
Supplementary material of manuscript:

“Exact Permutation and Bootstrap Distribution of Generalized
Pairwise Comparison statistics”

R and SAS Code

R-code Permutation

William N Anderson

R code for the permutation distribution, based on real skew matrices

Compute means and variances for trial arm wins,

based on the full permutation distribution,

using an already computed win matrix and trial arms.

The algorithm is O(N^2) in time and space.

February 2023, based on earlier code for the 0-1 case

This file is self contained

############ utility functions. For package use would put into a separate file

checkmatrixandarms <- function(winmatrix, trialarms){

 if (length(trialarms) != nrow(winmatrix)) stop("Incompatible dimensions in win matrix and trial
arms")

 if (any(winmatrix + t(winmatrix) != 0)) stop("Win matrix not skew")

 if (!all(trialarms %in% c(0, 1))) stop("Invalid trial arms")

}

Evaluate wins for a U matrix and trial arms

wincomputations_real <- function(winmatrix, trialarms){

 # test rows is the vector of rows corresponding to the treatment arm

 testrows <- which(trialarms == 1)

 comparisonmatrix <- winmatrix[testrows, -testrows]

 # K and L correspond to the definitions in the Dong paper -- we might want those someday

 K <- pmax(comparisonmatrix, 0) # Test wins are the positive matrix entries; test losses and ties are 0

 L <- pmax(-comparisonmatrix, 0) # Control wins are the positive matrix entries; control losses and
ties are 0

 winssum <- c(sum(K), sum(L)); names(winssum) <- c("Test Win Sum", "Control Win Sum")

 # might want K and L some day, but not today

 # list(`Test win matrix` = K, `Control win matrix` = L, winssum = winssum)

 winssum

}

#############end utility functions ########################

############ The practical algorithm ###################

Count Cases 1-5 at a specific vertex

onevertex_PR <- function(ins, insq, outs, outsq){

 # function to compute needed terms for a specific vertex,

 # using already computed invalues and outvalues

 # subscripts correspond to case numbering in manuscript

 # note that we do not count case 6 directly

 c(insq, ins^2 - insq, outs^2-outsq,

 ins*outs, ins*outs)

}

winsmeanandvariance_real_P <- function(winmatrix, trialarms){

 # function to compute the expected number of treatment and control wins, and their variance

 # the actual trial assignments are not relevant for this function, just the count

 #

 # winmatrix is the skew matrix of wins, perhaps from a hierarchical evaluation.

 #

 checkmatrixandarms(winmatrix, trialarms) # will stop if data are bad

 m <- sum(trialarms == 1); n <- sum(trialarms == 0); N <- m + n

 # compute various vertex values

 # computations are O(N^2), because the matrix multiplications are by component

 # sum of values of edges pointing in to the vertex -- real analog of indegree

 invalues <- colSums(winmatrix*as.integer(winmatrix > 0))

 # sum of squares of values of edges pointing in to the vertex

 insqvalues <- colSums(winmatrix^2*as.integer(winmatrix > 0))

 # sum of values of edges pointing out of the vertex -- real analog of outdegree

 outvalues <- rowSums(winmatrix*as.integer(winmatrix > 0))

 # sum of squares of values of edges pointing out of the vertex

 outsqvalues <- rowSums(winmatrix^2*as.integer(winmatrix > 0))

 edgesum <- sum(invalues) # could also use outvalues

 # count the cases at each vertex v -- case definitions in manuscript

 # the case matrix has 5 rows (1 for each case), and N columns

 # case 6 is not represented in this matrix, because case 6 situations do not belong to a specific
vertex

 # the matrix is perhaps useful in understanding the algorithm, but only the rowSums are actually
used

 casematrix <- mapply(onevertex_PR, invalues, insqvalues, outvalues, outsqvalues)

 # add the cases from all the vertices

 casecounts <- rowSums(casematrix)

 casecounts[6] <- edgesum^2 - sum(casecounts) # now we have case 6

 expected = rep(edgesum*m*n/(N*(N - 1)), 2)

 names(expected) <- c("Test Win Sum", "Control Win Sum")

 TTerms <- c(m*n/(N*(N - 1)), m*n*(m - 1)/(N*(N - 1)*(N - 2)),

 m*n*(n - 1)/(N*(N - 1)*(N - 2)), 0, 0,

 m*n*(m - 1)*(n - 1)/(N*(N - 1)*(N - 2)*(N - 3)))

 CTerms <- c(m*n/(N*(N - 1)), m*n*(n - 1)/(N*(N - 1)*(N - 2)),

 m*n*(m - 1)/(N*(N - 1)*(N - 2)), 0, 0,

 m*n*(m - 1)*(n - 1)/(N*(N - 1)*(N - 2)*(N - 3)))

 TCTerms <- c(0, 0, 0, m*n*(n - 1)/(N*(N - 1)*(N - 2)),

 m*n*(m - 1)/(N*(N - 1)*(N - 2)),

 m*n*(m - 1)*(n - 1)/(N*(N - 1)*(N - 2)*(N - 3)))

 CTTerms <- c(0, 0, 0, m*n*(m - 1)/(N*(N - 1)*(N - 2)),

 m*n*(n - 1)/(N*(N - 1)*(N - 2)),

 m*n*(m - 1)*(n - 1)/(N*(N - 1)*(N - 2)*(N - 3)))

 expectedforvariance <- c(sum(casecounts*TTerms), sum(casecounts*TCTerms),

 sum(casecounts*CTTerms), sum(casecounts*CTerms))

 expectedforvariance <- matrix(expectedforvariance, nrow = 2)

 variance <- expectedforvariance - expected %*% t(expected)

 rownames(variance) <- c("Test Win Sum", "Control Win Sum")

 colnames(variance) <- c("Test Win Sum", "Control Win Sum")

 # The observed wins are not relevant for this algorithm

 # But would be nice to have in the output

 Observed <- wincomputations_real(winmatrix, trialarms)

 list(Observed = Observed, Expected = expected, Variance = variance)

}

manuscriptexample_P <- function(){

manuscriptexample <-

 matrix(c(0, -2, 0, 0, 1,

 2, 0, 3, 0, -5,

 0, -3, 0, 4, 0,

 0, 0, -4, 0, -1,

 -1, 5, 0, 1, 0),

 nrow = 5, byrow = TRUE)

manuscriptarms <- c(1, 1, 0, 0, 0)

winsmeanandvariance_real_P(manuscriptexample, manuscriptarms)

}

R-code Two-sample bootstrap

William N Anderson

R code for the two-sample bootstrap distribution, based on real skew matrices

Compute means and variances for trial arm wins,

based on the full bootstrap distribution,

using an already computed win matrix and trial arms.

The algorithm is O(N^2) in time and space.

The algorithm computes the mean win sums and variance that would be observed

if all bootstrap samples were generated, without the necessity of actually

computing all the bootstrap samples

February 2023, based on earlier code for the 0-1 case

This file is self contained

############ utility functions. For package use would put into a separate file

checkmatrixandarms <- function(winmatrix, trialarms){

 if (length(trialarms) != nrow(winmatrix)) stop("Incompatible dimensions in win matrix and trial
arms")

 if (any(winmatrix + t(winmatrix) != 0)) stop("Win matrix not skew")

 if (!all(trialarms %in% c(0, 1))) stop("Invalid trial arms")

}

Evaluate wins for a U matrix and trial arms

wincomputations_real <- function(winmatrix, trialarms){

 # test rows is the vector of rows corresponding to the treatment arm

 testrows <- which(trialarms == 1)

 comparisonmatrix <- winmatrix[testrows, -testrows]

 # K and L correspond to the definitions in the Dong paper -- we might want those someday

 K <- pmax(comparisonmatrix, 0) # Test wins are the positive matrix entries; test losses and ties are 0

 L <- pmax(-comparisonmatrix, 0) # Control wins are the positive matrix entries; control losses and
ties are 0

 winssum <- c(sum(K), sum(L)); names(winssum) <- c("Test Win Sum", "Control Win Sum")

 # might want K and L some day, but not today

 # list(`Test win matrix` = K, `Control win matrix` = L, winssum = winssum)

 winssum

}

#############end utility functions ########################

Count Cases 1-10 at a specific vertex

The subscripts on the returned vector are the case numbers

onevertex_B2R <- function(D, starT, starsqT, starC, starsqC){

 # function to compute needed terms for a specific vertex.

 # subscripts correspond to case numbering in manuscript.

 # note that we do not count cases 11-14 directly,

 # since they do not correspond to specific vertices

 c(D*starsqT, (1 - D)* starsqC, D*(starT^2 - starsqT), (1 - D)*(starT^2 - starsqT), D*(starC^2 - starsqC),
cases 1-5

 (1 - D)*(starC^2 - starsqC), D*starT*starC, (1 - D)*starT*starC, D*starT*starC, (1 - D)*starT*starC) #
cases 6-10

}

winsmeanandvariance_real_B2 <- function(winmatrix, trialarms){

 checkmatrixandarms(winmatrix, trialarms) # will stop if data are bad

 N <- length(trialarms) # must be consistent with winmatrix

 treatmentarms <- trialarms == 1; m <- sum(treatmentarms)

 controlarms <- trialarms == 0; n <- sum(controlarms)

 # compute vectors giving the numbers of treatment and control wins for each vertex

 treatmentwinmatrix <- outer(treatmentarms, controlarms)*winmatrix*as.integer(winmatrix > 0)

 treatmentwinmatrix <- treatmentwinmatrix + t(treatmentwinmatrix)

 controlwinmatrix <- outer(controlarms, treatmentarms)*winmatrix*as.integer(winmatrix > 0)

 controlwinmatrix <- controlwinmatrix + t(controlwinmatrix)

 # using manuscript notation as much as possible

 `#T_v` <- rowSums(treatmentwinmatrix) # sum of treatment wins adjacent to vertex

 `#Tsq_v` <- rowSums(treatmentwinmatrix^2) # sum of squares of treatment wins adjacent to vertex

 `#C_v` <- rowSums(controlwinmatrix) # sum of control wins adjacent to vertex

 `#Csq_v` <- rowSums(controlwinmatrix^2) # sum of squares of treatment wins adjacent to vertex

 Deq1 <- trialarms; Deq0 = 1 - trialarms # manuscript notation

 W_T <- `#T_v` %*% Deq1; W_C <- `#C_v` %*% Deq0 # Test and Control win sums

 expected = c(W_T, W_C); names(expected) <- c("Test Win Sum", "Control Win Sum")

 casematrix <- mapply(onevertex_B2R, trialarms,`#T_v`, `#Tsq_v`, `#C_v`, `#Csq_v`)

 casecounts <- rowSums(casematrix)

 casecounts[11] <- W_T^2 - (casecounts[1] + casecounts[3] + casecounts[4])

 casecounts[12] <- W_C^2 - (casecounts[2] + casecounts[5] + casecounts[6])

 casecounts[13] <- W_T*W_C - (casecounts[7] + casecounts[8])

 casecounts[14] <- W_T*W_C - (casecounts[9] + casecounts[10])

 factors <- c((2*m - 1)*(2*n - 1), (2*m - 1)*(2*n - 1), (2*m - 1)*(n - 1), # cases 1:3

 (m - 1)*(2*n - 1), (2*m - 1)*(n - 1), (m - 1)*(2*n - 1), # cases 4:6

 (2*m - 1)*(n - 1), (m - 1)*(2*n - 1), (2*m - 1)*(n - 1), # cases 7:9

 (m - 1)*(2*n - 1),(m - 1)*(n - 1), (m - 1)*(n - 1), # cases 10:12

 (m - 1)*(n - 1), (m - 1)*(n - 1)) # cases 13:14

 factors <- factors/(m*n)

 # indicators for cases contributing to variance terms

 caseindicatorTT <- c(1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) # Cases 1, 3, 4, 11

 caseindicatorTC <- c(0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0) # Cases 7, 8, 13

 caseindicatorCT <- c(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1) # Cases 9, 10, 14

 caseindicatorCC <- c(0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0) # Cases 2, 5, 6, 12

 expTT <- sum(casecounts*factors*caseindicatorTT)

 expTC <- sum(casecounts*factors*caseindicatorTC)

 expCT <- sum(casecounts*factors*caseindicatorCT)

 expCC <- sum(casecounts*factors*caseindicatorCC)

 exp <- matrix(c(expTT, expTC, expCT, expCC), nrow = 2)

 variance <- exp - expected%*%t(expected)

 rownames(variance) <- c("Test Win Sum", "Control Win Sum")

 colnames(variance) <- c("Test Win Sum", "Control Win Sum")

 # The observed wins are not equal to the expected

 # But are computed separately for validation purposes

 Observed <- wincomputations_real(winmatrix, trialarms)

 list(Observed = Observed, Expected = expected, Variance = variance)

}

manuscriptexample_B <- function(){

manuscriptexample <-

 matrix(c(0, -2, 0, 0, 1,

 2, 0, 3, 0, -5,

 0, -3, 0, 4, 0,

 0, 0, -4, 0, -1,

 -1, 5, 0, 1, 0),

 nrow = 5, byrow = TRUE)

manuscriptarms <- c(1, 1, 0, 0, 0)

winsmeanandvariance_real_B2(manuscriptexample, manuscriptarms)

}

SAS-code Permutation
/*This code creates an example U matrix*/
Data U;
 input U1 U2 U3 U4 U5;
 datalines;
0 -2 0 0 1
2 0 3 0 -5
0 -3 0 4 0
0 0 -4 0 -1
-1 5 0 1 0
;

/*Assign values to be used later*/
%let nT=2; %let nC=3; %let N=%eval(&nT+&nC);

/*Calculate the indegree, outdegree and counts for ID, 2, 3, 4 and 5*/
Data example;
set U;
array U U1-U&N;
in=0;
ins=0;
out=0;
outs=0;
do i=1 to &N;
 if U[i]<0 then do; in= in-U[i]; ins=ins+U[i]**2; end;
 if U[i]>0 then do; out = out+U[i];outs=outs+U[i]**2; end;
end;
drop i;
in2_ins=in**2-ins;
out2_outs=out**2-outs;
inout=in*out;
run;

/*Sum over all rows */
proc means data=example (keep=out in outs ins in2_ins out2_outs inout)
noprint;
 output out=variance sum=;
run;

/*Calculate cases and the variance for the number of wins for the
treatment arm (V_WT), the variance for the number of wins for the control
arm
(V_WC) and their covariance (V_WTWC). Finally calculate the expectation
(Exp_WD) and variance for the win
difference (Var_WD)*/
data variance;
set variance;
factor1=&nT*&nC/(&N*(&N-1));
factor2=&nT*&nC*(&nT - 1)/(&N*(&N - 1)*(&N - 2));
factor3=&nT*&nC*(&nC - 1)/(&N*(&N - 1)*(&N - 2));
factor4=&nT*&nC*(&nT - 1)*(&nC - 1)/(&N*(&N - 1)*(&N - 2)*(&N - 3));
WT=out*factor1;
WC=out*factor1;
V_WT= factor1*ins + factor2*in2_ins + factor3*out2_outs + factor4*(in**2-
(ins+in2_ins+out2_outs+2*inout)) - (factor1*out)**2;
V_WC= factor1*outs + factor2*out2_outs + factor3*in2_ins + factor4*(out**2-
(outs+out2_outs+in2_ins+2*inout)) - (factor1*out)**2;
V_WTWC= factor1*inout + factor4*(in**2-(ins+in2_ins+out2_outs+2*inout)) -
(factor1*out)**2;
Exp_WD=WT-WC;

Var_WD=V_WT+V_WC-2*V_WTWC;
run;

proc print data=variance (keep=WT Exp_WD Var_WD V_WT V_WC V_WTWC); run;

SAS-code Two-sample bootstrap
/*This code creates an example U matrix*/
Data U;
 input U1 U2 U3;
 datalines;
0 0 1
3 0 -5
;

/*Define the sample size per treatment arm (needs to be compatible with the
U matrix*/
%let nT=2; %let nC=3;

/*create treatment win matrix (UT) and control win matrix (UC) from U for
both row and column sums*/
Data UT_Dv1;
set U;
array Ut U1-U&nC;
do i=1 to &nC;
 if Ut[i]<0 then Ut[i]=0;
end;
drop i;
run;

Data UC_Dv1;
set U;
array Uc U1-U&nC;
do i=1 to &nC;
 if Uc[i]>0 then Uc[i]=0; else Uc[i]=-Uc[i];
end;
drop i;
run;

proc transpose data = U prefix=U out= U_Dv0 (drop=_NAME_);
run;

Data UT_Dv0;
set U_Dv0;
array Ut U1-U&nT;
do i=1 to &nT;
 if Ut[i]<0 then Ut[i]=0;
end;
drop i;
run;

Data UC_Dv0;
set U_Dv0;
array Uc U1-U&nT;
do i=1 to &nT;
 if Uc[i]>0 then Uc[i]=0; else Uc[i]=-Uc[i];
end;
drop i;
run;

/*sum the wins and squares per row and column for both win matrices*/
Data ST_Dv1;
set UT_Dv1;
array Ut U1-U&nC;
T_Dv1=0;
Ts_Dv1=0;

do i=1 to &nC;
 if Ut[i]>0 then do;
 T_Dv1= T_Dv1+Ut[i];
 Ts_Dv1 = Ts_Dv1+Ut[i]**2;
 end;
end;
drop i;
run;

Data SC_Dv1;
set UC_Dv1;
array Uc U1-U&nC;
C_Dv1=0;
Cs_Dv1=0;
do i=1 to &nC;
 if Uc[i]>0 then do;
 C_Dv1= C_Dv1+Uc[i];
 Cs_Dv1 = Cs_Dv1+Uc[i]**2;
 end;
end;
drop i;
run;

Data ST_Dv0;
set UT_Dv0;
array Ut U1-U&nT;
T_Dv0=0;
Ts_Dv0=0;
do i=1 to &nT;
 if Ut[i]>0 then do;
 T_Dv0= T_Dv0+Ut[i];
 Ts_Dv0 = Ts_Dv0+Ut[i]**2;
 end;
end;
drop i;
run;

Data SC_Dv0;
set UC_Dv0;
array Uc U1-U&nT;
C_Dv0=0;
Cs_Dv0=0;
do i=1 to &nT;
 if Uc[i]>0 then do;
 C_Dv0= C_Dv0+Uc[i];
 Cs_Dv0 = Cs_Dv0+Uc[i]**2;
 end;
end;
drop i;
run;

/*merge the Dv1 and Dv0 sums and calculate cases */
data S_Dv1;
merge ST_Dv1(keep=T_Dv1 Ts_Dv1) SC_Dv1(keep=C_Dv1 Cs_Dv1);
T2_Ts_Dv1=T_Dv1**2-Ts_Dv1;
C2_Cs_Dv1=C_Dv1**2-Cs_Dv1;
TC_Dv1=T_Dv1*C_Dv1;
run;

data S_Dv0;
merge ST_Dv0(keep=T_Dv0 Ts_Dv0) SC_Dv0(keep=C_Dv0 Cs_Dv0);

T2_Ts_Dv0=T_Dv0**2-Ts_Dv0;
C2_Cs_Dv0=C_Dv0**2-Cs_Dv0;
TC_Dv0=T_Dv0*C_Dv0;
run;

proc means data=S_Dv1 noprint;
output out=Sum_Dv1 sum=;
run;

proc means data=S_Dv0 noprint;
output out=Sum_Dv0 sum=;
run;

data Sum_U;
merge Sum_Dv1 (drop= _FREQ_ _TYPE_) Sum_Dv0 (drop= _FREQ_ _TYPE_);
run;

/*Calculate case 1-14 and the variance for the number of wins for the
treatment arm (V_WT), the variance for the number of wins for the control
arm
(V_WC) and their covariance (V_WTWC). Finally calculate the expectation
(Exp_WD) and variance for the win
difference (Var_WD)*/
data variance;
set Sum_U;
WT=T_Dv1; /*=T_Dv0 */
WC=C_Dv1; /*=C_Dv0 */
factor1 = (2*&nT-1)*(2*&nC - 1)/(&nT*&nC);
factor2 = (2*&nT-1)*(&nC-1)/(&nT*&nC);
factor3 = (&nT-1)*(2*&nC-1)/(&nT*&nC);
factor4 = (&nT-1)*(&nC-1)/(&nT*&nC);
V_WT = factor1*Ts_Dv1 + factor2*T2_Ts_Dv1 + factor3*T2_Ts_Dv0 +
factor4*(WT**2-Ts_Dv1-T2_Ts_Dv1-T2_Ts_Dv0)-WT**2;
V_WC = factor1*Cs_Dv1 + factor2*C2_Cs_Dv1 + factor3*C2_Cs_Dv0 +
factor4*(WC**2-Cs_Dv1-C2_Cs_Dv1-C2_Cs_Dv0)-WC**2;
V_WTWC = factor2*TC_Dv1 + factor3*TC_Dv0 + factor4*(WT*WC-TC_Dv1-TC_Dv0) -
WT*WC;
Exp_WD=WT-WC;
Var_WD=V_WT+V_WC-2*V_WTWC;
run;

proc print data=variance (keep=V_WT V_WC V_WTWC Exp_WD Var_WD); run;

