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S1. Introduction

In a general situation the GPC evaluation will result in a skew matrix U, which has in
part the following interpretation

• uij < 0 if subject i has a less favorable outcome than subject j.
• uij = 0 if the subjects cannot be compared, or are actually tied.
• uij > 0 if subject i has a more favorable outcome than subject j.

We are interested in a trial with two arms, treatment and control. We let N be the
number of subjects in the trial, with m subjects in the treatment group and n subjects in the
control group. Moreover, let the indicator Di = 1 for subjects in the treatment group, and
Di = 0 for patients in the control group.

The matrix entry uij is defined as a treatment win if Di = 1, Dj = 0, and uij > 0.
Similarly the matrix entry uij is defined as a control win if Di = 0, Dj = 1, and uij > 0.
Accordingly each win results from the comparison of a treatment subject and a control
subject.

The win sum for subject i is defined by

Wi =
N

∑
j=1

uij where uij > 0, Di 6= Dj.

The win sums for the treatment and control groups are then defined by

WT =
N

∑
i=1

WiDi (S1)

WC =
N

∑
i=1

Wi(1− Di) (S2)

Where necessary for clarity, we will let the symbols Wobs
T and Wobs

C denote the win
sums from the original observed data, as opposed to the sums from another win matrix
that appears in the course of the algorithm.

We wish to determine the mean and variance of the pair (WT , WC) resulting from the
permutation distribution of the trial arms, or from bootstrapping from the patients. These
means and variances are computed over all permutations of the trial arms, or all bootstrap
samples. These values are accordingly the expected means and variances when randomized
permutation or bootstrap sampling is performed. The comparisons within trial arms do not
correspond to wins, and hence do not enter into the computations of (WT , WC). However,
the corresponding matrix entries will be needed for some of the variance computations
below.

It should be noted that if the entries of U are restricted to {−1, 0, 1}, the values
(WT , WC) merely count the wins.

S2. Graphical model

The U matrix can also be viewed as the adjacency matrix of a directed graph G, with
N vertices. If uij > 0, the graph has an edge from vertex i to vertex j. For visualization, we
can draw this edge as an arrow with head at vertex j and tail at vertex i. The value uij is
called the weight of the edge, and is denoted by we when referring to an edge e. The graph
G will have E edges; in terms of the original matrix U, E is the number of positive uij. For
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notational purposes we number the edges 1, 2, . . . E, without prescribing any relationship
between the edge numbers and the row and column numbers in the matrix U. If a vertex
v is the head or tail of an edge e, then e is said to be adjacent to v. We do not use any
actual theorems from graph theory, but the graphical model may aid in understanding the
algorithms to follow.

The indegree ID(v) of a vertex v, is the number of edges whose head is the vertex
v. This is equivalent to the number of positive entries in the vertex or subject associated
column of the score matrix U, or the number of pairs that represent a loss for that vertex
or subject. Similarly, the outdegree OD(v) is the number of edges whose tail is the vertex v,
which is the number of positive entries in the associated row of the score matrix U, or the
number of pairs that represent a win for that subject. These quantities do not depend on
the trial arm assignments.

In addition to these general graph theory concepts, we need some notations that are
specific to our situation.

• In the observed data a vertex v is called a treatment vertex if the corresponding Dv = 1,
and a control vertex otherwise.

• In the observed data an edge corresponds to a treatment win if the corresponding
uij > 0, Di = 1, and Dj = 0; such an edge is called a treatment edge. Similarly, if
uij > 0, Di = 0, and Dj = 1 the edge is a control edge. If uij > 0, but Di = Dj, the edge
is a neutral edge.

• The following quantities are defined for every sample, including, of course, the
observed data.

– For a vertex v, let Fv denote the number of times that the vertex v appears in
the sample. For the permutation distribution, Fv = 1 for all samples. For the
bootstrap distributions, Fv can be zero or higher.

– The value Te is defined as the number of times that edge e is a treatment edge in
the sample, and the value Ce is the number of times that edge e is a control edge
in the sample. If the treatment edge e has vertices (v, w), then Te = FvFw.

– The vectors T and C are the E× 1 column vectors composed of the various Te
and Ce. We also let W be the column vector of the weights we.
In this context, we rewrite (S1) and (S2) as

WT = WtT = ∑
e

weTe = [w1, w2, . . . , wE]T

WC = WtC = ∑
e

weCe = [w1, w2, . . . , wE]C

S3. General Variance Computations

In the next sections, the expectations and variances of WT and WC, and their covariance
will be developed for the permutation (Section S4), two-sample bootstrap (Section S5) and
one-sample bootstrap (Section S6) in detail. They follow however, the same general pattern.

The expectation of WT is derived by:

E(WT) = E(WtT)

= [w1, w2, . . . , wE]E(T)
= ∑

e
weE(Te).

We will show below that E(Te) is the same for all edges.
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Similarly, the expectation of WC is derived by:

E(WC) = E(WtC)

= [w1, w2, . . . , wE]E(C)

= ∑
e

weE(Ce).

The variance is derived by

Var([WT , WC]) = Var
([

Wt, Wt][T
C

])
=
[
Wt, Wt]Var

([
T
C

])[
W
W

]
=
[
Wt, Wt](E([T

C

][
T
C

]t
)
−
(
E
[

T
C

])(
E
[

T
C

]t
))[

W
W

]
=
[
Wt, Wt](E([TTt TCt

CTt CCt

])
−
[
E(T)E(Tt) E(T)E(Ct)
E(C)E(Tt) E(C)E(Ct)

])[
W
W

]
(S3)

=

[
VTT VTC
VCT VCC

]
(S4)

Computing the variance of the GPC statistics requires two counting steps. In the first
step, we compute the expected values E(Te), E(Ce) and the expected value of an ordered
pair of edges (e, f ), not necessarily distinct, E(TeTf ), E(TeC f ), E(CeTf ), and E(CeC f ). This
computation involves elementary calculations involving binomial coefficients. The calcula-
tions differ between edge pairs, depending on the trial arm assignments and the geometric
relationship of the edges. We note that because the variance matrix is symmetric, com-
puting the individual terms E(CeTf ) is redundant, but we will present those calculations
anyway. In the second step, we compute the number of times that each of these geometric
configurations of edges is present in the dataset.

S4. The permutation distribution

In a permutation test, subjects are randomly re-sampled to the treatment groups
without replacement. If all possible permutations of m treatment assignments and n control
assignments are considered, the WT and WC in each of these permutation samples will
lead to their permutation distribution. The expectations, variances, and covariance of this
permutation distribution of WT and WC can be calculated explicitly. An edge will always
join the same subjects, but whether or not this edge contributes to the treatment wins or
control wins depends on the treatment assignment in the permutation sample.

For expected values, we use the symbol EP, as a specification of the general expection
symbol E.

S4.1. Expectations

For a single edge e = (i, j) to contribute to the treatment wins, the treatment assign-
ments need to be Di = 1 and Dj = 0. Since, the total number of trial arm assignments
is (N

m), for a single edge e = (i, j), the number of assignments with Di = 1 and Dj = 0 is
(N−2

m−1). Hence for all edges e,

EP(Te) =

(
N − 2
m− 1

)/(
N
m

)
=

mn
N(N − 1)

, (S5)



S4 of S23

and

EP(WT) = EP(∑
e

weTe) =
mn

N(N − 1) ∑
e

we. (S6)

Since having Di = 1 and Dj = 0 is equally likely to having Di = 0 and Dj = 1, it
follows that EP(Ce) = EP(Te), and EP(WC) = EP(WT).

S4.2. Variances and covariance

For the variance computation using (S4), we will additionally calculate the terms
EP(TeTf ), EP(TeC f ), EP(CeTf ), and EP(CeC f ) for all ordered pairs of edges e, f . There are
various cases depending on the geometric relationship between the edges in the pair. For
pairs of edges that meet at a vertex there are separate formulas for pairs of identical edges
(case 1), for pairs that have a common head (case 2), a common tail (case 3), or one head
and one tail at the vertex (cases 4 and 5). For all pairs of edges that do not meet at a vertex
(case 6), there is one formula.

In principle some of the above cases could be combined, by considering a mixture
of ordered and unordered pairs. It seems clearer to use ordered pairs throughout.

Computations at a single vertex .

Case
1:

An ordered pair of identical edges e with head v:

• In the permutation case, Te is 0 or 1, we have using (S5)

EP(T2
e ) = EP(Te) =

mn
N(N − 1)

.

• Similarly,

EP(C2
e ) = EP(Ce) =

mn
N(N − 1)

.

• Since an edge cannot be simultaneously a win for treatment and for control, we
have TeCe = 0 for all edges e and all permutations, and thus

EP(TeCe) = 0.

Case
2:

An ordered pair (e, f ) of distinct edges, each with head v:

• We have an ordered pair of edges e = (vi, vj) and f = (vk, vj) where {vi, vj, vk}
are distinct; that is vertex vj is the head for both edges. Then TeTf = 1 iff
Di = Dk = 1 and Dj = 0. There remain N − 3 patients to be assigned trial arms,
with m− 2 treatment patients and n− 1 control patients. The number of trial
arm permutations satisfying these conditions is (N−3

m−2). Accordingly.

EP(TeTf ) =

(
N − 3
m− 2

)/(
N
m

)
=

mn(m− 1)
N(N − 1)(N − 2)

.

• Similarly,

EP(CeC f ) =

(
N − 3
n− 2

)/(
N
m

)
=

mn(n− 1)
N(N − 1)(N − 2)

.

• Te and C f cannot both be 1, because the former requires Dj = 0, and the latter
requires Dj = 1. Hence TeC f = 0 always. Accordingly

EP(TeC f ) = EP(CeTf ) = 0.
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Case
3:

An ordered pair (e, f ) of distinct edges, each with tail v:

• We have an ordered pair of edges e = (vi, vj) and f = (vi, vl) where {vi, vj, vl}
are distinct; that is vertex vi is the tail for both edges. Then TeTf = 1 iff Di = 1
and Dj = Dl = 0. The number of trial arm permutations satisfying these
conditions is (N−3

m−1). Accordingly

EP(TeTf ) =

(
N − 3
m− 1

)/(
N
m

)
=

mn(n− 1)
N(N − 1)(N − 2)

.

Similarly,

EP(CeC f ) =

(
N − 3
n− 1

)/(
N
m

)
=

mn(m− 1)
N(N − 1)(N − 2)

.

• Te and C f cannot both be 1, because the former requires Di = 1, and the latter
requires Di = 0. Hence TeC f = 0 always. Accordingly

EP(TeC f ) = EP(CeTf ) = 0.

Case
4:

An ordered pair (e, f ) of distinct edges, where vertex v is the tail of edge e and the
head of edge f :

• We have a pair of edges e = (vi, vj) and f = (vk, vi) where {vi, vj, vl} are distinct;
that is vertex vi is the tail of edge e and the head of edge f . Then Te and Tf
can never both be 1, because the former requires Di = 1 and the latter requires
Di = 0. Accordingly

EP(TeTf ) = EP(CeC f ) = 0.

• TeC f = 1 iff Di = 1 and Dj = Dk = 0. Accordingly

EP(TeC f ) =

(
N − 3
m− 1

)/(
N
m

)
=

mn(n− 1)
N(N − 1)(N − 2)

.

• CeTf = 1 iff Di = 0 and Dj = Dk = 1. Accordingly

EP(CeTf ) =

(
N − 3
n− 1

)/(
N
m

)
=

mn(m− 1)
N(N − 1)(N − 2)

.

Case
5:

An ordered pair (e, f ) of distinct edges, where vertex v is the head of edge e and the
tail of edge f :

• We have a pair of edges e = (vi, vj) and f = (vj, vk) where {vi, vj, vk} are distinct;
that is vertex vj is the head of edge e and the tail of edge f . Then Te and Tf can
never both be 1, nor can Ce and C f . Accordingly

EP(TeTf ) = EP(CeC f ) = 0.

• TeC f = 1 iff Di = Dk = 1 and Dj = 0. Accordingly

EP(TeC f ) =

(
N − 3
m− 2

)/(
N
m

)
=

mn(m− 1)
N(N − 1)(N − 2)

.

Similarly,
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•

EP(CeTf ) =

(
N − 3
n− 2

)/(
N
m

)
=

mn(n− 1)
N(N − 1)(N − 2)

.

Computations for the remaining edge pairs.

Case
6:

An ordered pair (e, f ) of non-intersecting edges:

• Consider a pair of edges e = (vi, vj) and f = (vk, vl) where {vi, vj, vk, vl} are
distinct; that is the edges do not meet. Then TeTf = 1 iff Di = Dk = 1 and
Dj = Dl = 0. The number of trial arm permutations satisfying these condi-
tions is (N−4

m−2). The same counting argument applies to CeC f , TeC f , and CeTf .
Accordingly

EP(TeTf ) = EP(TeC f ) = EP(CeTf ) = EP(CeC f )

=

(
N − 4
m− 2

)/(
N
m

)
=

mn(m− 1)(n− 1)
N(N − 1)(N − 2)(N − 3)

(S7)

The algorithm is now complete. We evaluate the variance (S4) by examining each
ordered pair of edges (e, f ), evaluating EP(TeTf ), EP(TeC f ), EP(CeTf ), and EP(CeC f ).
This gives an 2E× 2E matrix, where E is the number of edges in the graph G. Pre- and
post-multiply by the W terms. The variance matrix for the pair (WT , WC) is obtained by
summing each of the four E× E blocks of this larger matrix.

Unfortunately, the algorithm as stated is O(N4), because the number of edges is
O(N2), and we have explicitly computed all the entries of an 2E × 2E matrix. For a
practical algorithm we need to reduce the entire computation to O(N2).

S4.3. Practical algorithm in the permutation case

The key to a practical computation is to look at cases 1-5 at each vertex separately.
Then sum those values to include in the four entries of (S4). Finally, compute the number
of pairs in case 6, and include those terms also.

Define the following values of the U-matrix:

Iv = ∑
i

we over edges e such that the head of e is vertex v or the column sums of we for vertex v.

Is
v = ∑

i
w2

e over edges e such that the head of e is vertex v or the column sums of w2
e for vertex v.

Ov = ∑
j

we over edges e such that the tail of e is vertex v or the row sums of we for vertex v.

Os
v = ∑

j
w2

e over edges e such that the tail of e is vertex v or the row sums of w2
e for vertex v.

We note that if the entries of U are restricted to {−1, 0, 1}, then Iv = Is
v = ID(v), and

Ov = Os
v = OD(v).

Case
1:

At each vertex v, the contribution to the square terms in the variance is

mn
N(N − 1)

Is
v for VTT

mn
N(N − 1)

Os
v for VCC

0 for VTC and VCT
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Case
2:

For an ordered pair (e, f ) of distinct edges each with head v, the contribution to the

square terms in the variance VTT is wew f
mn(m− 1)

N(N − 1)(N − 2)
. The total combination for

all the ordered pairs of edges is then

mn(m− 1)
N(N − 1)(N − 2)

(I2
v − Is

v) for VTT

mn(n− 1)
N(N − 1)(N − 2)

(I2
v − Is

v) for VCC

0 for VTC and VCT

The reason for the subtraction in (Is
v − Iv) is that we are looking at pairs of distinct

edges; the ordered pairs of identical edges were already counted in case 1.
Case
3:

For an ordered pair (e, f ) of distinct edges each with tail v, the contribution to the

square terms in the variance VTT is wew f
mn(n− 1)

N(N − 1)(N − 2)
. The total combination for

all the ordered pairs of edges is then

mn(n− 1)
N(N − 1)(N − 2)

(O2
v −Os

v) for VTT

mn(m− 1)
N(N − 1)(N − 2)

(O2
v −Os

v) for VCC

0 for VTC and VCT

Case
4:

At each vertex v, the contribution to the square terms in the variance is

mn(n− 1)
N(N − 1)(N − 2)

IvOv for VTC

mn(m− 1)
N(N − 1)(N − 2)

Ov Iv for VCT

0 for VTT and VCC

Case
5:

At each vertex v, the contribution to the square terms in the variance is

mn(m− 1)
N(N − 1)(N − 2)

Ov Iv for VTC

mn(n− 1)
N(N − 1)(N − 2)

IvOv for VCT

0 for VTT and VCC

Case
6:

For the non-intersecting edges, we need to sum the term (S7) for all pairs of edges,
except those already considered in cases 1-5. Accordingly we define

FP = ∑
v

[
Is
v + (I2

v − Is
v) + (O2

v −Os
v) + 2IvOv

]
.

Then the variance term is

mn(m− 1)(n− 1)
N(N − 1)(N − 2)(N − 3)

((
∑

e
we
)2 − FP

)
for VTT , VTC, VCT , and VCC

S4.4. Complexity of the final permutation algorithm

For a specific vertex v, in order to compute the various vertex dependent terms in
the variance formulas, (Iv, Is

v, Ov, and Os
v) each other vertex must be examined once. Thus

the complexity of the computation at each vertex is O(N), and computing at all vertices is
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thus O(N2). The total number of edges and the wins WT and WC are computed from these
numbers in an additional O(N) steps, and the final computations are O(1). Accordingly
the time complexity of the permutation algorithm is O(N2). No algorithm can have time
complexity less than O(N2), because we must examine each entry of the original N × N
matrix at least once.

S5. The two-sample bootstrap distribution

In a two-sample bootstrap test, subjects are randomly re-sampled with replacement
within their treatment group. There are accordingly mm bootstrap samples from the treat-
ment population, and nn bootstrap samples from the control population, for a total of mmnn

bootstrap samples. If all possible bootstrap samples, are considered, the the treatment win
sum WT and control win sum WC will have the complete bootstrap distribution. The means,
variances, and covariance of this bootstrap distribution of WT and WC will be calculated
explicitly. These values will also be the expected means, variances, and covariances from a
randomized bootstrap sample.

Neutral edges in the observed data can never correspond to wins in a bootstrap sample,
and such edges play no role in the computations below.

We will use a number of easily derived identities involving multinomial coefficients.
These are summarized in section S7.

S5.1. Expectations

The expected values of the vectors T and C are computed using elementary sums of
multinomial coefficients.

We note that the number of ways a treatment vertex can appear k1 times in the sample
from the treatment vertices is ∑k2+...km=m−k1

( m
k1,k2,...,km

). Accordingly the expected number
of times that a treatment vertex appears in the complete set of bootstrap samples is given
by

m

∑
1

k1 ∑
k2+...km=m−k1

(
m

k1, k2, . . . , km

)
= ∑

k1+k2+...km=m
k1

(
m

k1, k2, . . . , km

)
= mm

where we have used identity (S14) from the appendix.
Since there are a total of mm bootstrap samples from the treatment vertices, it follows

from the above that the expected number of times that a specific treatment vertex appears
in a bootstrap sample is 1. This particular point can easily be derived without using the
multinomial coefficients, but sums of those coefficients appear to be necessary for some of
the later computations.

Similarly, the number of ways a control vertex `1 appears in the sample from the
control vertices is nn.

Consider a treatment edge e. Then the head is a control vertex, and the tail is a
treatment vertex. If the frequency of the treatment vertex is k1, and frequency of the control
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vertex is `1 , then the edge e appears k1`1 times in the bootstrap sample. Accordingly, for
the expected value of Te, we have

EB2(Te) =
1

mmnn ∑
k1+...km=m

k1

(
m

k1, k2, . . . , km

)
∑

l1+...ll=l
l1

(
n

l1, l2, . . . , lm

)
=

1
mmnn mmnn = 1. (S8)

For this edge we will have EB2(Ce) = 0, since this edge cannot correspond to a control win
in any bootstrap sample. Similarly, if an edge f is a control edge, then EB2(Tf ) = 0 and
EB2(C f ) = 1. Consequently EB2(WT) is the observed treatment win sum, and EB2(WC) is
the observed control win sum.

S5.2. Variances

For the variance, again the expectations of EB2(TeTf ), EB2(CeC f ), EB2(TeC f ) and
EB2(CeTf ) need to be calculated, and these depend on the geometric configuration of the
edges. We considered various cases of ordered pairs. Cases 3-10 fall into pairs, with the odd
case for a treatment vertex and the even case for a control vertex. (The computations for
the different vertices are slightly different.) The following cases are considered: an ordered
pair of identical treatment edges (case 1), an ordered pair of identical control edges (case 2),
an ordered pair of distinct treatment edges adjacent to a vertex (case 3 respectively case 4),
an ordered pair of distinct control edges adjacent to a vertex (case 5 respectively case 6), an
ordered pair of a treatment edge and a control edge adjacent to a vertex (case 7 respectively
case 8), and an ordered pair of a control edge and a treatment edge adjacent to a vertex
(case 9 respectively case 10). Finally, for non-intersecting edges, 4 cases are considered: an
ordered pair of distinct treatment edges (case 11), an ordered pair of distinct control edges
(case 12), an ordered pair of a treatment and a control edge (case 13), and an ordered pair
of a control edge and a treatment edge (case 14).

In principle some of the above cases could be combined, by considering a mixture
of ordered and unordered pairs of edges. It seems clearer to use ordered pairs
throughout.

Computations at a single vertex.

Case
1:

An ordered pair of identical treatment edges, adjacent to the vertex v:

• Let the edge be e = (v1, v2), with corresponding vertex frequencies k1, k2. The
number of possibilities for Te > 0 is k1k2. Then

EB2(T2
e ) =

1
mmnn ∑

k1+...km=m
k2

1

(
m

k1, k2, . . . , km

)
× ∑

l1+...ll=l
l2
1

(
n

l1, l2, . . . , lm

)
=

1
mmnn (2m− 1)mm−1(2n− 1)nn−1

=
(2m− 1)(2n− 1)

mn
, (S9)

where we have used formula (S15) from section S7. For this same edge, Ce = 0
for all bootstrap samples, and hence

EB2(C2
e ) = EB2(TeCe) = EB2(CeTe) = 0.

Case
2:

An ordered pair of identical control edges, adjacent to the vertex v:
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• The computations are similar to case 1.

EB2(T2
e ) = EB2(TeCe) = EB2(CeTe) = 0.

EB2(C2
e ) =

(2m− 1)(2n− 1)
mn

.

Case
3:

An ordered pair (e, f ) of distinct treatment edges, each adjacent to the treatment
vertex v:

• Let the edges be e = (v1, v2) and f = (v1, v3), with corresponding vertex fre-
quencies k1, k2, k3. Then the common vertex v1 is a treatment vertex. The number
of possibilities for Te > 0 is k1k2, and for Tf > 0 is k1k3. Then the number of
samples that produce both Te > 0 and Tf > 0 is k2

1k2k3, and

EB2(TeTf ) =
1

mmnn ∑
k1+...km=m

k2
1

(
m

k1, k2, . . . , km

)
× ∑

l1+...ln=n
l2l3

(
n

l1, l2, . . . , ln

)
=

1
mmnn (2m− 1)mm−1(n− 1)nn−1

=
(2m− 1)(n− 1)

mn
,

where we have used formulas (S15) and (S16) from section S7. Because both
edges correspond to treatment wins, we have

EB2(CeC f ) = EB2(TeC f ) = EB2(CeTf ) = 0.

Case
4:

An ordered pair (e, f ) of distinct treatment edges, each adjacent to the control vertex
v:

• Let the edges be e = (v1, v2) and f = (v3, v2), with corresponding vertex weights
are k1, k2, k3. Then the common vertex v2 is a control vertex. The number of
possibilities for Te > 0 is k1k2, and for Tf > 0 is k3k2. Then the number of samples
that produce both Te > 0 and Tf > 0 is k1k2

2k3, and

EB2(TeTf ) =
1

mmnn ∑
k1+...km=m

k1k3

(
N

k1, k2, . . . , kN

)
× ∑

l1+...ln=n
l2
2

(
n

l1, l2, . . . , ln

)
=

1
mmnn (m− 1)mm−1(2n− 1)nn−1

=
(m− 1)(2n− 1)

mn
,

where we have used formulas (S15) and (S16) from section S7.
Because both edges correspond to treatment wins, we have

EB2(CeC f ) = EB2(TeC f ) = EB2(CeTf ) = 0.

Case
5:

An ordered pair (e, f ) of distinct control edges, each adjacent to the treatment vertex
v:
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• The expected value computations are similar to those of case 3.

EB2(CeC f ) =
(2m− 1)(n− 1)

mn
.

EB2(TeTf ) = EB2(TeC f ) = EB2(CeTf ) = 0.

Case
6:

An ordered pair (e, f ) of distinct control edges, each adjacent to the control vertex v:

• The expected value computations are similar to those of case 4.

EB2(CeC f ) =
(m− 1)(2n− 1)

mn
.

EB2(TeTf ) = EB2(TeC f ) = EB2(CeTf ) = 0.

Case
7:

An ordered pair (e, f ) of distinct edges, where e is a treatment edge and f is a control
edge, each adjacent to the treatment vertex v:

• The expected value computations are similar to those of case 3.

EB2(TeC f ) =
(2m− 1)(n− 1)

mn
.

EB2(TeTf ) = EB2(CeTf ) = EB2(CeC f ) = 0.

Case
8:

An ordered pair (e, f ) of distinct edges, where e is a treatment edge and f is a control
edge, each adjacent to the control vertex v:

• The expected value computations are similar to those of case 4.

EB2(TeC f ) =
(m− 1)(2n− 1)

mn
.

EB2(TeTf ) = EB2(CeTf ) = EB2(CeC f ) = 0.

Case
9:

An ordered pair (e, f ) of distinct edges, where e is a control edge and f is a treatment
edge, each adjacent to the treatment vertex v:

• The expected value computations are similar to those of case 3.

EB2(CeTf ) =
(2m− 1)(n− 1)

mn
.

EB2(TeTf ) = EB2(TeC f ) = EB2(CeC f ) = 0.

Case
10:

An ordered pair (e, f ) of distinct edges, where e is a control edge and f is a treatment
edge, each adjacent to the control vertex v:

• The expected value computations are similar to those of case 4.

EB2(CeTf ) =
(m− 1)(2n− 1)

mn
.

EB2(TeTf ) = EB2(TeC f ) = EB2(CeC f ) = 0.

• This case is not actually needed, because the variance matrix is symmetric.

Computations for the remaining edge pairs.

Case
11:

An ordered pair (e, f ) of non-intersecting edges, both treatment edges:

• Let the edges be e = (v1, v2) and f = (v3, v4), with corresponding vertex frequen-
cies k1, k2, k3, k4. The number of possibilities for Te > 0 is k1k2, and for Tf > 0
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is k3k4. Then the number of samples that produce both Te > 0 and Tf > 0 is
k1k2k3k4, and

EB2(TeTf ) =
1

mmnn ∑
k1+...km=m

k2k4

(
N

k1, k2, . . . , kN

)
× ∑

l1+...ln=n
l1l3

(
n

l1, l2, . . . , ln

)
=

1
mmnn (m− 1)mm−1(n− 1)nn−1

=
(m− 1)(n− 1)

mn
.

Because both edges correspond to treatment wins, we have

EB2(CeC f ) = EB2(TeC f ) = EB2(CeTf ) = 0.

Case
12:

An ordered pair (e, f ) of non-intersecting edges, both control edges. Following similar
reasoning as in case 11 we have:

EB2(CeC f ) =
(m− 1)(n− 1)

mn
.

EB2(TeTf ) = EB2(TeC f ) = EB2(CeTf ) = 0.

Case
13:

An ordered pair (e, f ) of non-intersecting edges, where e is a treatment edge and f is
a control edge. Following similar reasoning as in case 11 we have:

EB2(TeC f ) =
(m− 1)(n− 1)

mn
EB2(TeTf ) = EB2(CeTf ) = EB2(CeC f ) = 0.

Case
14:

An ordered pair (e, f ) of non-intersecting edges, where e is a control edge and f is a
treatment edge. Following similar reasoning as in case 11 we have:

EB2(CeTf ) =
(m− 1)(n− 1)

mn
EB2(TeTf ) = EB2(TeC f ) = EB2(CeC f ) = 0.

The algorithm is now complete. We evaluate the variance (S4) by examining each ordered
pair of edges (e, f ), evaluating EB2(TeTf ), EB2(TeC f ), EB2(CeTf ), and EB2(CeC f ). This
gives an 2E× 2E matrix, where E is the number of edges in the graph G. Pre- and post-
multiply by the W terms. The variance matrix for the pair (WT , WC) is obtained by summing
each of the four E× E blocks of this larger matrix.

Unfortunately, the algorithm as stated is O(N4), because the number of edges is
O(N2), and we have explicitly computed all the entries of an 2E × 2E matrix. For a
practical algorithm we need to reduce the entire computation to O(N2).

S5.3. Practical algorithm in the two-sample bootstrap case

The key to a practical computation is to look at cases 1-10 at each vertex separately.
Then sum those values to include in the four entries of (S4). Finally, compute the numbers
of pairs in each of cases 11 - 14, and include those terms also.

We also need a bit of notation that is specific to the bootstrap computations.
Let the indicator Dv = 1 when Di = 1 and Dj = 0, and Dv = 0 when Di = 0 and

Dj = 1. An edge corresponding to a treatment win (uij > 0 for Dv = 1 and uij < 0 for
Dv = 0) or a control win (uij < 0 for Dv = 1 and uij > 0 for Dv = 0) in the observed data
will be called a treatment edge or a control edge.
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Figure S1. Relevant terminology for the bootstrap distribution of a score matrix U. The edges in the
red rectangles are the edges contributing to the wins, Dv = 1 is representing the treatment subjects
and Dv = 0 the control subjects and #Tv respectively #Cv denoting the number of treatment or control
edges adjacent to the vertex v.

#Tv = ∑ we over treatment edges adjacent to vertex v or

the row sums of we > 0 (we < 0) for vertex v with Dv=1 (Dv=0).

#Cv = ∑ we over control edges adjacent to vertex v or

the column sums of we > 0 (we < 0) for vertex v with Dv=0 (Dv=1).

#Ts
v = ∑ w2

e over treatment edges adjacent to vertex v or

the row sums of w2
e for we > 0 (we < 0) for vertex v with Dv=1 (Dv=0).

#Cs
v = ∑ w2

e over control edges adjacent to vertex v or

the column sums of w2
e for we > 0 (we < 0) for vertex v with Dv=0 (Dv=1).

or due to symmetry of the U-matrix (Figure S1):

#Tv = ∑ we the row (Dv=1) and column (Dv=0) sums of we > 0 for vertex v.

#Cv = ∑ we the row (Dv=1) and column (Dv=0) sums of we < 0 for vertex v.

#Ts
v = ∑ w2

e the row (Dv=1) and column (Dv=0) sums of w2
e for we > 0 vertex v.

#Cs
v = ∑ w2

e the row (Dv=1) and column (Dv=0) sums of w2
e for we < 0 vertex v.

The distinction between #Ts
v and #T2

v should be made clear. In the former the appro-
priate values we are squared, and then summed; in the latter the values we are summed,
and then the sum is squared.
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Case
1:

For each treatment edge e adjacent to v, the contribution to the square terms in the

variance VTT is w2
e
(2m− 1)(2n− 1)

mn
. Summing over all the treatment edges adjacent

to v, we have the contribution to the square terms

(2m− 1)(2n− 1)
mn

#Ts
v for VTT

0 for VTC, VCT , and VCC

Case
2:

For each control edge e adjacent to v, the contribution to the square terms in the

variance VCC is w2
e
(2m− 1)(2n− 1)

mn
. Summing over all the control edges adjacent to

v, we have the contribution to the square terms

(2m− 1)(2n− 1)
mn

#Cs
v for VCC

0 for VTT , VTC, and VCT

Case
3:

For an ordered pair (e, f ) of distinct treatment edges adjacent to the treatment vertex

v, the contribution to the square terms in the variance VTT is wew f
(2m− 1)(n− 1)

mn
.

Summing over all the the pairs, we have the contribution to the square terms

(2m− 1)(n− 1)
mn

(#T2
v − #Ts

v) for VTT

0 for VTC, VCT , and VCC

The reason for the subtraction in (#T2
v − #Ts

v) is that we are looking at pairs of distinct
edges; the ordered pairs of identical edges were already counted in case 1.

Case
4:

For an ordered pair (e, f ) of distinct treatment edges adjacent to the control vertex

v, the contribution to the square terms in the variance VTT is wew f
(m− 1)(2n− 1)

mn
.

Summing over all the the pairs, we have the contribution to the square terms

(m− 1)(2n− 1)
mn

(#T2
v − #Ts

v) for VTT

0 for VTC, VCT , and VCC

Case
5:

For an ordered pair (e, f ) of distinct control edges adjacent to the treatment vertex

v, the contribution to the square terms in the variance VCC is wew f
(2m− 1)(n− 1)

mn
.

Summing over all the the pairs, we have the contribution to the square terms

(2m− 1)(n− 1)
mn

(#C2
v − #Cs

v) for VCC

0 for VTT , VTC, and VCT

Case
6:

For an ordered pair (e, f ) of distinct control edges adjacent to the control vertex v,

the contribution to the square terms in the variance VCC is wew f
(m− 1)(2n− 1)

mn
.

Summing over all the the pairs, we have the contribution to the square terms

(m− 1)(2n− 1)
mn

(#C2
v − #Cs

v) for VCC

0 for VTT , VTC, and VCT

Case
7:

For an ordered pair (e, f ) of distinct edges, where e is a treatment edge and f is a
control edge, adjacent to the treatment vertex v, the contribution to the square terms
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in the variance VTC is wew f
(2m− 1)(n− 1)

mn
. Summing over all the the pairs, we have

the contribution to the square terms

(2m− 1)(n− 1)
mn

#Tv#Cv for VTC

0 for VTT , VCT , and VCC

Case
8:

For an ordered pair (e, f ) of distinct edges, where e is a treatment edge and f is a
control edge, adjacent to the control vertex v, the contribution to the square terms in

the variance VTC is wew f
(m− 1)(2n− 1)

mn
. Summing over all the the pairs, we have

the contribution to the square terms

(m− 1)(2n− 1)
mn

#Tv#Cv for VTC

0 for VTT , VCT , and VCC

Case
9:

For an ordered pair (e, f ) of distinct edges, where e is a control edge and f is a
treatment edge, adjacent to the treatment vertex v, the contribution to the square

terms in the variance VCT is wew f
(2m− 1)(n− 1)

mn
. Summing over all the the pairs,

we have the contribution to the square terms

(2m− 1)(n− 1)
mn

#Tv#Cv for VCT

0 for VTT , VTC, and VCC

Case
10:

For an ordered pair (e, f ) of distinct edges, where e is a control edge and f is a
treatment edge, adjacent to the control vertex v, the contribution to the square terms

in the variance VCT is wew f
(m− 1)(2n− 1)

mn
. Summing over all the the pairs, we have

the contribution to the square terms

(m− 1)(2n− 1)
mn

#Tv#Cv for VCT

0 for VTT , VTC, and VCC

Case
11:

For an ordered pair (e, f ) of non-intersecting treatment edges, the contribution to the

square terms in the variance VTT is wew f
(m− 1)(n− 1)

mn
. The sum of the wew f terms

for all ordered pairs of treatment edges would be W2
T . We have already included the

terms wew f for single edges (Case 1) and for pairs of intersecting edges (Cases 3 and
4). Accordingly the remaining variance computation is[

W2
T − ∑

Dv=1
#Ts

v −∑
v
(#T2

v − #Ts
v)
)] (m− 1)(n− 1)

mn
for VTT

0 for VTC, VCT , and VCC

Case
12:

For an ordered pair (e, f ) of non-intersecting control edges, the contribution to the

square terms in the variance VCC is wew f
(m− 1)(n− 1)

mn
. The sum of the wew f terms

for all ordered pairs of treatment edges would be W2
C. We have already included the
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terms wew f for single edges (Case 2) and for pairs of intersecting edges (Cases 5 and
6). Accordingly the remaining variance computation is[

W2
C − ∑

Dv=1
#Cs

v −∑
v
(#C2

v − #Cs
v)
)] (m− 1)(n− 1)

mn
for VCC

0 for VTT , VTC, and VCT

Case
13:

For an ordered pair (e, f ) of non-intersecting edges, where e is a treatment edge
and f is a control edge, the contribution to the square terms in the variance VTC

is wew f
(m− 1)(n− 1)

mn
. We have already included the terms wew f for pairs of in-

tersecting edges (Cases 7 and 8). Accordingly the remaining variance computation
is [

WTWC −∑
v

#Tv#Cv

]
(m− 1)(n− 1)

mn
for VTC

0 for VTT , VCT , and VCT

Case
14:

For an ordered pair (e, f ) of non-intersecting edges, where e is a control edge and
f is a treatment edge, the contribution to the square terms in the variance VTC is

wew f
(m− 1)(n− 1)

mn
. We have already included the terms wew f for pairs of inter-

secting edges (Cases 9 and 10). Accordingly the remaining variance computation
is [

WTWC −∑
v

#Tv#Cv

]
(m− 1)(n− 1)

mn
for VCT

0 for VTT , VTC, and VCT

The variances for WT and WC are thus:

VarB(WT) =
(2m− 1)(2n− 1)

mn ∑
Dv=1

#Ts
v +

(2m− 1)(n− 1)
mn ∑

Dv=1
(#T2

v − #Ts
v)+

(m− 1)(2n− 1)
mn ∑

Dv=0
(#T2

v − #Ts
v) +

(m− 1)(n− 1)
mn

(
W2

T − ∑
Dv=1

#Ts
v−

∑
v
(#T2

v − #Ts
v)
)
−W2

T .

VarB(WC) =
(2m− 1)(2n− 1)

mn ∑
Dv=1

#Cs
v +

(2m− 1)(n− 1)
mn ∑

Dv=1
(#C2

v − #Cs
v)+

(m− 1)(2n− 1)
mn ∑

Dv=0
(#C2

v − #Cs
v) +

(m− 1)(n− 1)
mn

(
W2

C − ∑
Dv=1

#Cs
v−

∑
v
(#C2

v − #Cs
v)
)
−W2

C.

and the covariance:

CovB(WTWC) =
(2m− 1)(n− 1)

mn ∑
Dv=1

#Tv#Cv +
(m− 1)(2n− 1)

mn ∑
Dv=0

#Tv#Cv

+
(m− 1)(n− 1)

mn

(
WTWC −∑

v
#Tv#Cv

)
−WTWC.
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S5.4. Complexity of the final bootstrap algorithm

For a specific vertex v, in order to compute the various vertex dependent terms in the
variance formulas, (#Tv, #Cv, #Ts

v, and #Cs
v) each other vertex must be examined once. Thus

the complexity of the computation at each vertex is O(N), and computing at all vertices is
thus O(N2). The total number of edges and the wins WT and WC are computed from these
numbers in an additional O(N) steps, and the final computations are O(1). Accordingly
the time complexity of the bootstrap algorithm is O(N2). No algorithm can have time
complexity less than O(N2), because we must examine each entry of the original N × N
matrix at least once.

We also note that the edges within trial arms (the so-called neutral edges), never
entered into any of the computations. Accordingly these edges do not influence the
variance computation. This is in contrast to the permutation situation, where the neutral
edges do impact the variance.

S6. The one-sample bootstrap distribution

In a one-sample bootstrap test, subjects are randomly re-sampled with replacement
from the entire population. Accordingly, the trial arm counts in a bootstrap sample will
typically differ from those in the observed data. Although sampling from the trial arms
separately seems to be more common; this method might be used on occasion. With a
population of size N patients, there are NN possible bootstrap samples, and our underlying
assumption is that all are equally likely. If all possible bootstrap samples, are considered,
the the treatment win sum WT and control win sum WC will have the complete bootstrap
distribution. The means, variances, and covariance of this bootstrap distribution of WT and
WC will be calculated explicitly. These values will also be the expected means, variances,
and covariances from a randomized bootstrap sample.

Neutral edges in the observed data can never correspond to wins in a bootstrap sample,
and such edges play no role in the computations below.

We will use a number of easily derived identities involving multinomial coefficients.
These are summarized in the appendix.

We also need a bit of notation that is specific to the bootstrap computations.
For expected values, we use the symbol EB1, as a specification of the general expection

symbol E.

#Tv = ∑ we over treatment edges adjacent to vertex v.

#Cv = ∑ we over control edges adjacent to vertex v.

#Ts
v = ∑ w2

e over treatment edges adjacent to vertex v.

#Cs
v = ∑ w2

e over control edges adjacent to vertex v.

The distinction between #Ts
v and #T2

v should be made clear. In the former the appropriate
values we are squared, and then summed; in the latter the values we are summed, and then
the sum is squared.

When sampling from the entire population, a vertex frequency can have any value in
the interval [0, N]. The number of ways that a vertex frequency can have the value k1 is
given by ∑k2+···+KN=N−k1

( N
k1,k2,...,kN

), and the number of ways a pair of vertices can have

frequencies (k1, k2) is given by ∑k3+···+KN=N−k1−k2
( N

k1,k2,...,kN
).
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S6.1. Expectations

Consider a treatment edge e. For the expected value of Te, we use equation (S14) from
the appendix.

EB1(Te) =
1

NN ∑
k1+...kN=N

k1k2

(
N

k1, k2, . . . , kN

)
=

1
NN (N − 1)NN−1 =

N − 1
N

(S10)

For this edge we will have EB1(Ce) = 0, since this edge cannot correspond to a control
win in any bootstrap sample. Similarly, for a control edge f , EB1(Tf ) = 0 and EB1(C f ) =
(N − 1)/N.

S6.2. Variances

For the variance, again the expectations of EB1(TeTf ), EB1(CeC f ), EB1(TeC f ) and
EB1(CeTf ) need to be calculated, and these depend on the geometric configuration of the
edges. We considered various cases of ordered pairs. The following cases are considered: an
ordered pair of identical treatment edges (case 1), an ordered pair of identical control edges
(case 2), an ordered pair of distinct treatment edges adjacent to a vertex (case 3), an ordered
pair of distinct control edges adjacent to a vertex (case 4), an ordered pair of a treatment
edge and a control edge adjacent to a vertex (case 5), and an ordered pair of a control edge
and a treatment edge adjacent to a vertex (case 6). Finally, for non-intersecting edges, 4
cases are considered: an ordered pair of distinct treatment edges (case 7), an ordered pair
of distinct control edges (case 8), an ordered pair of a treatment and a control edge (case 9),
and an ordered pair of a control edge and a treatment edge (case 10).

In principle some of the above cases could be combined, by considering a mixture
of ordered and unordered pairs of edges. It seems clearer to use ordered pairs
throughout.

Case
1:

An ordered pair of identical treatment edges. For an edge e of G that corresponds to a
treatment win

EB1(T2
e ) =

1
NN ∑

k1+...kN=N
k2

1k2
2

(
N

k1, k2, . . . , kN

)

=
(N − 1)(4N2 − 9N + 6)

N3 ,

where we have used equation (S17) from section S7. For this same edge, Ce = 0 for all
bootstrap samples, and hence EB1(C2

e ) = EB1(TeCe) = EB1(CeTe) = 0.
Case
2:

An ordered pair of identical control edges. For an edge e of G that corresponds to a
treatment win

EB1(C2
e ) =

1
NN ∑

k1+...kN=N
k2

1k2
2

(
N

k1, k2, . . . , kN

)

=
(N − 1)(4N2 − 9N + 6)

N3 .

For this same edge, Te = 0 for all bootstrap samples, and henceEB1(T2
e ) = EB1(TeCe) =

EB1(CeTe) = 0.
Case
3:

An ordered pair (e, f ) of distinct treatment edges, each adjacent to a vertex v:

• Let the edges be e = (v1, v2) and f = (v1, v3), with corresponding vertex fre-
quencies k1, k2, k3. The number of possibilities for Te > 0 is k1k2, and for Tf > 0
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is k1k3. Then the number of samples that produce both Te > 0 and Tf > 0 is
k2

1k2k3, and

EB1(TeTf ) =
1

NN ∑
k1+...kN=N

k2
1k2k3

(
N

k1, k2, . . . , kN

)
=

1
NN (N − 1)(N − 2)(2N − 3)NN−3

=
(N − 1)(N − 2)(2N − 3)

N3 , (S11)

where we have used formula (S18) from section S7.
Because both edges correspond to treatment wins, we have

EB1(CeC f ) = EB1(TeC f ) = EB1(CeTf ) = 0.

The above computations were for a common treatment vertex. The computations
would be exactly the same if the common vertex was a control vertex.

Case
4:

An ordered pair (e, f ) of distinct control edges, each adjacent to a vertex v:

• The computations are the same as in case 3, except that now the contribution is
to EB1(CeC f ). Accordingly

EB1(CeC f ) =
(N − 1)(N − 2)(2N − 3)

N3

EB1(TeTf ) = EB1(TeC f ) = EB1(CeTf ) = 0

Case
5:

An ordered pair (e, f ) of distinct edges, where e is a treatment edge and f is a control
edge, each adjacent to a vertex v:

• The computations are the same as in case 3. Accordingly

EB1(TeC f ) =
(N − 1)(N − 2)(2N − 3)

N3

EB1(TeTf ) = EB1(CeTf ) = EB1(CeC f ) = 0

Case
6:

An ordered pair (e, f ) of distinct edges, where e is a control edge and f is a treatment
edge, each adjacent to a vertex v:

• The computations are the same as in case 3. Accordingly

EB1(CeTf ) =
(N − 1)(N − 2)(2N − 3)

N3

EB1(TeTf ) = EB1(TeC f ) = EB1(CeC f ) = 0

Case
7:

An ordered pair (e, f ) of non-intersecting edges, both treatment edges:

• Let the edges be e = (v1, v2) and f = (v3, v4), with corresponding vertex frequen-
cies k1, k2, k3, k4. The number of possibilities for Te > 0 is k1k2, and for Tf > 0
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is k3k4. Then the number of samples that produce both Te > 0 and Tf > 0 is
k1k2k3k4, and

EB1(TeTf ) =
1

NN ∑
k1+...kN=N

k1k2k3k4

(
N

k1, k2, . . . , kN

)
=

1
NN (N − 1)(N − 2)(N − 3)NN−3

=
(N − 1)(N − 2)(N − 3)

N3 ,

where we have used formula (S19) from section S7. Because both edges corre-
spond to treatment wins, we have

EB1(CeC f ) = EB1(TeC f ) = EB1(CeTf ) = 0.

Case
8:

An ordered pair (e, f ) of non-intersecting edges, both control edges. Following similar
reasoning as in case 7 we have:

EB1(CeC f ) =
(N − 1)(N − 2)(N − 3)

N3 .

EB1(TeTf ) = EB1(TeC f ) = EB1(CeTf ) = 0.

Case
9:

An ordered pair (e, f ) of non-intersecting edges, where e is a treatment edge and f is
a control edge. Following similar reasoning as in case 7 we have:

EB1(TeC f ) =
(N − 1)(N − 2)(N − 3)

N3

EB1(TeTf ) = EB1(CeTf ) = EB1(CeC f ) = 0.

Case
10:

An ordered pair (e, f ) of non-intersecting edges, where e is a control edge and f is a
treatment edge. Following similar reasoning as in case 7 we have:

EB1(CeTf ) =
(N − 1)(N − 2)(N − 3)

N3

EB1(TeTf ) = EB1(TeC f ) = EB1(CeC f ) = 0.

The algorithm is now complete. We evaluate the variance (S4) by examining each
ordered pair of edges (e, f ), evaluating EB2(TeTf ), EB2(TeC f ), EB2(CeTf ), and EB2(CeC f ).
This gives an 2E× 2E matrix, where E is the number of edges in the graph G. Pre- and
post-multiply by the W terms. The variance matrix for the pair (WT , WC) is obtained by
summing each of the four E× E blocks of this larger matrix.

Unfortunately, the algorithm as stated is O(N4), because the number of edges is
O(N2), and we have explicitly computed all the entries of an 2E × 2E matrix. For a
practical algorithm we need to reduce the entire computation to O(N2).

S6.3. Practical algorithm in the one-sample bootstrap case

The key to a practical computation is to look at cases 1-6 at each vertex separately.
Then sum those values to include in the four entries of (S4). Finally, compute the numbers
of pairs in each of cases 11 - 14, and include those terms also.
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Case
1:

For each treatment edge e adjacent to v, the contribution to the square terms in the

variance VTT is w2
e
(N − 1)(4N2 − 9N + 6)

N3 . Summing over all the treatment edges
adjacent to v we have the contribution to the square terms

(N − 1)(4N2 − 9N + 6)
N3 #Ts

v for VTT

0 for VTC, VCT , and VCC

It should be noted that when we add these terms from all vertices, each edge would be
counted twice. An appropriate correction is needed in the actual computer program.
The same comment applies to Case 2.

Case
2:

For each control edge e adjacent to v, the contribution to the square terms in the vari-

ance VCC is w2
e
(N − 1)(4N2 − 9N + 6)

N3 . Summing over all the control edges adjacent
to v, and correcting for the fact that an edge will be counted at both ends, we have the
contribution to the square terms

(N − 1)(4N2 − 9N + 6)
N3 #Cs

v for VCC

0 for VTT , VTC, and VCT

Case
3:

For an ordered pair (e, f ) of distinct treatment edges adjacent to the vertex v, the

contribution to the square terms in the variance VTT is wew f
(N − 1)(N − 2)(2N − 3)

N3 .
Summing over all the the pairs, we have the contribution to the square terms

(N − 1)(N − 2)(2N − 3)
N3 (#T2

v − #Ts
v) for VTT

0 for VTC, VCT , and VCC

The reason for the subtraction in (#T2
v − #Ts

v) is that we are looking at pairs of distinct
edges; the ordered pairs of identical edges were already counted in case 1.

Case
4:

For an ordered pair (e, f ) of distinct control edges adjacent to the vertex v, the con-

tribution to the square terms in the variance VCC is wew f
(N − 1)(N − 2)(2N − 3)

N3 .
Summing over all the the pairs, we have the contribution to the square terms

(N − 1)(N − 2)(2N − 3)
N3 (#C2

v − #Cs
v) for VCC

0 for VTT , VTC, and VCT

Case
5:

For an ordered pair (e, f ) of distinct edges, where e is a treatment edge and f is a
control edge, each adjacent to the vertex v, the contribution to the square terms in the

variance VTC is wew f
(N − 1)(N − 2)(2N − 3)

N3 . Summing over all the the pairs, we
have the contribution to the square terms

(N − 1)(N − 2)(2N − 3)
N3 (#Tv#Cv) for VTC

0 for VTT , VCT , and VCC

Case
6:

For an ordered pair (e, f ) of distinct edges, where e is a control edge and f is a
treatment edge, each adjacent to the vertex v, the contribution to the square terms in
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the variance VCT is wew f
(N − 1)(N − 2)(2N − 3)

N3 . Summing over all the the pairs,
we have the contribution to the square terms

(N − 1)(N − 2)(2N − 3)
N3 (#Tv#Cv) for VCT

0 for VTT , VTC, and VCC

Case
7:

For an ordered pair (e, f ) of non-intersecting treatment edges, the contribution to

the square terms in the variance VTT is wew f
(N − 1)(N − 2)(N − 3)

N3 . The sum of the

wew f terms for all ordered pairs of treatment edges would be W2
T . We have already

included the terms wew f for single edges (Case 1) and for pairs of intersecting edges
(Case 3). Accordingly the remaining variance computation is[

W2
T −∑

v
#T2

v

]
(N − 1)(N − 2)(N − 3)

N3 for VTT

0 for VTC, VCT , and VCC

Case
8:

For an ordered pair (e, f ) of non-intersecting control edges, the contribution to the

square terms in the variance VCC is wew f
(N − 1)(N − 2)(N − 3)

N3 . The sum of the

wew f terms for all ordered pairs of control edges would be W2
C. We have already

included the terms wew f for single edges (Case 2) and for pairs of intersecting edges
(Case 4). Accordingly the remaining variance computation is[

W2
C −∑

v
#C2

v

]
(N − 1)(N − 2)(N − 3)

N3 for VCC

0 for VTT , VTC, and VCT

Case
9:

For an ordered pair (e, f ) of non-intersecting edges, where e is a treatment edge
and f is a control edge, the contribution to the square terms in the variance VTC is

wew f
(N − 1)(N − 2)(N − 3)

N3 . The sum of the wew f terms for all ordered pairs would
be WTWC. We have already included the terms wew f for pairs of intersecting edges
(Case 5). Accordingly the remaining variance computation is[

WTWC −∑
v

#Tv#Cv

]
(N − 1)(N − 2)(N − 3)

N3 for VTC

0 for VTT , VCT , and VCC

Case
10:

For an ordered pair (e, f ) of non-intersecting edges, where e is a treatment edge
and f is a control edge, the contribution to the square terms in the variance VCT is

wew f
(N − 1)(N − 2)(N − 3)

N3 . The sum of the wew f terms for all ordered pairs would
be WTWC. We have already included the terms wew f for pairs of intersecting edges
(Case 6). Accordingly the remaining variance computation is[

WTWC −∑
v

#Tv#Cv

]
(N − 1)(N − 2)(N − 3)

N3 for VCT

0 for VTT , VTC, and VCC
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S6.4. Complexity of the final bootstrap algorithm

For a specific vertex v, in order to compute the various vertex dependent terms in the
variance formulas, (#Tv, #Cv, #Ts

v, and #Cs
v) each other vertex must be examined once. Thus

the complexity of the computation at each vertex is O(N), and computing at all vertices is
thus O(N2). The total number of edges and the wins WT and WC are computed from these
numbers in an additional O(N) steps, and the final computations are O(1). Accordingly
the time complexity of the bootstrap algorithm is O(N2). No algorithm can have time
complexity less than O(N2), because we must examine each entry of the original N × N
matrix at least once.

We also note that the edges within trial arms (the so-called neutral edges), never
entered into any of the computations. Accordingly these edges do not influence the
variance computation. This is in contrast to the permutation situation, where the neutral
edges do impact the variance.

S7. Multinomial coefficient identities

We look at various identities involving the multinomial coefficients. These are all
elementary to derive, and they are summarized here for the convenience of the reader.

The multinomial theorem is

(x1 + x2 + · · ·+ xN)
N = ∑

k1+...kN=N
xk1

1 xk2
2 . . . xkN

N

(
N

k1, k2, . . . , kN

)
(S12)

Letting all xi = 1 in (S12) we find

∑
k1+...kN=N

(
N

k1, k2, . . . , kN

)
= NN . (S13)

By taking derivatives of (S12) and then substituting all xi = 1, we obtain a number of
further identities.

∑
k1+...kN=N

k1

(
N

k1, k2, . . . , kN

)
= NN . (S14)

∑
k1+...kN=N

k2
1

(
N

k1, k2, . . . , kN

)
= (2N − 1)NN−1 (S15)

∑
k1+...kN=N

k1k2

(
N

k1, k2, . . . , kN

)
= N(N − 1)NN−2 = (N − 1)NN−1. (S16)

∑
k1+...kN=N

k2
1k2

2

(
N

k1, k2, . . . , kN

)
= (N − 1)(4N2 − 9N + 6)NN−3 (S17)

∑
k1+...kN=N

k2
1k2k3

(
N

k1, k2, . . . , kN

)
= (N − 1)(N − 2)(2N − 3)NN−3 (S18)

∑
k1+...kN=N

k1k2k3k4

(
N

k1, k2, . . . , kN

)
= (N − 1)(N − 2)(N − 3)NN−3, (S19)
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