variance are higher than the correlation coefficient
values between the MEREC and the similar compared methods for all four categories.
Hence, this part supports the observation that the presented fuzzy MEREC is better than
the previous MEREC. Hence, similar to the earlier sub-section, weights for the criteria in
MCDM problems can be determined using the results from the fuzzy MEREC; these are
regarded as credible and reliable.

Figure 3. The graphical display of correlation coefficients in all four categories.

To understand the fuzzy MEREC behavior more thoroughly, an outlier test is per-
formed, in which several data elements are modified into values that differ significantly
from the original values in each category. After modifying several data elements, the al-
gorithms for obtaining the weights are performed. The weights obtained are compared
with the original weights for the fuzzy MEREC and the three existing methods. While
the weights do not differ significantly from what they were, it shows that the method is
better than the others. Table 9 shows the results of correlation coefficient values of criteria
weights between the original data and modified data with 2%, 6%, and 12% outliers for
each category, respectively.
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Table 9. Correlation coefficient values of criteria weights between original data and modified data
with 2%, 6%, and 12% outliers respectively for category S, M, and L.

Category Methods
Correlation Coefficient Values

with 2% Outliers with 6% Outliers with 12% Outliers

S

Entropy 0.998358198 0.993335568 0.988032446
Statistical Variance 0.999294077 0.996711679 0.993499016

MEREC 0.847163149 0.847795491 0.849045085
Fuzzy MEREC 0.999998599 0.999986276 0.999937175

M

Entropy 0.999592119 0.998340796 0.997011060
Statistical Variance 0.999780970 0.998971810 0.997952302

MEREC 0.967307546 0.967190160 0.966634652
Fuzzy MEREC 0.999999871 0.999998738 0.999994272

L

Entropy 0.999874077 0.999502673 0.999117432
Statistical Variance 0.999933030 0.999694531 0.999403844

MEREC 0.982685866 0.982726465 0.982680325
Fuzzy MEREC 0.999999907 0.999999097 0.999995898

XL

Entropy 0.999895378 0.999581070 0.999248434
Statistical Variance 0.999946517 0.999752958 0.999511542

MEREC 0.972413582 0.972509255 0.972514598
Fuzzy MEREC 0.999999968 0.999999691 0.999998594

The results show that the correlation coefficient values between the original data and
modified data of fuzzy MEREC are the highest for all the categories compared to other
methods. It is observed that the criteria weights of the fuzzy MEREC are mainly unchanged
from their initial values. The existence of outliers is not good for any data in MCDM
problems, as it can affect the final results. Since the criteria weights of the fuzzy MEREC
are the least affected by the existence of the outliers, then the fuzzy MEREC is the most
effective technique of all those that were compared. In other words, the criteria weights for
the fuzzy MEREC method are consistent when there are outliers in the data set. The results
of fuzzy MEREC are compared with the existing MEREC, and there is improvement over
the latter one. The CPU time, or the amount of time a CPU was used for the operational
assessment procedure, as in Table 10, was used as a comparison. It can be concluded that
the fuzzy MEREC is more effective because it requires less CPU time than the existing
MEREC. Hence, the fuzzy MEREC method would be preferable when dealing with the
objective weight of criteria in various MCDM problems.

Table 10. Average CPU time of the weighting techniques related to category S, M, L and XL.

Category
Average CPU Time (ms)

MEREC Fuzzy MEREC

S 31.25 15.63
M 78.13 46.88
L 234.38 109.38

XL 578.13 296.88

6. Conclusions

In a MCDM process, determining the criteria weights is essential. Subjective and ob-
jective weighting methods are frequently distinguished in research. The subjective weights
of criteria are established based on the direct judgments and views of decision makers.
Objective criteria weights are supported by the starting date specified in the decision matri-
ces. The authors concentrate on objective weighting techniques in this work. This study
introduced the fuzzy MEREC, a modified objective weighting mechanism. The results of
this study are compatible with existing objective weighting techniques, even though there
are modifications on the procedure of weighting criteria from a new perspective.
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A numerical example is employed to compare the results of the fuzzy MEREC ap-
proach with the MEREC, entropy, and statistical variance methods. Correlation coefficient
values between the results demonstrated that the criteria weights of the fuzzy MEREC are
more likely to follow the trend of the entropy and statistical variance methods. Since the
results of fuzzy MEREC are compatible with the existing objective weighting techniques,
a simulation-based study was conducted by generating MCDM issues using data that
largely follow a normal distribution (symmetric distribution). Based on the gathered data,
two different types of analyses are performed. First, a comparison is made to validate the
fuzzy-MEREC results. Second, the stability of the results is then examined by the outlier
test. The simulation-based analysis demonstrates that as the size of the problem rises,
the correlation between the fuzzy MEREC and the results of other techniques also increases.
Therefore, the fuzzy MEREC behaves similarly to the other approaches in varied situations.
However, the selection of the most effective method out of all the ones being compared is to
be made through the outlier test. Based on the test, it is observed that the criteria weights of
the fuzzy MEREC are the least affected by the outliers’ existence. In other words, the fuzzy
MEREC weights are mainly stable and consistent when there are outliers in the data set.
Therefore, the fuzzy MEREC is the most effective and appropriate technique of all those
that were compared for calculating objective criteria weights and is regarded as credible
and dependable.

The fuzzy MEREC weight is determined in large part by the performance measure
function. An enhanced logarithmic function is employed to assess the various alterna-
tives’ performance. In this paper, the authors also applied the defuzzification process to
transform the fuzzy numbers to crisp values. The limitation of this study is that if the
defuzzification procedure is neglected, there will be some inaccuracies in the performance
values. This could be the subject of future study. This could also concentrate on integrating
fuzzy MEREC with other subjective and objective weighting techniques, such as entropy,
WEBIRA (weight balancing indicator ranks accordance), IDOCRIW (integrated determi-
nation of objective criteria weights), SWARA (stepwise weight assessment ratio analysis),
and ACW (adaptive criteria weights), together with other expert evaluation techniques.
Applying the modified approach to real-world issues, including constructing transportation
systems, choosing financial products, supplier selection, and the problem of choosing a
transportation mode, could also be considered.
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Abbreviations
The following abbreviations are used in this manuscript:

MCDM Multi-Criteria Decision Making
MEREC Method based on the Removal Effects of Criteria
MADM Multi-Attribute Decision Making
MODM Multi-Objective Decision Making
APL Automated Parcel Locker
AHP Analytic Hierarchy Process
ASSP Aircraft Sequencing and Scheduling Problem
PROMETHEE Preference Ranking Organization Method for Enrichment of Evaluations
VIKOR Vise Kriterijumska Optimizacija I Kompromisno Resenje
WASPAS Weighted Aggregated Sum Product Assessment
WSM Weighted Sum Model
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
EDAS Evaluation based on Distance from Average Solution
BWM Best–Worst Method
COPRAS Complex Proportional Assessment
ELECTRE Elimination Et Choix Traduisant la Realité
GrC Granular Computing
MAGDM Multi-Attribute Group Decision Making
3WD Three-Way Decisions
DHF Dual Hesitant Fuzzy
DHFSs Dual Hesitant Fuzzy Sets
FGs Fuzzy Graphs
SMART Simple Multi-Attribute Ranking Technique
SECA Simultaneous Evaluation of Criteria and Alternatives
CRITIC Criteria Importance Through Inter-criteria Correlation
TFN Triangular Fuzzy Number
GMIR Graded Mean Integration Representation
WEBIRA Weight Balancing Indicator Ranks Accordance
IDOCRIW Integrated Determination of Objective Criteria Weights
SWARA Stepwise Weight Assessment Ratio Analysis
ACW Adaptive Criteria Weights
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