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Abstract: The predictions from time series data can help us sense development trends and make
scientific decisions in advance. The commonly used forecasting methods with backpropagation
consume a lot of computational resources. The deep echo state network (DeepESN) is an advanced
prediction method with a deep neural network structure and training algorithm without backpropa-
gation. In this paper, a Bayesian optimization algorithm (BOA) is proposed to optimize DeepESN to
address the problem of increasing parameter scale. Firstly, the DeepESN was studied and constructed
as the basic prediction model for the time series data. Secondly, the BOA was reconstructed, based on
the DeepESN, for optimal parameter searching. The algorithm is proposed within the framework
of the DeepESN. Thirdly, an experiment was conducted to verify the DeepESN with a BOA within
three datasets: simulation data generated from computer programs, a real humidity dataset collected
from Beijing, and a power load dataset obtained from America. Compared with the models of BP
(backpropagation), LSTM (long short-term memory), GRU (gated recurrent unit), and ESN (echo
state network), DeepESN obtained optimal results, which were 0.0719, 18.6707, and 764.5281 using
RMSE evaluation. While getting better accuracy, the BOA optimization time was only 323.4 s, 563.2 s,
and 9854 s for the three datasets. It is more efficient than grid search and grey wolf optimizer.

Keywords: echo state network; time series prediction; deep learning; Bayesian optimization

MSC: 68T07

1. Introduction

Data and information have been significant resources for management and control
within many domains. Time series data become vital because they can represent the
historical and future trends of the systems and elements involved in the economy [1–4],
agriculture [5,6], and air monitoring [7–10]. Advanced time series prediction can help us
make rational decisions, avoid risks, and reduce losses—contributing significantly to social
management, economic manufacturing, and human life. In the real world, time series
data show complex characteristics because they are affected by many factors in different
systems. The nonstationary and nonlinear characteristics have been a typical issue of time
series analysis, making it difficult to predict using subjective and empiric knowledge [11].

The field of time series prediction focuses on various types of methods, including
statistical methods [12,13] and machine learning methods [14–17], which can be classified
into shallow and deep models. Statistical methods, such as the autoregressive (AR), moving
average (MA), autoregressive moving average (ARMA), and autoregressive integrated
moving average (ARIMA) models, find data patterns through mathematical inference. The
statistical methods run well based on the exploration of the data patterns. The typical
processing methods transform nonstationary data into stationary data. However, during the
process of processing, the problem of data feature loss will make the data incomplete, which
results in the data lacking original meaning and interpretability; this means that there will
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be corresponding errors, thus resulting in prediction uncertainty. These classical methods
have significant errors and low prediction performance for unstable and nonstationary data,
which may fail during nonstationary time series prediction. Deep learning was developed,
which has more robust data feature extraction abilities and improved computer operation
capabilities. The deep network structure can build the model with more vital learning
ability. By finely adjusting the learning rate, the region with more substantial fluctuations in
nonstationary time series can obtain better learning and more accurate model parameters.
Therefore, deep networks have received much attention in research and application within
time series prediction. Parts of machine learning methods apply to the regression of the
time series modeling, including the support vector machine, the recurrent neural network
(RNN), long short-term memory (LSTM), and the gated recurrent unit (GRU). They can
construct the mapping relation of the time series trend. Various machine learning methods
perform differently due to the time series type, method structure, and computing resource.

The decomposition method is a data processing method that can reduce data complex-
ity by decomposing a nonstationary time series into multiple series of lower complexity. In
recent years, many researchers have widely used decomposition methods for time series
prediction [18–20]. The decomposition method will generate random terms in decomposi-
tion, and the degree of nonstationarity of the random terms remains high and difficult to
predict. In addition, the decomposition method creates a separate model for each compo-
nent, making the overall model architecturally complex. Therefore, networks with high
prediction accuracy and simple model structures have been a hot topic for researchers.

Performance improvement in machine learning usually relies on increased network
structure and computing resources. It is expected to be able to obtain high prediction
precision with relatively simple networks. The echo state network (ESN) [21] is a recur-
rent neural network that does not need to update parameters through a backpropagation
algorithm. The ESN completes system modeling through the matrix operation of inter-
nal weights, which does not require parameter tuning in an iterative process, and thus,
consumes fewer resources. The DeepESN [22] deepens the reservoir structure of the ESN
with more prosperous feature extraction capabilities, further improving the prediction
performance. The DeepESN is suitable for various scenarios and widely used in multiple
time series prediction tasks. However, the DeepESN model has a complex structure and
numerous parameters, which weakens the original advantage of the ESN in terms of net-
work structure and learning mechanisms. Therefore, the DeepESN should be optimized in
view of redundant parameters and appropriate structures.

In this paper, the DeepESN is studied to predict nonstationary time series. Hyperpa-
rameter tuning in the machine learning model is generally considered a black-box optimiza-
tion problem. During the tuning process, only the input and output of the model are seen.
For machine learning, the choice of different hyperparameters has a crucial influence on
the result. It is essential to determine the optimal values of hyperparameters. The heuristic
optimization algorithm is a comprehensive way to adjust parameters. Some heuristic
optimization algorithms have been proposed and applied to solve many parameter opti-
mization problems [23–27]. However, most optimization algorithms require enough initial
sample points, thus increasing the optimization cost, and the optimization efficiency is not
exceptionally high. We noticed that the Bayesian optimization algorithm could fully use
the previous evaluation information when selecting the next set of hyperparameters. This
can reduce the number of attempts required to determine hyperparameters and improve
the model’s estimation and generalization abilities. The optimization efficiency is higher
than the heuristic optimization algorithms and grid search. Therefore, Bayesian optimiza-
tion was chosen as the optimization method—an efficient optimization algorithm suitable
for DeepESN. In the optimization method, the parameters of DeepESN are determined
adaptively, which can reduce the parameter search time and maintain model precision.

The prediction model and optimization methods were verified using simulated and
real time series data, which are the data from mixed signal oscilloscopes (MSO), humidity
data collected from Beijing, and electric load data from American Electric Load Company.
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The datasets cover the simulation data based on typical mathematic signals, natural phe-
nomena, and human social behavior. Our proposed model achieved the best prediction
accuracy on several metrics when several models were compared. This paper is organized
as follows. Section 2 introduces the related works on time series prediction. Section 3
presents the DeepESN and BOA. Section 4 displays the experiment and results. The method
is discussed and concluded, finally, in Section 5.

2. Related Works

Nonstationary time series have high complexity. In recent years, time series forecasting
methods have mainly included statistical and neural network methods. In addition, the
echo state network and its deformed structure have increasingly been widely used in time
series research. In this section, related research is introduced from three aspects. Then,
using the method proposed in this article, the existing problems are analyzed.

2.1. Sample Entropy Method and Autocorrelation Functions

Sample entropy [28] is a method used to measure the fluctuation and complexity of
time series. It measures the complexity of the time series by calculating the probability
of generating new patterns in the signal. The greater the probability of a new model, the
higher the complexity of the time series.

For a set of time series {u(i), i = 1, · · · , N}, construct a m dimensional vector:

Xm(i) = {u(i), u(i + 1), · · · , u(i + m− 1)}, 1 6 i 6 N −m + 1 (1)

Define the maximum distance function d [Xm(p), Xm(q)] of the vectors Xm(p) and
Xm(q), which is recorded as the number that meets the condition d [Xm(p), Xm(q)] ≤ r.
Define nm

xi as the number of Xm(q) that have a distance between Xm(p) and a vector Xm(q)
within r.

The sample entropy is:

SampEn(m, r, N) = − ln
∑N−m−1

i=1 nm+1
xi

∑N−m−1
i=1 nm

xi

(2)

The fluctuation and complexity of the time series can be measured using the method
of sample entropy. The sample entropy measures the distance between two sub-vectors
in a reconstructed time series. If the distance between any two sub-vectors is relatively
close, the fluctuation and complexity of the time series are relatively weak. On the contrary,
if the short distances between two vectors are relatively small, the time series has strong
fluctuation and complexity.

The sample entropy can be set as a time series fluctuation and complexity measurement
index. A threshold value can be selected, and a model with high prediction ability should
be built when the entropy of a dataset is over the threshold value. The prediction models
can be deep networks, as introduced in the following subsection.

The autocorrelation function refers to the correlation between neighboring variables
of the time series. Assuming that the observed value of the series is xt, xt−1, . . . , xt−k, after
the order of k, the correlation degree is defined as:

γk =
E(xt, xt+k)

E
(
x2

t
) =

n−k
∑

t=1
(xt − x)(xt+k − x)

n−k
∑

t=1
(xt − x)2

(3)

where x represents the sample mean and E represents the expectation function. The value
of γk is between −1 and 1; the closer to 1, the higher the degree of autocorrelation.

The autocorrelation function is either trailing or truncated for a stationary time series.
The trailing refers to the function slowly approaching 0 at a negative exponential rate as the
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lag value k becomes larger. The truncation refers to the autocorrelation function becoming
0 when the lag value k is a specific value, like a truncated tail. The autocorrelation function
does not have trailing and truncated tails for nonstationary time series.

Figure 1 shows the graph of the three data autocorrelation functions that were used.
Its autocorrelation function has no tail or truncation, so it can be seen that they are non-
stationary time series.
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data, are simple to train, and have a good effect on dealing with complex time series. The 
ARIMA [31,32] model adds a different process, based on ARMA, which improves the 

Figure 1. The autocorrelation function graph (a) The autocorrelation function graph of the MSO
dataset; (b) the autocorrelation function graph of the humidity dataset; (c) the autocorrelation function
graph of the power load dataset.

2.2. Statistical Models and Classical Neural Networks

Statistical methods are the earliest time series modeling methods. The ARMA [29,30]
combines AR and MA for the stationary time series. The AR model treats subsequent
data as a linear combination of previous data, and the MA model introduces a sliding
window that can dynamically respond to time series characteristics. ARMA combines the
advantages of the AR and MA models, which use statistical methods to model historical
data, are simple to train, and have a good effect on dealing with complex time series. The
ARIMA [31,32] model adds a different process, based on ARMA, which improves the
nonlinear modeling ability. Amini et al. [33] built an ARIMA model to predict the electric
vehicle charging demand for stochastic power system operation. The GARCH model can
accurately simulate the fluctuation change of time series variables, and Caiado et al. [34]
constructed it on finance time series. These methods are computationally small but very
limited in their applicability to tasks and scenarios.

The machine learning method can extract data features more effectively using the
computer’s computing power, thus capturing features more effectively when establishing
the model. The classical time series neural network prediction fits the data and builds the
model using error backpropagation. BP is the most basic neural network model, which
reduces the error by continuously adjusting the model parameters. With the development
of theory, the network structure with a deeper structure has been developed and studied.
The deep network can mine the dependence on historical data and further extract the
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change rule of data. The RNN [35] model considers the influence of historical information
on the current moment’s data. The LSTM [36] is one of the most widely used networks,
and it further optimizes problems, such as gradient disappearance and explosion, in RNN.
The GRU [37–39] reduces the number of gate units in the network technology of the
LSTM and reduces computing consumption while achieving similar precision. Machine
learning methods have been used for many tasks. Xue et al. [40] used the ELM to predict
finance time series. Simran et al. [41] used the butterfly optimization algorithm (BOA)
to optimize the LSTM network, and they utilized the LSTM network model to predict
electricity consumption. Limei et al. [42] applied dynamic sliding windows to LSTM
networks for water flow prediction. Xu et al. [43] built a dual-scale deep belief network, to
predict the demand volume of urban water, that outperforms the single statistical model.

A single model is incapable of handling high-complexity nonstationary data. Thus,
the hybrid modeling method of multiple models has been developed. Qiao et al. [44]
established a hybrid model based on wavelet transform and an improved deep learning
algorithm to predict PM2.5. Bao et al. [45] constructed stacked autoencoders and an LSTM
to predict financial time series. Hanhong et al. [46] proposed a hybrid neural network
model based on TCN and GRU to predict the short-term electricity load. The integrated
model takes advantage of the advantages of multiple models to build models separately,
which improves the predictive ability [47].

2.3. Echo State Network

Statistical methods are relatively simple to model but have insufficient predictive
power. The machine learning method requires many calculations and takes a long time.
The integrated learning method makes the model structure more complicated, which is not
conducive to updating the model. The ESN is considered the most effective method for
training recurrent neural networks, which have the advantages of a simple training process
and short time consumption [48].

Figure 2 shows the structure diagram of the ESN. We define the u(n) = [u1(n) · · · uk(n)]
T

as the input sample at time n. y(n) is the output corresponding to u(n). The input matrix
Win and the reservoir layer weight matrix Ŵ are uniformly distributed between −1 and
1, which remain fixed. To make the echo state network have echo properties, the spectral
radius of the reservoir layer should be set between 0 and 1. During the training process,
with the sample’s input, the reservoir layer’s state is updated using the following formula.

x(n + 1) = f
(
Winu(n + 1) + Ŵx(n)

)
(4)

where Win denotes the input connection matrix, Ŵ denotes the reservoir layer connection
matrix, and f denotes the activation function inside the reservoir layer, which is usually
taken strictly as a hyperbolic tangent function. According to the above state of the reservoir
layer, the output of the ESN can be calculated using the following equation.

y(n + 1) = fout(Woutx(n + 1)) (5)

where Wout denotes the output connection matrix and fout denotes the output excitation
function. During training, the reservoir layer states are collected into a state matrix X. The
final network output weight Wout can be calculated using the following equation.

Wout =
(

XTX
)−1

XTY (6)

where X denotes the matrix form of the input reservoir state and Y denotes the output
matrix form. The superscript T represents the matrix transpose and −1 represents the
inverse of the matrix. The optimal solution of the output matrix can be found using least
squares or MSE alone. Since the output function is a standard linear function, Equation (6)
can be derived from the loss function L = |WoutX−Y|, where L denotes the loss matrix.
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Researchers have implemented some optimizations and improvements to the struc-
ture of the ESN, such as the quantum echo state network [49] and the robust echo state
network [50], and the DeepESN [22] is a neural network composed of multiple reservoirs.
It has excellent predictive capabilities and has been applied to various tasks. It has been a
research hotspot in recent years, and we will study it in this paper. The DeepESN has many
network parameters, so it is difficult to determine a suitable network structure. Therefore,
we propose the BOA to optimize the DeepESN, which can adaptively determine the net-
work model structure within a limited amount of time, thus saving network modeling time
and making the network more suitable for various tasks [51–57].

Significantly different from previous studies, we propose a DeepESN optimized by
the BOA for predicting complex time series. Our innovative contributions are highlighted
as follows:

(1) The BOA is used to optimize the DeepESN so that the network parameters are easily
set and the final model is easier to determine.

(2) Bayesian optimization is applied to nonstationary time series prediction, and excellent
prediction results are obtained.

3. Bayesian Optimization of Deep Echo State Network
3.1. Deep Echo State Network

The DeepESN is a novel deep network structure that replaces a single reservoir layer
with an ESN with multiple reservoir layers. It consists of an input layer, a multiple-reservoir
layer, and an output layer. The input layer feeds data into the entire network. The reservoir
layers process and compute the data to obtain the internal state. The output layer fits the
internal states to the actual values to obtain the model parameters. Compared with the
backpropagation algorithm, the DeepESN only requires matrix operations and does not
require many backpropagation iterations. Further, the DeepESN has a more robust feature
extraction ability and better prediction accuracy than a simple ESN.

Figure 3 shows the structure of the DeepESN. We define u(n) = [u1(n) · · · uk(n)]
T as

the input sample at time n. After each sample is inputted into the DeepESN network, the
state of the reservoir layers in the DeepESN will be updated. For the state of the l reservoir
layer, it is updated using the following formula:

x(l)(n) =
(

1− a(l)
)

x(l)(n− 1) + a(l)tanh
(

W(l)
in i(l)(n) + θ(l) + Ŵ(l)x(l)(n− 1)

)
(7)

i(l)(n) =
{

u(n), l = 1
x(l−1)(n), l > 1

(8)

where x(l)(n) represents the state obtained by the reserved layer l when the first sample
is inputted. a(l) represents the leaking rate of the layer l, tanh is the hyperbolic tangent
activation function, W(l)

in represents the input matrix of the input layer, Ŵ(l) represents the
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internal matrix of the reservoir layer, and W(l)
in and Ŵ(l) are the fixed parameters. i(l)(n)

represents the input of the reservoir layer. When l is 1, the input of the reservoir layer is the
original sample; when l is greater than 1, the input layer of the reservoir layer is the state of
the reservoir layer.
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Finally, the state of each reservoir layer is collected to get the state of the entire network.

x(n) = [x(1)(n)x(2)(n) · · · x(l)(n)]
T

(9)

The output weight and the state collected by the network will be multiplied by the
matrix to get the final network output value.

y(n) = g(Woutx(n)) (10)

The output weights Wout are the model parameters that need to be calculated by the
network. The Wout is the parameter that only needs to be trained. Sort all x(n) and y(n) by
row to get X and Y, the final model parameters. Wout can be calculated using the following
formula:

Wout = YXT
(

XXT + αE
)−1

(11)

where α is the regularization coefficient, E is the unit matrix, the superscript T represents
the matrix transpose, and −1 represents the inverse of the matrix. The derivation principle
of Equation (11) is similar to that of Equation (6) and can be derived from the loss function
L = |WoutX−Y|+ αWout, where L denotes the loss matrix.

3.2. Bayesian Optimization Algorithm

The BOA is an effective hyperparameter optimization algorithm. It can find the best
model parameters faster than a grid and random search. Each parameter is in a specific in-
terval, and all parameters constitute a hyperparameter space. For different hyperparameter
combinations, the prediction performance of the model is different. The model’s accuracy
gets higher and higher through the optimization process, and the predicted result is closer
to the actual value. The objective optimization function can be expressed as:

f (x) =

√
∑num

i=1 (y(xi)− ŷi)
2

num
(12)
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where ŷi is the true value and y(xi) is the predicted value. num is the length of the input
time series. The optimal parameters can be obtained through the BOA, which makes the
optimized target reach the minimum value.

The objective function of the BOA can be simplified as:

x∗ = argmin
x∈X

f (x) (13)

where X stands for parameter combination, x∗ represents the best parameters obtained,
and x is a group of hyperparameter combinations.

The BOA finds new evaluation points by maximizing the acquisition function to
weigh the distribution of evaluation points and the improvement of prediction perfor-
mance; it then re-imports them as inputs in the model to obtain new outputs so that it
can continuously update and find model parameters. We chose the Gaussian function as
the distribution hypothesis of the prior function and then used the acquisition function to
select the next point in the posterior process for evaluation. The Gaussian process (GP) is
an extension of the multidimensional Gaussian distribution, which can be defined using
mean and covariance. The covariance function of a GP is its kernel function k(x, x′). The
kernel function measures the role of the distance between any two points, x and x′.

f (x) ∼ GP(µ(x), k(x, x′)) (14)

µ(x) = E[ f (x)] (15)

k(x, x′) = E[( f (x)− µ(x))( f (x′)− µ(x′))] (16)

Usually, the mean function is set to zero; then, the above Gaussian process can be
expressed as:

Kn =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 (17)

When a new set of evaluation samples are added to the set of all evaluation points, the
covariance matrix formula is updated to: Kn+1 =

(
Kn kT

n
kn k(xn+1, xn+1)

)
kn = [k(xn+1, x1), k(xn+1, x2), · · · , k(xn+1, xn)]

(18)

Using the updated covariance matrix, we can get the posterior probability:

P( fn+1

∣∣∣Dn+1, xn+1) ∼ N(µn+1(x), σ2
n+1(x)) (19)

where D is the observation data, µi+1(x) is the mean value of f (x) at step i + 1, and σ2
i+1(x)

is the variance of f (x) at step i + 1.
The value of the function can be sampled from the joint posterior distribution by

evaluating the mean value and covariance matrix. The sampling function can determine
the next point to be evaluated to find the optimal parameter value faster and reduce
resource consumption. We choose the UCB function as the sampling function, and the
expression is as follows:

xi+1 = arg max H(x|Di) = arg maxµ(x) + ζ
1
2
i+1σi(x) (20)

where ζ
1
2
i+1 is a constant, H(x|Di) is the UCB acquisition function, and xi+1 is the selected

hyperparameter of step i + 1.
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In this paper, we optimized five important parameters of the DeepESN: layers, number
of neurons, leaking rate, spectral radius rate, and input scaling. Among them, the spectral
radius is the maximum value of all of the eigenvalues of the reservoir weights, and it is
the main factor affecting the memory capacity of the reserve. It is necessary to make the
spectral radius less than 1 to ensure the convergence of the network. Input scaling is the
pre-processing data method used to limit the range of input data. The entire algorithm flow
is shown in Algorithm 1.

Algorithm 1: DeepESN optimized by the BOA.

Input: Select the parameters to be optimized in the DeepESN model and determine the
optimization space X. Set the number of iterations of the BOA as n.
Output: returns the optimal hyperparameter group x∗.
For i = 1:n

Select a set of optimized parameters x from X.
Train the DeepESN model with parameters x.
Evaluate model prediction performance using Equation (11).
Update the covariance matrix and get the posterior probability.
Based on the current results, obtain the next set of model parameters.

Evaluate the model using Equation (12) and obtain the optimal model parameters x∗.

4. Experiment and Results
4.1. Experimental Setup

The data used in the experiments included two types of data, which were simulation
data and actual data. The simulation data were obtained through computer simulation,
and the real data were collected from the actual generation. The MSO dataset, obtained
through computer simulation, was used as the simulation data. The actual data were the
collected humidity data from the meteorological field and the electric load data from the
electric power industry. The sample entropy was calculated for the three datasets according
to the method in Section 2.1, and the results are shown in Table 1.

Table 1. The sample entropy of each dataset.

Datasets Data Interval 1
(0–500)

Data Interval 2
(500–1000)

Data Interval 3
(1000–1500)

Data Interval 4
(1500–2000)

MSO 1.5874 1.5361 1.5141 1.6081
Humidity 0.5050 0.7246 0.8705 0.8114

Power load 0.6351 0.8671 0.9063 0.8376

For each dataset, four value intervals were selected as 0–500, 500–1000, 1000–1500,
1500–2000. The sample entropy was calculated for these four intervals, and Table 1 shows
the specific results. It can be seen that the sample entropy was large, and the magnitude of
the sample entropy varied widely between segments, implying a high level of fluctuation
and complexity within the dataset. This shows that the models of high prediction ability
should be applied to the time series.

The experimental platform of this paper was based on 64-bit Windows. The RAM
was 8 GB, and the core was i7-8565u at 1.8 GHz. The deep learning framework used
the Tensorflow interface of Keras, the optimizer was Adam, and the code was executed
in python.

In the experiments in this paper, several typical models were chosen to compare with
the Bayesian-optimized DeepESN to demonstrate the superior predictive power of the
model. The typical models of the backpropagation neural network and the primary echo
state network were chosen as the comparison models. Among them, the BP model used for
comparison is the most classic neural network model and the most basic method used for
non-stationary time series forecasting. The LSTM is a deep learning model method that
has achieved good results in many time series forecasting tasks. The GRU is the optimized
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structure of the LSTM and is also used as a comparison model. These backpropagation
models were used for comparison with the deep echo state networks to illustrate the
learning ability of non-backpropagation networks and prove that deep echo state networks
have good accuracy while consuming fewer resources. The ESN was used as the basic
model, and the DeepESN was used for comparison in regard to prediction performance,
thus confirming deep networks’ superiority in prediction accuracy. Therefore, we chose the
above model as the comparison model.

To verify the efficiency of the BOA in parameter search, we compared the Bayesian
optimization with the grid search method and the grey wolf optimizer (GWO) [26]. Too
many grid search cases for five parameters would consume significant computational time.
Therefore, we selected four values at equal intervals instead of the original parameter
interval for each parameter. Thus, with four cases per parameter, the total number of
parameter selection cases, by grid search for five parameters, was 1024. The GWO used 10
initial sample points and iterated 50 times.

In the field of time series forecasting, there are many indicators used to evaluate the
forecasting effect. In this paper, we chose RMSE, MAE, R2, and CC as the evaluation
indexes. RMSE and MAE can most directly measure the forecasting effect. The smaller
their values, the more accurate the prediction. R2 and CC measure the linear relationship
between predicted and true values. The closer the value is to 1, the stronger the linear
relationship between the predicted and true values. In addition to the calculated value
of the CC, it is also necessary to check its significance level, represented by the P-value.
Generally, when the P-value is less than 0.05, it can indicate a significant correlation between
the two data groups, and chance factors do not cause the CC value. The P-values of the
three data groups were 0.000492, 3.212 × 10−13, and 6.338 × 10−11, which meant that the
datasets were significantly correlated and their evaluation indicators for CC were reliable.

RMSE =

√√√√ 1
T

T

∑
i=1

(yr − yp)

2

(21)

MAE =

T
∑

i=1

∣∣yr − yp
∣∣

T
(22)

R2 = 1−

T
∑

i=1
(yp − yr)

2

T
∑

i=1
(yp − yrv)

2
(23)

CC =

T
∑

i=1
[yr(i)− yrv(i)]

[
yp(i)− ypv(i)

]
√

T
∑

i=1
[yr(i)− yrv(i)]

2
√

T
∑

i=1

[
yp(i)− ypv(i)

]2 (24)

where yr represents the real value, yp represents the predicted value, T represents the
number of data, yrv represents the average value of the real value, and ypv represents the
average value of the predicted value.

4.2. Datasets

MSO simulation data is a typical nonstationary time series. It consists of several
sinusoidal components of different frequencies superimposed on each other. The following
formula can represent it:

y(n) =
s

∑
i=1

sin(αin) (25)
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where s represents the number of sinusoidal frequencies, αi represents the frequency of the
ith component, and y(n) represents the n-th sample. In our experiment, we selected MSO
data composed of 8 frequencies. The frequency components were: α1 = 0.2, α2 = 0.311,
α3 = 0.42, α4 = 0.51, α5 = 0.63, α6 = 0.74, α7 = 0.85, α8 = 0.97. The MSO data are shown
in Figure 4. The first 80% of the data was used as the training set, and the last 20% was
used as the test set.
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Figure 4. MSO dataset.

The data on humidity are recorded every hour in Beijing, China. The data of 7680 h
across 320 days were set as the training data, and data of 1920 h across the next 80 days
were the test data. In this experiment, a 24-step was set as the forward prediction length.
The original humidity data are shown in Figure 5.
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Figure 5. Humidity dataset.

Power load data has strong non-stationarity due to the influence of season and tem-
perature. We collected electricity data from the American Electric Load Company from 1
January 2017 to 1 January 2020. The data were collected every hour, for a total of 26,280 h.
In our research, we selected the first 500 days of data, a total of 12,000 h, as the dataset. The
first 80% of the data was used as the training set, and the last 20% was used as the test set.
Figure 6 shows the original power load data.
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Figure 6. Power load dataset.

The datasets are also presented with the statistical indicators in Table 2. The statistics
include the minimum, maximum, mean, standard deviation, and variance. Figures 4–6
and Table 2 show the datasets have complex trends in different scales. When performing
the Bayesian optimization of the DeepESN, the parameters to be optimized differed for
each dataset, depending on the data type and size. For the above three datasets, we set the
parameter ranges as Table 3. For the comparison networks, the relevant parameters are
shown in Table 4. In particular, the comparison networks were optimized using the grid
searching method. This guaranteed that the prediction results of the BP, LSTM, GRU, and
ESN had reached the best level of the experimental data.

Table 2. Statistical indicators for the three datasets.

Datasets Minimum Maximum Mean Standard
Deviation Variance

MSO −7.4441 7.3918 −0.0261 2.0009 4.0034
Humidity 6 100 53 26.267 689.957

Power load 7196 22,759 14,784.716 2388.0759 5,702,906

Table 3. The parameter ranges of the three datasets.

Hyperparameter Type
MSO Data
Parameter

Range

Humidity Data
Parameter

Range

Power Load Data
Parameter Range

layers integer 1–30 1–40 1–30
Number of

neurons integer 100–4000 100–4000 100–6000

Leaking rate uniform 0.1–1.0 0.1–1.0 0.1–1.0
Spectral radius

rate uniform 0.1–1.0 0.1–1.0 0.1–1.0

Input scaling uniform 0.1–1.0 0.1–1.0 0.1–1.0

Table 4. Parameter setting for comparison models.

Model Layers Number of
Neurons

Reservoir
Size

Spectral
Radius Rate

Leaking
Rate

BP 3 24 NA NA NA
LSTM 1 32 NA NA NA
GRU 1 32 NA NA NA
ESN NA NA 600 0.9 0.2
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4.3. Results
4.3.1. Results for the MSO Data

Figure 7 shows the prediction results of each model for the MSO simulation data,
which are represented by curves of different colors. It can be seen from the figure that the
Bayesian-optimized DeepESN, represented by the purple curve, is closest to the true value
among all the models.
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To intuitively display the predicted results of each model, the above evaluation indexes
were used to calculate the experimental results. The specific results are shown in Table 5.
The bold in Table 5 represents the model proposed in this paper and the best results in the
evaluation indexes.

Table 5. Evaluation indicators of the MSO dataset.

Model RMSE MAE CC R2

BP 1.7607 1.3953 0.5045 0.2221
LSTM 1.2252 0.9274 0.7982 0.6234
GRU 1.4290 1.0535 0.7053 0.4876
ESN 0.1024 0.0813 0.9987 0.9974

DeepESN 0.0719 0.0573 0.9994 0.9987

It can be seen that the DeepESN achieved optimal values for RMSE, MAE, CC, and R2.
Compared with the neural network algorithm, the prediction ability of the DeepESN has a
significant advantage. Meanwhile, the prediction performance is improved based on the
ESN. This experiment verifies the prediction ability of the DeepESN on simulated datasets.

Figure 8 shows the histogram of the prediction errors of different models on the
MSO dataset. The minimum value of the errors was −4.7455, and the maximum was
4.9751. The errors were divided uniformly into 10 intervals. The prediction errors of
the DeepESN, indicated in purple, were concentrated in the interval closest to [−0.85726,
0.1148]. Compared to other models, the overall errors of the DeepESN were the smallest,
and the best prediction results were obtained.



Mathematics 2023, 11, 1503 14 of 22Mathematics 2023, 11, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 8. Histogram of prediction errors of different models for the MSO dataset. 

4.3.2. Result of Humidity Data 
Figure 9 shows the prediction results of each model on the actual humidity data. It 

can be seen from the figure that the Bayesian optimization DeepESN, represented by the 
purple curve, was the closest to the true value among all the models. 

 
Figure 9. The prediction results of different models for the humidity dataset. 

The results of the evaluation metrics calculations are shown in Table 6. The bold in 
Table 6 represents the model of this paper and the best results. The results show that the 
DeepESN model had the smallest RMSE, the smallest MAE, the largest R2, and the largest 
CC. The DeepESN model had fewer errors and more accurate predicted values than the 
other models. 

Table 6. Evaluation indicators of the humidity dataset. 

Model RMSE MAE CC R2 
BP 21.5003 15.6253 0.6138 0.2787 

LSTM 20.7405 15.2197 0.6249 0.3289 
GRU 19.0048 14.0715 0.6897 0.4365 
ESN 22.1146 17.3104 0.6069 0.2369 

DeepESN 18.6707 14.7007 0.6786 0.4561 

Figure 8. Histogram of prediction errors of different models for the MSO dataset.

4.3.2. Result of Humidity Data

Figure 9 shows the prediction results of each model on the actual humidity data. It
can be seen from the figure that the Bayesian optimization DeepESN, represented by the
purple curve, was the closest to the true value among all the models.
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The results of the evaluation metrics calculations are shown in Table 6. The bold in
Table 6 represents the model of this paper and the best results. The results show that the
DeepESN model had the smallest RMSE, the smallest MAE, the largest R2, and the largest
CC. The DeepESN model had fewer errors and more accurate predicted values than the
other models.

Table 6. Evaluation indicators of the humidity dataset.

Model RMSE MAE CC R2

BP 21.5003 15.6253 0.6138 0.2787
LSTM 20.7405 15.2197 0.6249 0.3289
GRU 19.0048 14.0715 0.6897 0.4365
ESN 22.1146 17.3104 0.6069 0.2369

DeepESN 18.6707 14.7007 0.6786 0.4561
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The histogram of prediction errors is shown in Figure 10. For the different models,
the minimum value of the errors was −4.8994, and the maximum was 4.9751. The error
distribution shows that the DeepESN, indicated in purple, was concentrated at [−0.9496,
0.03789]. The errors of the other models were located in intervals of big values.
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4.3.3. Result of Power Load Data

Figure 11 shows the prediction results of each model on the actual power load data.
Compared with the other curves, the DeepESN, represented by the purple curve, was the
closest to the true value.
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The results of the evaluation metrics calculation are shown in Table 7. The bold in
Table 7 represents the model selected in this paper and the optimal eval-ua-tion index,
respectively. As with the prediction results of the humidity dataset, the DeepESN model
had the smallest RMSE and MAE and the largest R2 and CC for the power load dataset,
which confirms the prediction ability of the DeepESN for the actual dataset.
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Table 7. Evaluation indicators of the power load dataset.

Model RMSE MAE CC R2

BP 801.637 626.660 0.8922 0.7926
LSTM 840.739 623.628 0.8926 0.7719
GRU 791.691 583.079 0.9115 0.7977
ESN 823.565 586.355 0.8945 0.7811

DeepESN 764.5281 584.296 0.9011 0.8114

Through the above three groups of experiments and comparisons of the prediction
curves and several evaluation indexes, it can be concluded that the Bayesian-optimized
DeepESN has good prediction performance. Compared with other models, the DeepESN
achieved better prediction results on both the simulated and real datasets, which confirms
the advantages of the DeepESN in nonstationary time series prediction.

Figure 12 shows the histogram of prediction errors for the power load dataset. The
data of power loads is complicated to predict. The minimum error value was −2968.06,
and the maximum was 2993.299. The errors were divided into 15 intervals. The prediction
errors of the DeepESN, indicated in purple, were concentrated at [−186.0927, 211.3312].
The Gaussian distribution of the errors showed that the DeepESN obtained the best predic-
tion results.
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4.3.4. Result of Bayesian Optimization Algorithm

Grid search and GWO were performed on the same dataset, and the optimization
results were compared with the BOA method. Table 8 compares the experimental results of
the three optimization methods for the three datasets.
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Table 8. Prediction results of different optimization methods.

Datasets Optimization
Method RMSE MAE CC R2 Time (s)

MSO BOA 0.0719 0.0573 0.9994 0.9987 323.4
MSO Grid search 0.0689 0.0544 0.9996 0.9989 3587.2
MSO GWO 0.1204 0.0971 0.9881 0.9855 672.9

Humidity BOA 18.6707 14.7007 0.6786 0.4561 563.2
Humidity Grid search 18.5819 14.6893 0.6629 0.4344 6023.3
Humidity GWO 20.6907 17.3544 0.5803 0.3321 964.1

Power
load BOA 764.5281 584.296 0.9011 0.8114 985.4

Power
load Grid search 749.8249 573.354 0.9259 0.8319 9987.8

Power
load GWO 796.5818 613.141 0.8934 0.7952 1367.2

Table 8 shows the metrics of the three optimization methods on the three datasets. By
comparison, it was found that the BOA obtained the best results across four prediction
accuracy metrics while consuming the least amount of time. Compared with grid search
and GWO, the BOA can obtain better prediction results in the shortest time

Table 9 shows the parameters finally selected by the DeepESN for the three experiments
by the three optimization methods.

Table 9. Parameters on each dataset obtained through Bayesian optimization.

Datasets Optimization
Method Layers Number of

Neurons
Leaking

Rate

Spectral
Radius

Rate

Input
Scaling

MSO BOA 12 2500 0.20 0.79 0.10
MSO Grid search 5 1700 0.39 0.44 0.26
MSO GWO 18 3998 0.37 0.71 0.10

Humidity BOA 5 3100 0.89 0.82 0.03
Humidity Grid search 3 1600 0.70 0.37 0.41
Humidity GWO 6 167 0.12 0.10 0.11

Power
Load BOA 9 5900 0.99 0.47 0.29

Power
Load Grid search 8 3400 0.29 0.36 0.28

Power
Load GWO 9 5471 0.11 0.10 0.21

For a more visual comparison of the results, we plotted the comparison of the evalua-
tion results of different optimization approaches for each dataset using bar charts. Evalua-
tion indicators included RMSE, MAE, R2, CC, and consumption time. Figures 13–15 show
each dataset’s evaluation indicators for different optimization methods. In the figures,
subplot (a) shows the comparison of RMSE and MSE, subplot (b) shows the CC and R2,
and subplot (c) shows the comparison of running time.
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As shown in Figure 13, the simulation data MSO, BOA, and grid search achieved
extremely close results in the evaluation indicators, indicating that the two optimization
methods can achieve close results, while GWO had poor prediction results. Regarding time
consumption, The BOA method consumed less time, followed by GWO and grid search,
which indicates that the BOA method is efficient in parameter search.

Figure 14 shows that the BOA and grid search optimization methods had the highest
prediction accuracy for the humidity data. Moreover, the time consumed by the BOA was
relatively lower among the three optimization algorithms.

As shown in Figure 15, similar to the results in the MSO and humidity datasets, the
BOA can achieve similar prediction accuracy to a grid search in power load experiments,
and it has the shortest optimization time compared with grid search and GWO.

In three experiments comparing the results of three experiments by three different
optimization methods, the results of the BOA were close to the grid search for multiple
indicators of RMSE, MAE, CC, and R2. However, the results predicted using the GWO
method were relatively poor. Meanwhile, in these three cases, the BOA method consumed
the least time of all three cases, which means that fewer computational resources were used,
showing the efficiency of the BOA in the parameter search task. It is confirmed that the
Bayesian optimization method is an effective way to optimize the DeepESN.

5. Discussion and Conclusions

This paper used the Bayesian-optimized DeepESN to model and predict simulated
and real data. The prediction results showed that, compared to ARIMA, BP, LSTM, GRU,
and ESN networks, the Bayesian-optimized DeepESN was closer to the curve the actual
values represented. The evaluation metrics showed that the Bayesian-optimized DeepESN
achieved the best prediction results across several evaluation metrics compared to other
network types.

Experiments were conducted to compare the BOA, grid search methods, and GWO to
optimize the DeepESN in three ways. The BOA can use previous validation results to rea-
sonably collect the parameters for the next time. With almost the same prediction accuracy,
the BOA significantly reduces the parameter search time, decreases time complexity, and
proves that the BOA has a very efficient effect in performing the parameter optimization of
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the model. Therefore, the Bayesian-optimized DeepESN can significantly reduce the model
tuning time, improve the prediction accuracy and reduce resource consumption.

Compared with echo state networks, the DeepESN has richer dynamic characteristics,
stronger short-term memory storage capacity, and more accurate temporal prediction
ability though. However, the deep echo state network still has inherent characteristics
and limitations, such as covariance, discomfort, and poor numerical stability. The neural
network needs to continuously adjust the learning rate to finalize the model parameters in
the modeling process. The training should be conducted based on adequate data. For small
sample datasets, neural networks are prone to overfitting, reduced generalization ability,
and ineffective tuning and learning of internal parameters. The BOA helps to determine
the parameters faster with the smaller dataset. It reduces the requirement of data volume
to a certain extent. However, how to adjust the method in the small dataset should be
studied continuously.

Based on the research in this paper, we will continue to explore the following directions,
such as scouring the effect of the latest heuristic optimization algorithms combined with the
DeepESN, the results enhancement by data enhancement methods, and how to optimize
the structure of the DeepESN. The DeepESN with the BOA provides a feasible solution as
the basic time series prediction model. It can be applied to exploring integrated methods,
such as the prediction based on data decomposition and the integration of various models.
The performance can be improved by utilizing the prediction ability of the DeepESN with
the BOA and the data-featured extraction ability of other methods.
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