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Abstract: In the prediction of a nonlinear time series based on a leaky integrator echo state network
(leaky-ESN), building a reservoir related to the specific problem is a key step. For problems such as
poor performance of randomly generated reservoirs, it is tough to determine the parameter values of
the reservoirs. The work in this paper uses the gravitational search algorithm (GSA) to optimize the
global parameters of a leaky-ESN, such as the leaking rate, the spectral radius, and the input scaling
factor. The basic GSA has some problems, such as slow convergence and poor balance between
exploration and exploitation, and it cannot solve some complex optimization problems well. To
solve these problems, an improved gravitational search algorithm (IGSA) is proposed in this paper.
First, the best agent and elite agents were archived and utilized to accelerate the exploration phase
and improve the convergence rate in the exploitation phase. Second, to improve the effect of the
poor fitness agents on the optimization result, a differential mutation strategy was proposed, which
generated new individuals to replace original agents with worse fitness, increasing the diversity of the
population and improving the global optimization ability of the algorithm. Finally, two simulation
experiments showed that the leaky-ESN optimized by the IGSA had better prediction accuracy.

Keywords: leaky integrator echo state network (leaky-ESN); gravitational search algorithm (GSA);
differential mutation; time series prediction

MSC: 93-10

1. Introduction

A recurrent neural networks (RNN) is a potent machine learning model with a short-
term memory and internal parameters that share characteristics. An RNN has some
advantages in the nonlinear prediction of time series, so it is often used in natural lan-
guage processing and various kinds of time series prediction. However, RNNs have the
characteristics of extensive computation and a slow convergence rate. In 2001, Professor
Jaeger proposed a new type of recurrent neural network, an echo state network (ESN) [1],
which could solve the problems associated with a recurrent neural network and predict
the Mackey–Glass chaotic time series. The prediction accuracy of an echo state network is
2400 times better than that of an RNN [2]. ESNs have been used in many fields, such as
time series prediction [3,4], system modeling [5,6], dynamic pattern recognition [7], and
so on. Compared with a traditional recurrent neural network, an ESN has the following
characteristics:

1. It replaces the hidden layers of a recurrent neural network with pools of randomly
sparse connected neurons;

2. It can map the input vector to the state vector;
3. It uses the linear regression method or least-squares algorithm to obtain the output

weights, simplifying the network training process and obtaining the global opti-
mal value.
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In addition to the output connection weight matrix, the global parameters of an
ESN include the spectral radius of the reservoir connection weight matrix, the input and
output feedback scaling, the leaking rate, and so on. These parameters are usually selected
based on historical experience, which makes the global approximation capability of an
ESN suboptimal.

Professor Jaeger proposed an improved model of ESN, which is called the leaky
integrator echo state network (leaky-ESN) [8]. A leaky-ESN can optimize the spectral
radius, the input scaling factor, and the leaking rate of the internal connection weight
matrix using the stochastic gradient descent method (SGD), which improves its prediction
accuracy to a certain extent. However, the stochastic gradient descent method is sensitive
to the initial value. If the initial value is not suitable, the stochastic gradient descent
method easily falls into the local minimum, so many scholars use different methods to
optimize the global parameter of an ESN. Zhang et al. [9] used an improved multiverse
optimizer (MVO) to optimize the hyperparameters of a deep ESN, and the model obtained
an engine fault recognition rate of 93%. In [10], the genetic algorithm (GA) was applied
to a double-reservoir echo state network and adapted to the global parameters of an
ESN. Wang et al. [11] optimized the echo state network with the artificial fish swarm
algorithm (AFSA), satisfying the control requirements of the polyvinylchloride (PVC)
polymerizing process. Zhang et al. [12] used a hybrid algorithm that was composed of the
simulated annealing algorithm (SA) and the gray wolf optimization algorithm (GWO) to
optimize an ESN, which was used for coverage optimization of wireless sensor networks,
reducing the redundant distribution of sensor nodes and ensuring the smooth operation of
sensor networks. Li et al. [13] used the particle swarm optimization (PSO) algorithm to
optimize the output weight matrix and the number of neurons in the reservoir, and they
proposed two boundary mutation strategies that verified the effectiveness of the model in
electrical load prediction. Salah et al. [14] used a PSO-ESN to predict the remaining service
life of an engine. According to reference [15], output layer neurons only need a partial
connection to internal neurons in a reservoir, so Wang et al. proposed a binary particle
swarm optimization algorithm (BPSO) to calculate the output connection weight matrix.
Han et al. [16] used the quantum-behaved fruit fly optimization algorithm (QFFOA) to
determine the size of the reservoir, the spectral radius, and the preprocessing of the original
data. Many intelligent optimization algorithms have been used to optimize the parameters
of an ESN; however, due to the reservoir containing more nodes and the search space of
parameters being broad, the optimization effect needs to be improved.

The gravitational search algorithm is a heuristic optimization algorithm that simulates
the phenomenon of gravity. In the algorithm, search agents on behalf of the objects are
optimized, and their masses measure their performance. All agents interact with each other
by the gravitational force, and tiny agents always move towards agents with heavier masses.
With the continuous movement of the agents, the heaviest agent moves to the optimal
position, i.e., it is the optimal solution to the problem. The GSA has high performance and
good global search ability in solving nonlinear problems compared with other traditional
optimization algorithms. However, there are still some problems, such as slow convergence
rate and poor balance between exploration and exploitation.

The rest of the paper is organized as follows. Section 2 presents a brief introduction to
the leaky-ESN and the GSA. Section 3 analyzes the problems that exist in the exploration
phase and exploitation phase of the GSA, and an improved GSA is proposed. The simula-
tion results and analysis of the leaky-ESN optimized by the IGSA are presented in Section 4.
Finally, the conclusion is presented in Section 5.

2. The Leaky-ESN and the GSA
2.1. The Leaky-ESN

The network structure of a standard ESN includes three layers: input layer, reservoir,
and output layer, as shown in Figure 1. The input, u = u(t), is connected to the reservoir
through the input weight matrix, Win; the output, y = y(t), is fed back to the reservoir with
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an output feedback weight matrix, W f b; the state of the reservoir is x = x(t); W denotes the
weight matrix of the reservoir with state x = x(t) through the output weight matrix, Wout,
which is connected to the output layer. Assuming that the number of inputs, reservoirs,
and outputs is M, N, and L, respectively, the dimensions of Win, W, W f b, and Wout are
N ×M, N × N, N × L, and L× (M + N), respectively.

Figure 1. The structure of a standard ESN.

The state update equation of a standard ESN is as follows:

x(n + 1) = f (Winu(n + 1) + Wx(n) + W f by(n)) (1)

y(n) = g(Wout[x(n); u(n)]), (2)

where f is an internal activation function (the tanh function is generally chosen), g is an out-
put activation function (usually the identity function), and [x; y] denotes the concatenation
of the two vectors x and y. A leaky-ESN is an improved model of a standard ESN, and its
reservoir is made up of leak-integrator neurons. A leaky-ESN has the same topology as the
standard ESN model. The modified status update equation for a leaky-ESN is as follows:

x(n + 1) = (1− a)x(n) + f (SinWinu(n + 1) + ρWx(n) + S f bW f by(n)), (3)

where a ∈ (0, 1] denotes the leaking rate, ρ ∈ (0, 1] denotes the spectral radius of the weight
matrix W of the reservoir, and Sin and S f b are the input scaling factor and the output
feedback scaling factor, respectively. To ensure that a leaky-ESN has the echo state property,
Equation (4) must be satisfied.

a− ρ ≥ 0. (4)

In particular, only the output weight matrix, Wout, needs to be trained in a leaky-ESN
and a standard ESN, while the rest of the connection weight matrix remains unchanged
once it is determined. In a training ESN, the weight matrices, Win, W, W f b, are determined
randomly and no longer change, except to train Wout. In the training stage, the state, x(n)
is collected in rows into X, and the output values, y(n), corresponding to x(n) are stored
row by row in a vector, Y, so that the following formula can calculate Wout:

Wout = (XTX + εI)−1XTY, (5)

where ·T denotes the transpose of a matrix or vector, ε is a regularization coefficient, and
·−1 denotes the inversion of a square matrix.

A leaky-ESN can use the normalized root mean square error (ENRMSE) to evaluate the
training accuracy, and ENRMSE is calculated as follows:

ENRMSE(y, yteach) =

√√√√ 〈|| y(n)− yteach(n) ||〉2

〈|| yteach(n)− 〈yteach(n)〉 ||〉2
, (6)
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where y(n) is the training output and yteach is the teacher output, ‖ · ‖ denotes the Euclidean
distance, and 〈·〉 denotes the mean function.

2.2. The Gravitational Search Algorithm

The gravitational search algorithm (GSA) is a heuristic search algorithm based on the
law of universal gravitation and the interaction between objects [17]. Fitness determines
the mass, and the heavier agent represents a better solution in the GSA. Under the action of
universal gravitation, an object will always move towards the object with the heaviest mass.

In the GSA, consider a model with N agents where the position of the ith agent is
defined as follows:

Xi = (x1
i , x2

i . . . xd
i . . . xD

i ) f or i = 1, 2 . . . D, (7)

where xd
i denotes the position of the ith agent in the dth dimension. The mass of each agent

is calculated by Equation (8):

mi(t) =
f iti(t)− worst(t)
best(t)− worst(t)

(8)

Mi(t) =
mi(t)

∑N
j=1 mj(t)

, (9)

where Mi(t) represents the mass of the agent i at iteration t, f iti(t) represents the fitness
of the agent i at iteration t, best(t) and worst(t) denote the optimal fitness and the worst
fitness in the tth iteration, respectively.

The force acting on agent i is the sum of the forces acting on it by other agents:

Fd
i (t) = ∑

j∈Kbest,j 6=i
randd

j G(t)
Mj(t)Mi(t)
Rij(t) + ε

(xd
j (t)− xd

i (t)) (10)

where ε is a small constant and Rij(t) represents the Euclidean distance between agents i
and j. Only gravitational agents can attract others, Kbest is the number of attractive agents.
As time goes by, Kbest decreases linearly from N (total number of agents) to 1. The value
randd

j is a random number between 0 to 1, which gives a stochastic characteristic to the
GSA. The gravitational constant, G, is a function of time, where the initial value of G, G0,
decreases with time:

G(t) = G0e
−β

t
tmax , (11)

where β = 20, t is the current number of iterations, and tmax is the total number of iterations.
The acceleration of the agent i at time iteration t is calculated as follows:

accd
i (t) =

Fd
i (t)

Mi(t)
. (12)

Furthermore, the next position and velocity can be calculated as follows:

vd
i (t + 1) = randi × vd

i (t) + accd
i (t) (13)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1), (14)

where d is the problem dimension and randi is a random number in the interval [0,1].

3. The Improved Gravitational Search Algorithm (IGSA)

All optimization algorithms based on population behavior have two important charac-
teristics: the ability to explore the wide search space, namely exploration, and the ability to
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converge near the most promising candidate solution, namely exploitation. The exploration
weakens and the exploitation strengthens gradually with each iteration. In the GSA, accord-
ing to Equations (10) and (11), a high value of G can guarantee the exploration ability in the
initial stage. As the program running G continues to decrease, the movement of the agents
slows down, the exploration weakens, and the exploitation strengthens. Unfortunately,
Kbest also decreases linearly over time and there are fewer and fewer gravitational agents,
which can lead to the exploration weakening but the exploitation does not necessarily
strengthen.

Figure 2 shows a case where the fitness function is y = x2, where Fmn indicates that
agent m is attracted by agent n. As we can see, A5 is the agent with the best fitness value,
so A5 will always attract other agents to move toward it. However, A5 is also attracted
to these agents and gradually moves away from the optimum, towards the center of all
agents. After a period of time, the number of attractive agents continues to decrease and
the strength of gravity decreases, which leads to a weakening in the exploration ability
and a slow convergence rate in the exploitation, and the system fails to converge near the
optimum. To solve these problems, we put forward the following solutions:

(a) (b) (c)
Figure 2. Movement behavior of agents in the GSA: (a) movement behavior of agents when kbest = 5;
(b) movement behavior of agents when kbest = 2; (c) result of movement behavior.

3.1. The Adaptive Gbest and Elite-Agent-Guided GSA

This method mainly includes two scenarios: one is when the location of the agent with
the best global fitness is saved and utilized to speed up the exploration phase; the second is
when there are too few attractive agents, which results in slow convergence, and a fixed
number of elite agents should be used to provide attraction and speed up the exploitation
phase. Figure 3 shows the movement behavior of agents after joining the gbest and elite
individuals. As shown in the figure, the gbest provides an additional attraction to the other
agents, helping them move to the best global position, which can help a suboptimal agent
to surpass the current optimal agent and become the new gbest in the next iteration. In
general, 20% of agents with a better fitness value for each iteration are selected as elite
agents, when the kbest value is less than the number of elite agents, elite agents will attract
the others. As shown in Figure 3b, A4 and A5 are elite agents. When kbest < 2, elite agents
attract other agents, ensuring that the lighter agents can quickly move to the heavier agents,
improving the convergence rate, and, finally, the optimal solution can be found.
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(a) (b) (c)

Figure 3. Movement behavior of agents after using the gbest and elite agents: (a) movement
behavior of agents when kbest = 5; (b) movement behavior of agents when kbest ≤ 2; (c) result of
movement behavior.

When kbest is less than the number of elite agents, Equation (10) is changed to Equation (15):

Fd
i (t) = ∑

j∈elite,j 6=i
randd

j G(t)
Mj(t)Mi(t)
Rij(t) + ε

(xd
j (t)− xd

i (t)), (15)

where elite represents the elite agents.
The modified velocity formula and position formula using gbest are as follows:

Vi(t + 1) = randi ×Vi(t) + c1 × acci(t) + c2 × (gbest− Xi(t)), (16)

Xi(t + 1) = Xi(t) + Vi(t + 1), (17)

where Vi(t) is the velocity of agent i at iteration t, randi is a random number within 0 to 1,
c1 and c2 are acceleration coefficients, acci(t) is the acceleration of agent i at iteration t, and
gbest is the location of the global optimal solution.

3.2. The Differential Mutation Strategy

As can be seen from the above, the better agents may become the new global optimal
solution through the guidance of the gbest, while the agents with poor fitness can only
gradually approach the current optimal position through the guidance of the gbest and
elite agents, and it is difficult to be the best agent after one iteration. To increase the
probability of the inferior agents becoming the best agent in the next iteration, and improve
the contribution to the optimization results, the work in this paper proposes a differential
mutation strategy.

The agents are sorted according to fitness, where the half of agents that have better
fitness are selected as the high-quality solutions, and the other agents are the inferior
solutions. After the mutation operation of Equation (18), we obtain the new agents:

Ui = Xr1 + F · (Xr2 − Xr3), (18)

where Ui is the candidate agent after mutation, Xr1 is an agent randomly selected from the
inferior solutions, Xr2 and Xr3 are different agents randomly selected from the high-quality
solutions, F controls the scale of the different agents, and, usually, F = 0.5.

By Equation (19), Ui = (u1
i , u2

i . . . ud
i . . . uD

i ) is changed to Ni = (n1
i , n2

i . . . nd
i . . . nD

i )
after crossover:

nd
i =

{
ud

i rand(0, 1) < CR or d = drand
xd

i otherwise,
(19)

where Xi is agent i from the inferior solutions, CR is the crossover probability, and drand
is a random integer within the range of the dimension, D, which ensures that at least one
dimension value comes from the agent generated by the mutation. The Ni values are new
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agents that have been updated by the differential mutation strategy, and they form the new
population together with the high-quality solutions.

In the process of generating new agents, the mutation and crossover make full use of
the combination of better agents and inferior agents, increasing the probability of appear-
ing as the better agents and the diversity of population, which both improve the global
optimization ability of the algorithm. In the early stages of the algorithm, the agents are
far apart, and the differential mutation strategy gives the algorithm a strong global search
ability and the ability to escape the local optimum. In the later periods of the algorithm, the
agents are close to each other, so the differential mutation strategy can improve the local
search ability and speed up the convergence rate.

3.3. IGSA Evaluation

To evaluate the performance and the effectiveness of the IGSA, we applied it to 13
benchmark functions [18]. Table 1 shows the unimodal test functions, mainly showing the
convergence rate rather than the final results. Table 2 shows the multimodal test functions,
which have many local minima, so it is important for them to obtain a global optimal value.
The minimum value of F8 was −418.9829× n, the minimum values of the other functions
were zero. The value n was the dimension of the functions in Tables 1 and 2.

Table 1. Unimodal test functions.

Test Function Dimension

F1(X) = ∑n
i=1 x2

i [−100, 100]n

F2(X) = ∑n
i=1 |xi|+ ∏n

i=1 |xi| [−10, 10]n

F3(X) = ∑n
i=1

(
∑i

j=1 xj

)2
[−100, 100]n

F4(X) = max{|xi|, 1 ≤ i ≤ n} [−100, 100]n

F5(X) = ∑n−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30]n

F6(X) = ∑n
i=1 ([xi + 0.5])2 [−100, 100]n

F7(X) = ∑n
i=1 ix4

i + random[0, 1) [−1.28, 1.28]n

Table 2. Multimodal test functions.

Test Function Dimension

F8(X) = ∑n
i=1−xi sin

(√
|xi|
)

[−500, 500]n

F9(X) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]n

F10(X) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e [−32, 32]n

F11(X) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]n

F12(X) = π
n {10sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2}+

n
∑

i=1
u(Xi, 10, 100, 4)

yi = 1 + Xi+1
4

u(xi, a, k, m) =


k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

[−50, 50]n

F13(X) = 0.1
{

sin2(3πx1) + ∑n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+ ∑n

i=1 u(xi, 5, 100, 4) [−50, 50]n

We applied the IGSA to these benchmark functions and compared the results with
the GSA and PSO. In all algorithms, the population size was N = 50, the dimension was
n = 30, and the total number of iterations was 1000. In PSO, positive constants c1 and c2
were 0.5 and the inertia factor was w = 0.8. In the GSA and the IGSA, G0 was set to 100
and β = 20. For each algorithm, every function ran 30 times and the results are shown in
Tables 3 and 4.
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Table 3. Experimental results of unimodal functions.

PSO GSA IGSA

F1 Average best-so-far. 2.04× 10−17 4.18× 10−22 9.21× 10−61

Average mean fitness. 1.11× 10−17 5.31× 10−21 2.21× 10−59

F2 Average best-so-far. 5.81× 10−10 2.75× 10−8 3.75× 10−19

Average mean fitness. 3.44× 10−10 2.11× 10−8 3.56× 10−19

F3 Average best-so-far. 267.44 216.36 50.25
Average mean fitness. 443.03 227.01 103.45

F4 Average best-so-far. 2.72× 10−5 3.42× 10−9 3.67× 10−10

Average mean fitness. 2.21× 10−5 3.35× 10−9 1.95× 10−10

F5 Average best-so-far. 24.88 26.01 2.12
Average mean fitness. 25.12 62.43 10.21

F6 Average best-so-far. 0.75387 8.83× 10−30 0
Average mean fitness. 1.0012 1.88× 10−30 0

F7 Average best-so-far. 0.018 0.0078 0.00071
Average mean fitness. 0.049 0.0204 0.0014

Table 4. Experimental results of multimodal functions.

PSO GSA IGSA

F8 Average best-so-far. −3474.6477 −5731.6815 −6491.628
Average mean fitness. −3237.771 −3237.771 −5994.9608

F9 Average best-so-far. 17.9093 11.9395 6.9496
Average mean fitness. 24.874 15.9193 9.5961

F10 Average best-so-far. 4.66× 10−9 5.08× 10−11 4.44× 10−15

Average mean fitness. 3.18× 10−9 1.46× 10−11 4.21× 10−15

F11 Average best-so-far. 3.92 0.15 0.0098
Average mean fitness. 4.14 0.18 0.0265

F12 Average best-so-far. 1.84× 10−19 4.12× 10−24 8.11× 10−32

Average mean fitness. 1.38× 10−19 1.41× 10−23 1.18× 10−31

F13 Average best-so-far. 0.0233 0.1957 1.46× 10−7

Average mean fitness. 0.0963 0.2366 3.43× 10−6

As shown in Table 3, the IGSA provided better results than the GSA and PSO for functions
in Table 1. This was especially visible in F1 and F2. Figures 4–6 show the convergence rate of
all algorithms. According to these figures, the IGSA was the fastest to find the global optimum.
This was due to the extra attractive power of the gbest and elite agents.

Figure 4. The convergence behavior of F1.
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Figure 5. The convergence behavior of F5.

Figure 6. The convergence behavior of F7.

For multimodal functions, the final result was the most important as it reflected an
algorithm’s ability to escape from local optima. As shown in Table 4, due to the differential
mutation strategy, the IGSA had more chance to escape from local optima, so it had better
results. The convergence behavior of some functions are shown in Figures 7 and 8.
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Figure 7. The convergence behavior of F9.

Figure 8. The convergence behavior of F13.

3.4. The Process of Reservoir Parameter Selection Based on the IGSA

Due to the uncertainty of reservoir parameters in the leaky-ESN, the work in this
paper used the improved gravitational search algorithm to optimize reservoir parameters
and proposed a reservoir parameter selection model based on the IGSA, which gave the
leaky-ESN better generalization ability and prediction performance.

The process of reservoir parameter selection was as follows: first, the initial population
was generated using reservoir parameters and the fitness of all agents was calculated, the
population was then updated with the gbest and elite agents and inferior agents using the
differential mutation strategy were updated, eventually obtaining a new population. When
the termination condition was met, the algorithm stopped and output the corresponding
parameters. Otherwise, the optimization continued in the search space. The process of
reservoir parameter selection is shown in Figure 9.
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Figure 9. The process of reservoir parameter selection based on the IGSA.

Firstly, the input time series was preprocessed, which included noise removal and
phase space reconstruction. The phase space reconstruction extended the time series into
high-dimensional space and fully revealed the hidden information. Secondly, reservoir
parameters were initialized, which included the input connection weight matrix, Win, the
reservoir connection weight matrix, W, and the leaky-ESN training model. Thirdly, the
reservoir parameter selection model was used to obtain the optimal parameters, which
included the leaking rate, a, the spectral radius, ρ, the input scaling factor, Sin, and the
leaky-ESN prediction model with the optimal parameters. Finally, the leaky-ESN prediction
model was used to predict the time series. The overall framework for time series prediction
in the leaky-ESN is shown in Figure 10.

Figure 10. The overall framework for time series prediction in the leaky-ESN.

4. Simulation and Analysis

In this paper, we documented how we tested the performance of the leaky-ESN that
was optimized by the IGSA using a time series prediction problem. The leaky-ESN that was
optimized by the IGSA was compared with the leaky-ESN that was optimized by a basic
GSA, the stochastic gradient descent (SGD) method, and the particle swarm optimization
(PSO) algorithm. All of these algorithms optimized the leaking rate, a, the spectral radius,
ρ, and the input scaling factor, Sin, of the reservoir parameters. In SGD, the learning rate,
LR, was 0.0002. In PSO, positive constants c1 and c2 were 0.5, and the inertia factor w = 0.8.
In the GSA and the IGSA, G0 was set to 100 and β = 20. For the following time series
prediction problems, the lengths of the training data and test data were both 10,000.
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4.1. The Sine Time Series

The time series were created by the following equation:

u(n) = sin(n) + sin(0.51n) + sin(0.22n) + sin(0.1002n) + sin(0.05343n). (20)

This is a sum of essentially incommensurate sines with periods ranging from approxi-
mately 6 to approximately 120 discrete time steps. The desired output was d(n) = u(n− 5),
indicating that this was a delay-5, short-term recall task. For SGD, the three groups of initial
values, X = [a, ρ, Sin], X1 = [0.33, 0.2, 0.3], X2 = [0.8, 0.2, 0.3], and X3 = [0.8, 0.66, 0.3] that
are given in reference [8], were used. For the IGSA, the GSA, and PSO, 50 initial individuals
were generated, respectively, under the condition of satisfying the echo state property. In
each model, the input connection weight matrix, Win, and the reservoir connection weight
matrix, W, remain unchanged after random generation, and the output feedback weight
matrix W f b = 0. Meanwhile, the three models had the same number of reservoir units.

Figure 11 shows the training NRMSE of four different leaky-ESNs optimized by the
IGSA, PSO, the SGD, and the GSA. It can be seen that all four algorithms had a good
optimization effect. The SGD had the fastest convergence rate, but its NRMSE was the
largest. The IGSA had a faster convergence rate than PSO and the GSA, and its NRMSE
was the smallest among the three algorithms. The predicted errors of the four algorithms
for the sine time series are shown in Figure 12. The prediction accuracy of the leaky-ESN
that was optimized by using the IGSA is shown in Figure 13. We found that the IGSA’s
predicted error was the smallest and the IGSA had a good prediction accuracy.

Figure 11. Training NRMSE for the sine time series.
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Figure 12. Predicted errors for the sine time series.

Figure 13. Predicted values for the sine time series.

4.2. The Mackey–Glass Chaotic Time Series

The Mackey–Glass time series is the standard data set in the research field of time
series, which has obvious nonlinear and nonstationary characteristics. Due to its chaotic
characteristics, it is difficult to predict accurately. The discrete-time form of the Mackey–
Glass chaotic time series is as follows:

x(n + 1) = x(n) +4T


αx(t−

τ

4T
)

1 + x(t−
τ

4T
)10

+ γx(n)

. (21)

In which, α = 0.2, τ = 17, γ = −0.1, and 4T = 1/10. The value τ denotes a delay
factor and when τ > 16.8 the time series (21) has a chaotic property. The initial values of the
SGD and the leaky-ESN parameters were the same as the sine time series. Simulation results
showed that the leaky-ESN that was optimized by the IGSA still showed good performance.
Figure 14 shows that the IGSA had a minor training NRMSE. From Figures 15 and 16, we
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found that the IGSA-optimized model had a smaller predicted error and could approximate
the real value well.

The above two simulation experiments showed that compared with the leaky-ESN
that was optimized by the SGD, PSO, and the GSA, the leaky-ESN that was optimized
by the IGSA had better prediction performance.

Figure 14. Training NRMSE for the MG time series.

Figure 15. Predicted errors for the MG time series.
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Figure 16. Predicted values for the MG time series.

5. Conclusions

The work in this paper applied the IGSA to a leaky-ESN to optimize the leaking rate,
the spectral radius, and the input scaling factor and improve the leaky-ESN’s prediction
accuracy. Modifying the velocity formula, using the optimal global agent and elite agents to
guide agents to move, gave the algorithm better global exploration and a faster convergence
rate. Meanwhile, the work proposed a differential mutation strategy, which made full
use of the combination of better agents and inferior agents, increasing the probability of
the better agents appearing, and enhancing the ability to escape from the local optimum.
The benchmark functions experiment showed that the IGSA could provide better final
results and a faster convergence rate. Finally, two numerical experiments showed that the
leaky-ESN that was optimized by the IGSA had better prediction accuracy.
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