
Citation: Alharbi, H.; Alshammari,

O.; Jerbi, H.; Simos, T.E.; Katsikis,

V.N.; Mourtas, S.D.; Sahas, R.D. A

Fresnel Cosine Integral WASD

Neural Network for the Classification

of Employee Attrition. Mathematics

2023, 11, 1506. https://doi.org/

10.3390/math11061506

Academic Editor: Georgios

Tsekouras

Received: 9 February 2023

Revised: 8 March 2023

Accepted: 13 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Fresnel Cosine Integral WASD Neural Network for the
Classification of Employee Attrition
Hadeel Alharbi 1, Obaid Alshammari 2 , Houssem Jerbi 3 , Theodore E. Simos 4,5,6,7,*, Vasilios N. Katsikis 8 ,
Spyridon D. Mourtas 8,9 and Romanos D. Sahas 8

1 Department of Information and Computer Science, College of Computer Science and Engineering,
University of Hail, Hail 2440, Saudi Arabia

2 Department of Electrical Engineering, College of Engineering, University of Hail, Hail 1234, Saudi Arabia
3 Department of Industrial Engineering, College of Engineering, University of Hail, Hail 2440, Saudi Arabia
4 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 40402, Taiwan
5 Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology,

Hawally 32093, Kuwait
6 Data Recovery Key Laboratory of Sichuan Province, Neijing Normal University, Neijiang 641100, China
7 Section of Mathematics, Department of Civil Engineering, Democritus University of Thrace,

67100 Xanthi, Greece
8 Department of Economics, Mathematics-Informatics and Statistics-Econometrics, National and Kapodistrian

University of Athens, Sofokleous 1 Street, 10559 Athens, Greece
9 Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”,

Siberian Federal University, Prosp. Svobodny 79, 660041 Krasnoyarsk, Russia
* Correspondence: simos@ulstu.ru

Abstract: Employee attrition, defined as the voluntary resignation of a subset of a company’s
workforce, represents a direct threat to the financial health and overall prosperity of a firm. From lost
reputation and sales to the undermining of the company’s long-term strategy and corporate secrets,
the effects of employee attrition are multidimensional and, in the absence of thorough planning, may
endanger the very existence of the firm. It is thus impeccable in today’s competitive environment that
a company acquires tools that enable timely prediction of employee attrition and thus leave room
either for retention campaigns or for the formulation of strategical maneuvers that will allow the
firm to undergo their replacement process with its economic activity left unscathed. To this end, a
weights and structure determination (WASD) neural network utilizing Fresnel cosine integrals in the
determination of its activation functions, termed FCI-WASD, is developed through a process of three
discrete stages. Those consist of populating the hidden layer with a sufficient number of neurons, fine-
tuning the obtained structure through a neuron trimming process, and finally, storing the necessary
portions of the network that will allow for its successful future recreation and application. Upon
testing the FCI-WASD on two publicly available employee attrition datasets and comparing its
performance to that of five popular and well-established classifiers, the vast majority of them coming
from MATLAB’s classification learner app, the FCI-WASD demonstrated superior performance with
the overall results suggesting that it is a competitive as well as reliable model that may be used with
confidence in the task of employee attrition classification.

Keywords: Fresnel integrals; neural networks; WASD; classification; employee attrition; MATLAB

MSC: 68T05

1. Introduction

In today’s highly competitive business environment where the reputation and overall
prosperity of a firm are constantly challenged by the ever-increasing workload as well as the
need to rise up to the customers’ demands which, due to the vast availability of supply and

Mathematics 2023, 11, 1506. https://doi.org/10.3390/math11061506 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061506
https://doi.org/10.3390/math11061506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2236-1355
https://orcid.org/0000-0003-1816-3767
https://orcid.org/0000-0002-8208-9656
https://orcid.org/0000-0002-8299-9916
https://orcid.org/0009-0001-4888-9633
https://doi.org/10.3390/math11061506
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061506?type=check_update&version=1

Mathematics 2023, 11, 1506 2 of 17

information, become more delicate by the year, the firm’s workforce, undoubtedly an asset
and arguably the only sustainable competitive advantage that a firm possesses, represents
one of the key pillars that is capable of supporting and promoting the long term growth
and profitability of the organization [1,2]. From recruitment and training to integration and
development, acquiring and maintaining an employee is both a time-consuming as well
as a cost-inducing process [3]. The costs associated with the acquisition and development
of new staff are both direct and indirect and may range anywhere from a third to three
times the annual salary of the position, especially when it comes to managerial or highly
sophisticated/technical positions [2,4].

Employee attrition or turnover, as it is often called, refers to a subset of a company’s
workforce leaving the firm voluntarily, potentially with the intention of joining a competing
firm [2,3]. When that subset includes highly capable and productive individuals, the event
of attrition is often referred to as “dysfunctional” attrition or turnover and it represents a
major hit to the financial health of the firm as it not only sustains the total loss of all resources
that have been thus far allocated on the acquisition and development of lost staff but also
suffers from a gap in its workforce [2,5]. Aside from the aforementioned foregone expenses,
employee attrition may bring about numerous other detrimental effects that comprise a
threat to the firm’s future prosperity. Namely, following major incidents of dysfunctional
turnover the firm experiences a short (mid) term loss in productivity which compromises
ongoing projects, “long-term growth strategies”, as well as the company’s ability to deliver
quality services in time [1,5]. As a result, customer loyalty deteriorates, the firm loses
both reputation and sales and the morale, as well as productivity of the remaining staff,
takes a downhill path as it is faced with increased workload and customer complaints [2,5].
Furthermore, it is argued that employee attrition obscures the development of future
employees as well as the formulation of a workforce that will share a common set of
“service values and norms” [2]. One may also add that dysfunctional turnover lowers
the overall expertise within the firm and thus hinders the company from reaching its full
potential. Last but not least, attrition of employees that formerly held key positions within
the company may undermine the firm’s future in the market as confidential information,
such as corporate secrets and practices, is likely to be leaked to its competitors [4,6]. All
things considered, predicting in advance whether certain highly valuable employees are
about to attrite leaves the firm enough room to either try to persuade them to stay or, if
unsuccessful, adjust its planning and strategy so that it may go through its replacement
process whilst sustaining as little damage as possible.

Thanks to the unprecedented advances in technology and computation, such and
many other tasks that involve the training of models in view of making a prediction on the
future based on available past data, may be undertaken through the use of modern Artificial
Intelligence tools. Artificial neural networks have seen enormous application in a diverse
range of fields, especially when it comes to modeling highly complex patterns [7]. Namely,
some applications in finance, economics and business include portfolio selection [8–11],
portfolio optimization [7,12], diversification [13] and insurance [14], stabilization of stochas-
tic exchange rate dynamics [15] and prediction of various macroeconomic measures [16].
There are also applications in applied mathematics problems such as in pseudo-inversion of
arbitrary time-varying matrices [17–23] and the stabilization of dynamical systems [24,25]
as well as in a vast range of engineering problems including but not limited to materials
science engineering [26], robotics [27–29] etc.

The main objective of this paper is to address the issue of employee attrition by means
of machine learning techniques, namely by developing a feed-forward neural network that
will allow for the accurate classification of employee turnover. As the previous analysis
suggests, a firm that successfully classifies its soon-to-leave employees has the chance to
either prevent attrition altogether or adjust its planning and strategy so that its operational
activity does not suffer in the event of them leaving the company. Previous attempts at
the problem include the use of various popular classification models, such as random
forests, decision trees, boosting, support vector machines, logistic regression, K-nearest

Mathematics 2023, 11, 1506 3 of 17

neighbors, naïve Bayes and artificial neural networks [1,5,6]. Furthermore, deep neural
networks, trained through the Adam optimizer and a modified genetic algorithm, have
been applied to the same problem in [2,3], respectively. Back-propagation algorithms,
despite some of their inherent drawbacks, have been one of the most popular methods
when it comes to training a feed-forward neural network. Such algorithms are known to be
computationally intensive and often unreliable as in the process of minimizing the training
error of the network, there is a high risk of converging to a non-optimal solution, that is, a
local rather than global minimum. On the other hand, weights and structure determination
(WASD) algorithms allow for the direct determination of the optimal set of weights that
minimizes the network’s training error, thus opening the way for the determination of an
optimal overall structure, by means of iteration, in a context of much lower computational
complexity and higher training speed [30,31]. Previous work regarding the use of WASD
neural networks in classification problems includes their application on breast-cancer
prediction, the classification of firm-fraud as well as loan approval in [32,33], respectively.
This paper represents the first attempt at applying WASD neural networks to the problem
of employee attrition classification. We shall thus construct a 3-layer feed-forward multi-
input WASD neural network whose activation functions are determined as products of
Fresnel cosine integrals that are raised to specifically chosen powers. The model differs
from previous WASD classifiers both in terms of the activation function employed as well
as in terms of certain key features of the underlying algorithms that handle its training,
which is briefly mentioned in the major points of this paper and are further discussed in the
following sections. An existing limitation of the previous as well as of the current WASD
model is that it may only handle numerical input. Thus, some time has to be put aside
to perform extensive preprocessing on nonnumerical datasets. The FCI-WASD, which is
the abbreviation that we shall use when referring to the Fresnel cosine integral WASD
neural network, is applied to two publicly available employee attrition datasets and its
performance is compared to an already established WASD neural network as well as to
four popular classification models coming from MATLAB’s classification learner app. The
results we obtain suggest that the FCI-WASD is a powerful classifier as its performance is
superior to that of the other five classification models.

The key points of this research are summarized below:

• A 3-layer feed-forward FCI-WASD classification neural network is developed and the
algorithms that handle its training and application are presented in detail.

• A detailed account is given regarding special features of the neural network, such as
the implementation of a structure trimming technique as well as the incorporation of
lexicographically ordered power tables in the determination of the neural network’s
activation functions

• Techniques such as memoization and divide and conquer are applied to various parts
of the training and testing procedure in order to speed up execution time.

• The FCI-WASD is applied to two publicly available, highly imbalanced datasets, which
we bring into operational form by means of extensive preprocessing and undersampling.

• The performance of the FCI-WASD is compared to an already established WASD
neural network as well as other well-performing, popular methods, such as a decision
tree (Coarse Tree), a kernel naive Bayes model (KNB), logistic regression (LR) and a
linear support vector machine (Linear SVM).

The remainder of the paper’s layout comprises of Sections 2–4. Section 2 introduces
the FCI-WASD model as well as the details of its construction and lays out the relevant
algorithms. Section 3 conducts a thorough preprocessing of the two datasets and proceeds
with comments regarding the application of the FCI-WASD on each one of the two. It
then moves on to compare the performance of the neural network to that of the other five
classifiers. The section ends with an element of statistical analysis which puts the previous
results into the firmer ground. Finally, Section 4 contains concluding remarks and points to
directions for future research.

Mathematics 2023, 11, 1506 4 of 17

2. The FCI-WASD Classification Neural Network

In this section, we shall present the main components on which the structuring of
the FCI-WASD is based. Specifically, we shall present the methods by which the neural
network’s activations, hidden layer and optimal weights are determined. The FCI-WASD
is a multi-input, 3-layer feed-forward neural network, whose final structure resembles that
of Figure 1.

x1

x2

xk

1

Input layer

Hidden layer

Output layer

ỹ

1

1

w1

w2

wK

F1(x)

F2(x)

FK(x)

b(ŷ)

Figure 1. Overview of the final structure of the FCI-WASD.

Inline with Figure 1, suppose that a classification dataset x comprises of k features,
where xj ∈ Rm, j = 1, 2, . . . , k denotes the jth column of x. All feature columns are passed
onto the hidden layer with a weight of 1. The neural network develops a hidden layer of
K ∈ N neurons, where each neuron i = 1, 2, . . . , K represents the image of the input matrix
x =

[
x1, x2, . . . , xk

]
under the activation function Fi. Given a response column y ∈ Rm

which acts as a benchmark, the weights direct determination (WDD) process, the defining
feature of any WASD algorithm, assigns to each neuron i a corresponding weight wi. The
weighted combination of all K neurons produces a column vector ŷ ∈ N which is then
mapped to a binary vector ỹ, the neural network’s final prediction. The conversion of ŷ to ỹ
is done through an elementwise operator b:

ỹi = bi(ŷ) =

{
1, ŷi ≥ t̃
0, ŷi < t̃

, i = 1, 2, . . . , m (1)

where, given a threshold t ∈ [0, 1], t̃ is defined as t̃ = min ŷ + t(max ŷ−min ŷ). Should the
threshold t be picked close to 1, then only those entries of ŷ that are proportionally close to
max ŷ are mapped to 1, with the opposite applying if we choose t to be on the lower end.

2.1. Fresnel Cosine Integral Activation Functions, Power Tables and the WDD Process

The WDD process, which is responsible for directly determining the optimal set of
weights given a fixed number of neurons, opens the way for the simultaneous determination
of the optimal overall structure, that is, the optimal number of neurons, whilst providing
certainty that the obtained weights are indeed optimal. Thus, it successfully overcomes
two of the key drawbacks of traditional BP methods, namely iterative as well as uncertain
determination of the optimal weights and inability to obtain the optimal structure in a
deterministic fashion [30,31].

With the determination of weights being safely handled, successfully encapturing the
underlying relationship between an input matrix x and a target output y is now a question
of developing a large enough structure that is coupled with appropriately chosen activation
functions. When it comes to WASD neural networks, the choice of activation functions
greatly impacts how the training process will unfold and, ultimately, how well the neural

Mathematics 2023, 11, 1506 5 of 17

network will perform. Namely, being that ŷ, prior to being converted to binary, is simply
a weighted (linear) combination of K vectors where each vector is the image of the same
input matrix x under an activation function Fi, there is a pressing need for those vectors to
be linearly independent, else the neural network would not achieve much progress. As a
result, in order to assert that the vectors comprising the weighted combination are linearly
independent, it has been common practice to resort to power-based activation functions. For
example, a number of polynomial activation functions, such as Euler, Bernoulli, Laguerre,
Chebyshev, etc. were proposed in [31] whereas power-based activations such as the power,
power sigmoid, power softplus, and power inverse exponential were proposed in [33].

When transitioning from single to multi-input WASD neural networks, the activation
function Fi corresponding to a given neuron no longer matches the initial function of choice
raised to some power but is rather determined in a way that involves that function as
a building block. In this paper, we shall investigate the implementation of the power
Fresnel cosine integral as a sub-activation, that is to say, a building block for the neural
network’s activation functions. The power Fresnel cosine integral is the Fresnel cosine
integral, usually denoted by C(x), raised to some power n ∈ N:

Cn(x) = (C(x))n = (
∫ x

0
cos (

πt2

2
)dt)n (2)

Note that MATLAB’s Symbolic Math Toolbox has a built-in solution for calculating
C(x), namely, the fresnelc function. In Mathematica this is done through the FresnelC
function and in Python this is implemented under scipy.special.fresnel, as part of the
SciPy library. Raising the output of that function to some power is then straight-forward.
As for the ability of the neural network to converge, one should take into cosnideration the
following Definition 1, Theorem 1 and Proposition 1 from [31].

Definition 1. Let f (x1, x2, . . . , xk) be a function of k variables. The polynomials

B f
n1n2···nk (x1, x2, . . . , xk) =

n1

∑
ν1=0
· · ·

nk

∑
νk=0

f (
ν1

n1
, · · · ,

νk
nk

)
k

∏
q=1

C
νq
nq x

νq
q (1− xq)

nq−νq

are called multivariate Bernstein polynomials of f (x1, x2, . . . , xk), where C
νq
nq denotes a binomial

coefficient with nq = n1, n2, . . . , nk and νq = 0, 1, . . . , nq.

Theorem 1. Let f (x1, x2, . . . , xk) be a continuous function defined over Vk = {(x1, x2, . . . , xk) ∈
Rk|0 ≤ xq ≤ 1, q = 1, 2, . . . , k}. Then the multivariate Bernstein polynomials

B f
n1n2···nk (x1, x2, . . . , xk) converge uniformly to f (x1, x2, . . . , xk) as n1, n2, . . . , nk → ∞.

Proposition 1. With a form of products of trigonometric power-based functions Cn employed, we
can construct a generalized trigonometric polynomial

Fi(x) = Fi(x1, x2, . . . , xk) = Cni1(x1)Cni2(x2) · · ·Cnik (xk) =
k

∏
j=1

Cnij(xj),

for i = 1, 2, . . . , K.

Proposition 1 lays the foundation for determining the activation function correspond-
ing to the ith neuron. Thus, Fi(x), or the image of the input matrix x under the ith activation,
will comprise of the product of the images of the individual columns xj under Fresnel
cosine integrals that are raised to integer powers nij, with i = 1, 2, . . . , K and j = 1, 2, . . . , k.
One now has to determine valid integers to be assigned to each nij so that the neural
network is able to function properly. In our experience, this assignment pattern has to be
treated carefully as it can make or break a multi-input WASD neural network.

Mathematics 2023, 11, 1506 6 of 17

Suppose that we are dealing with a problem of k variables so that the input matrix x
consists of k columns. In [31], it is suggested that the integers corresponding to the powers
nij should be drawn from a lexicographically ordered power table, that is, a predetermined
r× k matrix Nk, with entries from N∪ {0}, whose rows follow a certain ordering. To each
neuron i = 1, 2, . . . K will correspond a row in Nk and to each variable xj, j = 1, 2, . . . , k,
a column of powers in Nk. On that note, we shall write nij = Nk(i, j). Notice that the
number r of rows is usually greater than or equal to the final number of neurons K, as the
former represents the initial target number of neurons that we wish for the neural network
to accumulate and the latter corresponds to the optimal number of neurons to which the
neural network settles by the end of the training process. This shall be further discussed in
a later section. Finally, it should also be noted that the structuring of Nk depends to some
extent on the number of variables k, hence the subscript.

When it comes to single-input problems, constructing the table is straight-forward.
Namely, N1 is a r× 1 vector with N1(i) = i− 1, i = 1, 2, . . . , r. However, when it comes
to problems of k > 1 variables, an attempt to extend that simplistic pattern, say to
N(i, j) = i− 1 for all j = 1, 2, . . . , k, would not do much for the network’s performance,
as we can testify from experience. First things first, in accordance with the graded lex-
icographic ordering, as discussed in [31], a row N(β)

k =
[
nβ1, nβ2, . . . , nβk

]
of Nk takes

precedence over a different row N(α)
k =

[
nα1, nα2, . . . , nαk

]
if either of the following condi-

tions is satisfied:

C.I: ∑k
j=1 nαj > ∑k

j=1 nβj;

C.II: ∑k
j=1 nαj = ∑k

j=1 nβj and the first nonzero entry of N(α)
k − N(β)

k is positive.

On determining the actual entries of Nk, ref. [31] provides a few samples for Nk when
k ∈ {1, 2, 3, 4}. Due to the absence of further instructions, we have composed Algorithm 1,
a heuristic algorithm, which aims at constructing Nk for an arbitrary k ∈ N. In terms of
notation, we shall denote by σ the sum of the elements of a row of Nk and by Σ an upper
bound for σ. It is perhaps best that a few samples are given prior to the description of the
algorithm thus, for the sake of illustration, let us set Σ = 2. Then, the following are the first
five power tables:

N1 =

[
0
1
2

]
, N2 =

0 0
0 1
1 0
0 2
1 1
2 0

, N3 =

0 0 0
0 0 1
0 1 0
1 0 0
0 0 2
0 1 1
0 2 0
1 0 1
1 1 0
2 0 0

, N4 =

0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 2
0 0 1 1
0 0 2 0
0 1 0 1
0 1 1 0
0 2 0 0
1 0 0 1
1 0 1 0
1 1 0 0
2 0 0 0

, N5 =

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 2
0 0 0 1 1
0 0 0 2 0
0 0 1 0 1
0 0 1 1 0
0 0 2 0 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 2 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
2 0 0 0 0

.

Due to condition C.I of the graded lexicographic ordering rule, the rows of Nk are
sorted in ascending order according to the sum of their elements, that is, their σ. As a
result, rows that share a common σ are grouped together into σ-blocks, with the ordering
within a given σ-block being defined by condition C.II. The heuristic element has to do
with the contents of a given σ-block. Drawing from the samples in [31], which comprise of
the previously given tables N1, N2, N3 and N4, it is perhaps not unreasonable to guess that a
σ-block of Nk will consist of all unique k-tuples, with entries from N∪ {0}, whose elements
sum to σ. On generating those tuples, we start from the k-tuple

[
σ, 0, . . . , 0

]
, which is an

Mathematics 2023, 11, 1506 7 of 17

obvious candidate for any σ-block. Then we move to the vectors whose elements describe a
unique integer partition for σ. For example,

[
3, 0, . . . , 0

]
is an obvious candidate for a block

of σ = 3 and
[
2, 1, 0, . . . , 0

]
,
[
1, 1, 1, 0, . . . , 0

]
are the two unique integer partitions of 3 in

vector form. The block will then consist of all unique permutations of those three vectors.
On a similar note, starting from an empty table Nk and incrementing σ from 0 to some
upper bound Σ whilst concatenating the resulting σ-blocks to the bottom of Nk, will yield
as many rows of Nk as we please so far as we choose Σ to be large enough. Although that is
the original idea, we may take it a step further so that we do not ever have to worry about
choosing a valid Σ. Namely, we simply increment σ whilst keeping track of the number of
rows in Nk. We may stop as soon as the number r of rows in Nk has surpassed a minimum
threshold, rmin. The aforementioned process gives rise to Algorithm 1, which handles the
task of the power table generation.

Algorithm 1 Creation of Power Tables

Require: minimum number of rows rmin, number of inputs k
1: if k == 1 then
2: set Nk =

[
0, 1, 2, . . . , r− 1

]T

3: else
4: initialize Nk as an empty matrix and set σ = −1
5: while number of rows in Nk < rmin do
6: increment σ by 1
7: set Ntemp to be an empty matrix
8: compute the m unique integer partitions of σ consisting of k integers ≥ 0.
9: for i = 1 to m do

10: compute, as rows, the unique permutations of each integer partition
11: concatenate the resulting permutations to the bottom of Ntemp
12: end for
13: sort Ntemp by C.II of the graded lexicographic order and concatenate it to the

bottom of Nk
14: end while
15: end if
Ensure: Nk

The final crucial element which determines the success of the neural network is the
WDD process, undoubtedly the single defining feature of WASD training algorithms.
Letting F =

[
F1(x), F2(x), . . . , FK(x)

]
, where Fi(x), i = 1, 2, . . . , K, is the image of the in-

put matrix x under the ith activation and also the ith column of the activation matrix
F, determining the optimal weights w1, w2, . . . , wK that connect the hidden to the out-
put layer is equivalent to finding the optimal vector w =

[
w1, w2, . . . , wK

]T such that
w1F1(x) + w2F2(x) + · · ·+ wKFK(x) = Fw = ŷ is, in a least-squares sense, as close to the
response column y as possible. By the WDD process [30], we have that:

w = F†y, (3)

where F† denotes the pseudo-inverse of F.

2.2. The WASD Training Algorithm of the FCI-WASD

WASD training algorithms aim at simultaneously handling both the determination of
the optimal overall structure as well as the optimal set of weights corresponding to that
structure. For any given size that we may consider for the hidden layer, the latter part of
the problem is readily dealt with by use of the WDD process, as in Equation (3). Thus, all
things considered, it is only necessary to formulate a strategy as to how the neural network
will decide on an optimal number of hidden layer neurons.

It is worth noting that, contrary to weights determination, which is very specific, this
part of the problem offers itself for improvisation and may be tackled through various

Mathematics 2023, 11, 1506 8 of 17

approaches. Following are a few natural considerations which will directly influence the
training path. Namely, one may ask:

1. Which metric to use so as to keep track of training progress?
2. How frequently will the training progress be monitored?
3. What will the stopping criterion consist of?
4. Will the network’s final structure retain all accumulated neurons?
5. If not, then when and under which conditions should the neural network opt to

discard neurons?

All things considered, making an educated decision is a process of trial and error
which may depend on the type of the problem (be it regression or classification), on how
much one wishes to prioritize performance over speed and vice versa, as well as on the
dataset itself. Although it is hard to argue optimality in this context, we have settled on an
approach which seems to favour classification performance. Namely, regarding question 1,
the metric of choice is

MAE =
1
m

m

∑
i=1
|ỹi − yi|, (4)

where ỹ is the prediction of the neural network converted to binary, as in Equation (1). As
far as considerations 2–4 are concerned, on incorporating the metric in the training process,
a common approach is to iteratively increase the size of the hidden layer whilst updating
the training metric. Then, newly added neurons are kept so far as they contribute to an
increase in the neural network’s marginal performance. Finally, upon a predetermined
number of iterations were no neurons were kept, the training process would come to an end.
We have however abstained from such a practice as it not only adds a time toll due to F†

being re-computed in each iteration but also because, in the context of MAE, this approach
leads to the neural network accumulating a disproportionately small number of neurons,
thus hindering its generalization ability. Last but not least, regarding consideration 5, we
instead opt to develop the hidden layer up to a predetermined number of neurons and
only then trim non-necessary neurons. Therefore, evaluation of the network’s MAE will
start taking place only on the latter half of the training process.

The Step by Step Process Cycle of Constructing and Employing the FCI-WASD

Step 1:The first step of the process, which consists of growing the hidden layer up
to a given size, is handled by Algorithm 2. The algorithm inevitably includes substantial
MATLAB functionality and notation [34]. It bears mentioning that, due to the nature of the
power table Nk where along any column j = 1, 2, . . . , k one stumbles upon many repetitions
of a given power nij, computation of some Cnij(xj), as in Proposition 1, that has already
been computed comes up very often. Thus, caching previously computed results, that
is, employing memoization, will pay off handsomely in cutting down the total running
time as most of the components of each Fi(x) will be readily available and expensive
computations will be kept to a minimum. This will also greatly offset the computational
burden that the evaluation of Fresnel integrals entails, as opposed to the evaluation of a
simpler function. We implement the memo as a 3D matrix. Namely, to each one of the k
columns of x corresponds a m× (Σ + 1) matrix whose rows match the number of samples
in x. Being that Σ, as discussed previously, is an upper bound for the σ and thus the power
that may come up in a given power table Nk, we allocate Σ + 1 columns to account for all
those powers, including the power 0. Upon computation of some Cnij(xj), the resulting
output will be stored in the nij + 1 column of the jth matrix. Collectively, those matrices
form a m× (Σ + 1)× k matrix, the memo. With the goal being to compute the activation
matrix F that is associated with a target number of neurons, we do that column by column,
as in Proposition 1, whilst utilizing the memo to accelerate the whole process. The full
implementation is presented in Algorithm 2.

Mathematics 2023, 11, 1506 9 of 17

Algorithm 2 Constructing the activation matrix F

Require: The matrix of inputs x, the power table Nk
1: procedure ACTIVATIONMATRIX(x, Nk)
2: set m, k the number of rows and columns, respectively, in x
3: set r the number of rows in Nk and set Σ = sum(Nk(r, :))
4: initialize the memo M as an m× (Σ + 1)× k NaN array
5: set F = zeros(m, r)
6: for i = 1 to r do
7: set f = zeros(m, k)
8: for j = 1 to k do
9: set n = Nk(i, j)

10: if sum(isnan(M(:, k + 1, j))) == m then
11: set M(:, k + 1, j) = Cn(x(:, j)), as in Equation (2)
12: end if
13: set f (:, j) = M(:, k + 1, j)
14: end for
15: set F(:, i) = prod(f ,2)
16: end for
17: end procedure
Ensure: The matrix F

Step 2: The second step of the network building process comprises of fine tuning the
structure that has been obtained from the previous stage. Namely, following the successful
computation of the activation matrix F, the hidden layer of the neural network has now
acquired sufficient size. At this point, we go through a trimming process in order to locate
and drop those neurons that are no longer essential to the network’s performance. Namely,
the neurons comprising the hidden layer are taken out one by one and the neural network’s
MAE is computed. If at a given iteration this has resulted in a lower overall MAE, then
the neuron in question is permanently removed from the hidden layer. In the end, we
will have acquired the indices of only the bare essential neurons and thus, coupled with
the optimal set of weights obtained from Equation (3), we will have settled on an optimal
overall structure. The aforementioned process is handled by Algorithm 3, which again
includes some MATLAB functionality [34].

This concludes the weights and structure determination for the FCI-WASD. At the end
of the process we will have acquired an optimal set of weights wbest and a K element vector
P, K ≤ r, that contains the positions of the remaining neurons. The final training error emin
is the MAE associated with the given input matrix x which, along with the response column
y, has served in the training of the neural network. The flowchart in Figure 2 presents the
WASD algorithm, which follows the procedures of steps 1 and 2 and is responsible for the
whole training process of the FCI-WASD.

Mathematics 2023, 11, 1506 10 of 17

Algorithm 3 Hidden layer trimming process

Require: The activation matrix F, the response vector y and a threshold t ∈ [0, 1]
1: wbest = F†y
2: ỹ = b(Fw) given t, as in Equation (1)
3: emin = 1

m ∑m
j=1 |ỹj − yj|

4: set r the number of columns in F
5: P =

[
1, 2, . . . , r

]
6: for i = 1 to r do
7: kept =

[
1, . . . , i− 1, i + 1, . . . , r

]
8: f = F(:,kept)
9: w = f †y

10: ỹ = b(f w)
11: e = 1

m ∑m
j=1 |ỹj − yj|

12: if emin > e then
13: emin = e
14: wbest = w
15: P = kept
16: end if
17: end for
Ensure: The optimal weights vector wbest, the final training MAE, emin and the vector P

containing the indices/positions of the essential neurons.

Step 3: The third and last step of the overall process cycle consists of employing
the FCI-WASD so as to acquire predictions. Given new unseen data xtest, recreation and
application of the FCI-WASD requires only that we have saved the weights vector wbest
and the index vector P. The testing workflow is depicted in the flowchart of Figure 3 and
comprises of loading the rows of the power table Nk corresponding to the indices in P and
calling Algorithm 2 to compute the activation matrix F. Obtaining the prediction of the
neural network will then consist of computing ŷ = Fwbest and subsequently converting the
output to the binary vector ỹ through Equation (1).

Input: x, y, r, t

Load the first r rows of the appropriate power table Nk

Call Algorithm 2 with inputs x, Nk to obtain the activation matrix F

Call Algorithm 3 with inputs F, y, t to compute wbest, emin and P

Output: wbest, emin and P

Figure 2. Flowchart for the training process of the FCI-WASD: The WASD algorithm.

Mathematics 2023, 11, 1506 11 of 17

Input: xtest, wbest, P, t

Load the rows of Nk whose index is in P

Call Algorithm 2 with inputs xtest, Nk

to obtain the activation of matrix F

Compute ỹ = b(Fwbest), given t

Output: ỹ

Figure 3. Flowchart for the testing process of the FCI-WASD.

3. Applications on Employee Attrition Classification

In this section, the FCI-WASD is tested on two publicly available employee attrition
datasets, which we shall refer to as EA.I and EA.II, respectively, and its performance is
compared to that of five other classifiers—a different WASD neural network employing
Chebyshev polynomials as activations and four well established models coming from
MATLAB’s classification learner app. Both WASD neural networks were trained up to 100
neurons and their input was standardized by a z-score transform to a mean of 0 and a
standard deviation of 1. Furthermore, the threshold parameter t was set, in both datasets,
to 0.5 for both models. As for the MATLAB classifiers, we went with the default settings
that are associated with each model through the classification learner app.

3.1. Employee Attrition Dataset I: Description and Preprocessing and Results of the FCI-WASD

The first dataset, available at [35], consists of 14,999 rows and 10 columns. It comes
in near operational form as, except for the class imbalance in the response column, there
are no missing values and most columns, except for columns 9 and 10 referring to the
department and the salary status of each employee, are already numeric. In column 9 there
are 10 unique departments listed like IT, accounting, HR, marketing, management, etc.
On the other hand, column 10 lists 3 unique salary categories, namely high, medium and
low. On converting all of these categories to meaningful numbers, we have resorted to
the following approach for each of the two columns: For each category, we have counted
the number of times that corresponding samples were mapped to employee attrition. We
then normalized those counts to the interval [−1, 1], with categories showing higher counts
being mapped closer to 1 and vice versa. Finally, those values were substituted back
into the dataset. As was mentioned previously, the response column is imbalanced as it
contains 76.19% negative instances referring to non-attrited employees and only 23.81%
positive instances. On dealing with the class imbalance, we have employed a simple form

Mathematics 2023, 11, 1506 12 of 17

of undersampling. We randomly sampled 7857 indices from 1 to 14,999 and dropped the
corresponding rows. This resulted in a dataset with a 50-50 balance between attrited and
non-attrited employees. Last but not least, the dataset was partitioned into a stratified
80–20% training and testing, respectively, split.

In Figure 4, the neural network’s training iterations Figure 4a, classification training
Figure 4b and testing results Figure 4c are graphically presented. Given a target number of
neurons (100), the first 100 iterations of Figure 4a correspond to the development of the
activation matrix F, as in Algorithm 2, whereas the next 100 iterations refer to the hidden
layer going through a trimming process, as in Algorithm 3. The training path taking a turn
after the 100th iteration is a visual presentation of the neural network locating and dropping
redundant neurons. Generally, the steepest the turn, the higher the number of neurons that
are dropped during the trimming process whereas a down-sloping path connecting the
starting and ending corners of the graph would imply that all accumulated neurons were
kept. Last but not least, in terms of the training set, for attited and non-attrited employees
alike, the FCI-WASD correctly classifies 2618 out of 2857 or 91.63% of samples and 2612
out of 2857 or 91.42% of samples, whereas in the testing set those percentages evaluate to
644 out of 714 or 90.19% and 649 out of 714 or 90.89% of samples, respectively. Thus, the
FCI-WASD performs equally well as it correctly classifies the vast majority of instances of
either category.

(a)

2857
2618

239

2857
2612

245

Attrited Employee Non-Attrited Employee

Classification

0

1000

2000

3000

4000

T
ra

in
in

g
 S

a
m

p
le

s

Actual Clasiffication

Correct Predictions

Incorrect Predictions

(b)

714
644

70

714
649

65

Attrited Employee Non-Attrited Employee

Classification

0

200

400

600

800

1000

1200

T
e

s
ti
n

g
 S

a
m

p
le

s

Actual Clasiffication

Correct Predictions

Incorrect Predictions

(c)

Figure 4. Training iterations and classification results of the FCI-WASD on EA.I. (a) EA.I: Training
iterations; (b) EA.I: Training results; (c) EA.I: Testing results.

3.2. Employee Attrition Dataset II: Description, Preprocessing and Results of the FCI-WASD

The second dataset, available at [36], is significantly larger as it consists of 23,436 rows
and 37 columns. However, 4 columns (columns 9, 10, 11, 23 and 28) with corresponding
tags ‘EmployeeCount’, ‘EmployeeNumber’, ‘ApplicationID’, ‘Over18’, ’StandardHours’,
were removed either because they displayed 0 variance (for example, ‘Over18’ was an
array of straight 1s) or because they did not represent a valid predictor variable (for
example, the ApplicationID column contains no useful information). Additionally, about
200 rows containing missing values were dropped along with 2 additional rows which
contained an entry marked as ‘Test’. Other than that, the dataset requires some work
to be brough into operational form. First things first, columns 2, 13 and 24 with tags
‘Attrition’ (the response column), ‘Gender’ and ‘OverTime’ were converted to binary, with
1s being assigned to resigned employees, to female employees (so as to account for the
possibility of maternity leave) and to employees working overtime. Next, columns 3
(‘Business Travel’), 5 (‘Department’), 8 (‘EducationField’), 17 (‘JobRole’), 19 (‘MaritalStatus’)
and 37 (‘EmployeeSource’) were converted to numeric in an identical manner to that
described for columns 9 and 10 of the previous dataset. Finally, with only 3672 (or 15.83%
of) samples corresponding to employees that resigned voluntarily, we randomly sampled
and dropped enough indices so as to attain an even distribution between attrited and
non-attrited employees. Again, for the purposes of training and testing, we resorted to a
80–20% stratified split.

Mathematics 2023, 11, 1506 13 of 17

In the same spirit with the previous example, Figure 5 contains a visual presentation
of the neural network’s training iterations Figure 5a, as well as graphs of its performance in
classifying employee attrition in the training Figure 5b and testing set Figure 5c, respectively.
In this dataset the performance of the FCI-WASD is less satisfactory as the portion of
misclassified samples has increased. Specifically, in the training set the neural network
correctly classifies 2051 out of 2937, or 69.83% of attrited employees and 2075 out of 2937,
or 70.65% of non-attrited employees. When it comes to the testing set, the respective
percentages evaluate to 487 out of 734 and 555 out of 734, that is, 66.34% and 75.61%,
respectively. Nevertheless, all the other models show the same tendency when applied
to EA.II, therefore it may be that the underlying reasons for this shortcoming are dataset
specific rather than model specific.

(a)

2937

2051

886

2937

2075

862

Attrited Employee Non-Attrited Employee

Classification

0

1000

2000

3000

4000

T
ra

in
in

g
 S

a
m

p
le

s

Actual Clasiffication

Correct Predictions

Incorrect Predictions

(b)

734

487

247

734

555

179

Attrited Employee Non-Attrited Employee

Classification

0

200

400

600

800

1000

1200

T
e

s
ti
n

g
 S

a
m

p
le

s

Actual Clasiffication

Correct Predictions

Incorrect Predictions

(c)

Figure 5. Training iterations and classification results of the FCI-WASD on EA.II. (a) EA.II: Training
iterations; (b) EA.II: Training results; (c) EA.II: Testing results.

3.3. Collective Results, Model Comparison and Statistical Tests

Following, Table 1 collectively depicts the individual performance of each model, as
evaluated by means of nine metrics on the testing set of each of the two datasets. Four
of those metrics, namely True Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN) serve as building blocks for determining the other five key metrics.
On comparing the classifiers we shall only discuss their performance in terms of the latter.
All things considered, the FCI-WASD has outperformed the other competing models as it
scores the highest in 4 out of 5 and 3 out of 5 metrics in EA.I and EA.II, respectively. Namely,
in EA.I it scores the lowest MAE (9.45%) as well as the highest Recall (90.26%), Accuracy
(90.54%) and F-measure (90.57%). In terms of precision it scores 90.89% and thus comes
second after the Coarse Tree and the Chebyshev WASD which scored 94.25% and 94.11%,
respectively. As far as EA.II is concerned, all classifiers suffer a drop in performance but
nevertheless the FCI-WASD again scores the lowest MAE (29.01%), the highest Accuracy
(70.98%) and the highest F-measure (72.26%). The Chebyshev WASD achieves the highest
precision (83.51%) over the FCI-WASD which scores 75.61% and comes second on that
metric. Last but not least, in the Recall department the KNB, Linear SVM and LR score the
three highest scores which evaluate to 72.48%, 70.84% and 70.19%, respectively.

Mathematics 2023, 11, 1506 14 of 17

Table 1. Collective results of all models on the testing set of each dataset.

Model FCI-WASD Chebyshev WASD Coarse Tree

Dataset EA.I EA.II EA.I EA.II EA.I EA.II

MAE 0.09453 0.29019 0.12255 0.33038 0.11415 0.34401
TP 0.90896 0.75613 0.94118 0.83515 0.94258 0.67302
FP 0.09103 0.24387 0.05882 0.16485 0.05742 0.32698
TN 0.90196 0.66349 0.81373 0.50409 0.82913 0.63896
FN 0.09803 0.33651 0.18627 0.49591 0.17087 0.36104
Precision 0.90896 0.75613 0.94118 0.83515 0.94258 0.67302
Recall 0.90264 0.69202 0.83478 0.62743 0.84654 0.65086
Accuracy 0.90546 0.70981 0.87745 0.66962 0.88585 0.65599
F-measure 0.90579 0.72266 0.88479 0.71654 0.89198 0.66175

Model KNB LR Linear SVM

Dataset EA.I EA.II EA.I EA.II EA.I EA.II

MAE 0.14426 0.32629 0.23459 0.30245 0.21499 0.29837
TP 0.81373 0.55995 0.80392 0.68665 0.87395 0.68529
FP 0.18627 0.44005 0.19608 0.31335 0.12605 0.31471
TN 0.89776 0.78747 0.72689 0.70845 0.69608 0.71798
FN 0.10224 0.21253 0.27311 0.29155 0.30392 0.28202
Precision 0.81373 0.55995 0.80392 0.68665 0.87395 0.68529
Recall 0.88838 0.72487 0.74642 0.70195 0.74197 0.70845
Accuracy 0.85574 0.67371 0.76541 0.69755 0.78501 0.70163
F-measure 0.84942 0.63182 0.77411 0.69421 0.80257 0.69668

In order to put these results into firmer ground, a statistical component, in the form of
a mid p-value McNemar test [37], is added to the analysis. Namely, through a McNemar
test one may be able to draw conclusions as to whether the predictive performances of
two models, as measured by Accuracy, are different in a statistically significant manner.
Thus, the null-hypothesis states that the accuracies of two classifiers are equal whereas
the alternative hypothesis argues that this is not so. For each of the two datasets, the test
shall be conducted by means of MATLAB’s testcholdout function which comes with the
Statistics and Machine Learning Toolbox and we shall consider all possible pairs consisting
of the FCI-WASD and one of the other classifiers. The collective outcomes of the McNemar
tests are listed in Table 2. As far as the first dataset is concerned, at the 5% significance level
the null hypothesis was rejected for all pairs, thus we may argue that the FCI-WASD has
achieved superior accuracy on that dataset. When it comes to EA.II, the null hypothesis is
rejected when comparing the accuracy of the FCI-WASD to that of the Coarse Tree, KNB
and the Chebyshev WASD, however this is not the case for the LR and Linear SVM. Thus,
on the second dataset, the FCI-WASD seems to have displayed equal accuracy, rather than
superior, to that of the latter two models.

On the broader context where the rest of the metrics are taken into consideration, one
may still argue that the FCI-WASD has performed better overall. Thus, given the need
to test on a new stream of data coming from those sources, the results suggest that the
FCI-WASD should be the first consideration out of the other five classifiers.

Table 2. McNemar test for the FCI-WASD.

FCI-WASD EA.I EA.II

vs. Null Hypothesis p-Value Null Hypothesis p-Value

Coarse Tree Rejected 0.018056 Rejected 3.757 × 10−5

KNB Rejected 1.7245 × 10−6 Rejected 0.010873
LR Rejected 1.3126 × 10−29 Not rejected 0.29788
Linear SVM Rejected 3.1406 × 10−25 Not rejected 0.49207
Chebyshev WASD Rejected 0.00016552 Rejected 0.00055711

Mathematics 2023, 11, 1506 15 of 17

4. Conclusions

In view of employee attrition classification, this paper discusses the FCI-WASD, a
classification neural network whose activation functions are formed through products of
Fresnel cosine integrals, with each term in the product being raised to an integer power
based of a lexicographically ordered power table. On comparing the neural network
with other well established classifiers, we have considered two publicly available datasets
and, following necessary preprocessing and class balancing steps, we have presented the
collective results regarding the performance of the FCI-WASD versus that of five other
classification models. The FCI-WASD achieves superior overall performance, that is, higher
accuracy, MAE and F-measure scores than the rest of the models on both datasets, whereas
the subsequent statistical analysis, in the form of a series of McNemar tests, argues that, in
the vast majority of cases, those differences in accuracy are in fact statistically significant.
Therefore, the FCI-WASD, as developed throughout the paper, is appropriate to take up
the task of employee attrition classification.

The fact that only two datasets were considered is arguably a limitation in the study.
Nevertheless, some areas of future research may be pointed out:

1. Extension of the FCI-WASD to a multi-layer neural network could perhaps boost its
performance and thus may be worth investigating.

2. An ensemble classifier consisting of WASD models may also lead to a high perfor-
mance model, therefore such a task may be worth considering.

3. One could also investigate the comparison between WASD and radial basis function
neural networks, or even experimenting with other transfer functions other than
Fresnel cosine integrals, such as sigmoid, softplus, etc.

4. Finally, to have the chance to test the FCI-WASD on an even larger, real world dataset,
would be both a challenge as well as a tremendous opportunity that would help in
asserting with confidence whether the model has stepped in the right direction as
well as whether it is capable of bringing value to a company.

Author Contributions: All authors (H.A., H.J., O.A., T.E.S. , V.N.K., S.D.M. and R.D.S.) contributed
equally. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alsheref, F.K.; Fattoh, I.E.; M Ead, W. Automated prediction of employee attrition using ensemble model based on machine

learning algorithms. Comput. Intell. Neurosci. 2022, 2022 , 7728668. [CrossRef]
2. Sexton, R.S.; McMurtrey, S.; Michalopoulos, J.O.; Smith, A.M. Employee turnover: A neural network solution. Comput. Oper. Res.

2005, 32, 2635–2651. [CrossRef]
3. Al-Darraji, S.; Honi, D.G.; Fallucchi, F.; Abdulsada, A.I.; Giuliano, R.; Abdulmalik, H.A. Employee attrition prediction using deep

neural networks. Computers 2021, 10, 141. [CrossRef]
4. Hom, P.W.; Lee, T.W.; Shaw, J.D.; Hausknecht, J.P. One hundred years of employee turnover theory and research. J. Appl. Psychol.

2017, 102, 530–545. [CrossRef] [PubMed]
5. Zhao, Y.; Hryniewicki, M.K.; Cheng, F.; Fu, B.; Zhu, X. Employee turnover prediction with machine learning: A reliable approach.

In Proceedings of the SAI Intelligent Systems Conference, London, UK, 6–7 September 2018; pp. 737–758. [CrossRef]
6. Mansor, N.; Sani, N.S.; Aliff, M. Machine learning for predicting employee attrition. Int. J. Adv. Comput. Sci. Appl. 2021, 12,

435–445 . [CrossRef]
7. Simos, T.E.; Mourtas, S.D.; Katsikis, V.N. Time-varying Black-Litterman portfolio optimization using a bio-inspired approach and

neuronets. Appl. Soft Comput. 2021, 112, 107767. [CrossRef]
8. Leung, M.F.; Wang, J. Cardinality-constrained portfolio selection based on collaborative neurodynamic optimization. Neural

Netw. 2022, 145, 68–79. [CrossRef]

http://doi.org/10.1155/2022/7728668
http://dx.doi.org/10.1016/j.cor.2004.06.022
http://dx.doi.org/10.3390/computers10110141
http://dx.doi.org/10.1037/apl0000103
http://www.ncbi.nlm.nih.gov/pubmed/28125259
http://dx.doi.org/10.1007/978-3-030-01057-7_56
http://dx.doi.org/10.14569/IJACSA.2021.0121149
http://dx.doi.org/10.1016/j.asoc.2021.107767
http://dx.doi.org/10.1016/j.neunet.2021.10.007

Mathematics 2023, 11, 1506 16 of 17

9. Leung, M.F.; Wang, J. Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization. IEEE
Trans. Neural Netw. Learn. Syst. 2021, 32, 2825–2836. [CrossRef]

10. Bai, L.; Zheng, K.; Wang, Z.; Liu, J. Service provider portfolio selection for project management using a BP neural network. Ann.
Oper. Res. 2022, 308, 41–62. [CrossRef]

11. Yaman, I.; Dalkılıç, T.E. A hybrid approach to cardinality constraint portfolio selection problem based on nonlinear neural
network and genetic algorithm. Expert Syst. Appl. 2021, 169, 114517. [CrossRef]

12. Mourtas, S.D.; Katsikis, V.N. Exploiting the Black-Litterman framework through error-correction neural networks. Neurocomputing
2022, 498, 43–58. [CrossRef]

13. Katsikis, V.N.; Mourtas, S.D. Diversification of time-varying tangency portfolio under nonlinear constraints through semi-integer
beetle antennae search algorithm. AppliedMath 2021, 1, 63–73. [CrossRef]

14. Katsikis, V.N.; Mourtas, S.D. Computational Management. In Modeling and Optimization in Science and Technologies; Chapter
Portfolio Insurance and Intelligent Algorithms; Springer: Cham, Switzerland, 2021; Volume 18, pp. 305–323. [CrossRef]

15. Mourtas, S.D.; Katsikis, V.N.; Drakonakis, E.; Kotsios, S. Stabilization of stochastic exchange rate dynamics under central bank
intervention using neuronets. Int. J. Inf. Technol. Decis. 2023, 22, 855–883. [CrossRef]

16. Simos, T.E.; Katsikis, V.N.; Mourtas, S.D. Multi-input bio-inspired weights and structure determination neuronet with applications
in European Central Bank publications. Math. Comput. Simul. 2022, 193, 451–465. [CrossRef]

17. Guo, D.; Nie, Z.; Yan, L. Novel discrete-time Zhang neural network for time-varying matrix inversion. IEEE Trans. Syst. Man
Cybern. Syst. 2017, 47, 2301–2310. [CrossRef]

18. Jin, L.; Zhang, Y.; Li, S. Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of
various kinds of noises. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2615–2627. [CrossRef]

19. Mao, M.; Li, J.; Jin, L.; Li, S.; Zhang, Y. Enhanced discrete-time Zhang neural network for time-variant matrix inversion in the
presence of bias noises. Neurocomputing 2016, 207, 220–230. [CrossRef]

20. Liao, B.; Xiao, L.; Jin, J.; Ding, L.; Liu, M. Novel complex-valued neural network for dynamic complex-valued matrix inversion. J.
Adv. Comput. Intell. Intell. Inform. 2016, 20, 132–138. [CrossRef]

21. Chen, K.; Yi, C. Robustness analysis of a hybrid of recursive neural dynamics for online matrix inversion. Appl. Math. Comput.
2016, 273, 969–975. [CrossRef]

22. Zhang, Y.; Jin, L.; Guo, D.; Fu, S.; Xiao, L. Three nonlinearly-activated discrete-time ZNN models for time-varying matrix
inversion. In Proceedings of the 8th International Conference on Natural Computation, Chongqing, China, 29–31 May 2012;
pp. 163–167. [CrossRef]

23. Jia, L.; Xiao, L.; Dai, J.; Cao, Y. A novel fuzzy-power zeroing neural network model for time-variant matrix Moore-Penrose
inversion with guaranteed performance. IEEE Trans. Fuzzy Syst. 2021, 29, 2603–2611. [CrossRef]

24. Precup, R.E.; Tomescu, M.L.; Preitl, S.; Petriu, E.M. Fuzzy logic-based stabilization of nonlinear time-varying systems. Int. J. Artif.
Intell. 2009, 3, 24–36.

25. Precup, R.E.; Tomescu, M.L.; Dragos, C.A. Stabilization of Rössler chaotic dynamical system using fuzzy logic control algorithm.
Int. J. Gen. Syst. 2014, 43, 413–433. [CrossRef]

26. Huang, C.; Jia, X.; Zhang, Z. A modified back propagation artificial neural network model based on genetic algorithm to predict
the flow behavior of 5754 aluminum alloy. Materials 2018, 11, 855. [CrossRef] [PubMed]

27. Wang, H.; Liu, P.X.; Liu, S. Adaptive neural synchronization control for bilateral teleoperation systems with time delay and
backlash-like hysteresis. IEEE Trans. Cybern. 2017, 47, 3018–3026. [CrossRef] [PubMed]

28. Zhang, Y.; Wang, J. Obstacle avoidance of redundant manipulators using a dual neural network. In Proceedings of the IEEE
International Conference on Robotics and Automation (Cat. No.03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 2,
pp. 2747–2752. [CrossRef]

29. Zhang, Y.; Wu, H.; Zhang, Z.; Xiao, L.; Guo, D. Acceleration-level repetitive motion planning of redundant planar robots solved
by a simplified LVI-based primal-dual neural network. Robot. Comput.-Integr. Manuf. 2013, 29, 328–343. [CrossRef]

30. Zhang, Y.; Yu, X.; Xiao, L.; Li, W.; Fan, Z.; Zhang, W. Weights and structure determination of articial neuronets. In Self-Organization:
Theories and Methods; Nova Science: New York, NY, USA, 2013.

31. Zhang, Y.; Chen, D.; Ye, C. Deep Neural Networks: WASD Neuronet Models, Algorithms, and Applications; CRC Press: Boca Raton, FL,
USA, 2019.

32. Simos, T.E.; Katsikis, V.N.; Mourtas, S.D. A fuzzy WASD neuronet with application in breast cancer prediction. Neural Comput.
Appl. 2021, 34, 3019–3031. [CrossRef]

33. Simos, T.E.; Katsikis, V.N.; Mourtas, S.D. A multi-input with multi-function activated weights and structure determination
neuronet for classification problems and applications in firm fraud and loan approval. Appl. Soft Comput. 2022, 127, 109351.
[CrossRef]

34. Gupta, A.K. Numerical Methods Using MATLAB; MATLAB Solutions Series, Berkley; Springer Press: New York, NY, USA, 2014.
35. HR Dataset. Available online: https://www.kaggle.com/datasets/kadirduran/hr-dataset?resource=download. (accessed on 2

February 2023).

http://dx.doi.org/10.1109/TNNLS.2019.2957105
http://dx.doi.org/10.1007/s10479-020-03878-0
http://dx.doi.org/10.1016/j.eswa.2020.114517
http://dx.doi.org/10.1016/j.neucom.2022.05.036
http://dx.doi.org/10.3390/appliedmath1010005
http://dx.doi.org/10.1007/978-3-030-72929-5_14
http://dx.doi.org/10.1142/S0219622022500560
http://dx.doi.org/10.1016/j.matcom.2021.11.007
http://dx.doi.org/10.1109/TSMC.2017.2656941
http://dx.doi.org/10.1109/TNNLS.2015.2497715
http://dx.doi.org/10.1016/j.neucom.2016.05.010
http://dx.doi.org/10.20965/jaciii.2016.p0132
http://dx.doi.org/10.1016/j.amc.2015.10.026
http://dx.doi.org/10.1109/ICNC.2012.6234672
http://dx.doi.org/10.1109/TFUZZ.2020.3005272
http://dx.doi.org/10.1080/03081079.2014.893299
http://dx.doi.org/10.3390/ma11050855
http://www.ncbi.nlm.nih.gov/pubmed/29883394
http://dx.doi.org/10.1109/TCYB.2016.2644656
http://www.ncbi.nlm.nih.gov/pubmed/28092590
http://dx.doi.org/10.1109/ROBOT.2003.1242008
http://dx.doi.org/10.1016/j.rcim.2012.09.004
http://dx.doi.org/10.1007/s00521-021-06572-9
http://dx.doi.org/10.1016/j.asoc.2022.109351
https://www.kaggle.com/datasets/kadirduran/hr-dataset?resource=download

Mathematics 2023, 11, 1506 17 of 17

36. Capstone Project-IBM Employee Attrition Prediction. Available online: https://www.kaggle.com/datasets/rushikeshghate/
capstone-projectibm-employee-attrition-prediction?resource=download. (accessed on 2 February 2023).

37. Fagerland, M.W.; Lydersen, S.; Laake, P. The McNemar test for binary matched-pairs data: Mid-p and asymptotic are better than
exact conditional. BMC Med Res. Methodol. 2013, 13, 91. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.kaggle.com/datasets/rushikeshghate/capstone-projectibm-employee-attrition-prediction?resource=download
https://www.kaggle.com/datasets/rushikeshghate/capstone-projectibm-employee-attrition-prediction?resource=download
http://dx.doi.org/10.1186/1471-2288-13-91
http://www.ncbi.nlm.nih.gov/pubmed/23848987

	Introduction
	The FCI-WASD Classification Neural Network
	Fresnel Cosine Integral Activation Functions, Power Tables and the WDD Process
	The WASD Training Algorithm of the FCI-WASD

	Applications on Employee Attrition Classification
	Employee Attrition Dataset I: Description and Preprocessing and Results of the FCI-WASD
	Employee Attrition Dataset II: Description, Preprocessing and Results of the FCI-WASD
	Collective Results, Model Comparison and Statistical Tests

	Conclusions
	References

