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Abstract: We are studying the quasi-birth-death process and the property of weak ergodicity. Using
the C-matrix method, we derive estimates for the rate of convergence to the limiting regime for
the general case of the PH/M/1 model, as well as the particular case when m = 3. We provide a
numerical example for the case m = 3, and construct graphs showing the probability of an empty
queue and the probability of p; ().
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1. Introduction

The process of quasi-birth-death is a generalization of the usual process of birth and
death. The study of such processes plays an important role in complex telecommunication
systems, biology, and radio engineering. In modern software development, the microservice
architecture of applications in the cloud infrastructure is increasingly used, where the
receipt and service of requests can have their own characteristics. It is precisely such
systems that can be studied with the help of quasi-birth-death processes.

Quasi-birth-and-death processes are used to model a wide variety of applications.
Among those covered in the literature are assemble to order systems [1], production lines [2],
wireless communications [3] and a variety of queuing systems [4].

In the first, the term quasi-birth-death processes (QBD processes) was introduced by
V. Wallace and a computer program was written to analyze them. In the dissertation [5],
the first algorithms were developed and the importance of matrix-geometric methods of
solution was described. In [6], the PH/M/c model was studied in the case of a finite and
infinite state space, and estimates of the stationary distribution of the virtual waiting time
were obtained using the matrix-geometric method. QBD processes also have applications
in a multi-server queuing system, for example, see [7-11]

In this paper, we considered a single server queue, for which receipts occur in accor-
dance with to the update process, and the service time is distributed exponentially. The
intervals between receipts have the distribution Fy, , (x). This is an example of a PH/M/1
queue for which interarrival times have an Erlang distribution. A more detailed descrip-
tion of the model has been described in [4]. In [12], for this model, the Toeplitz matrix
was obtained, which specifies the associated random walk transition probabilities, but a
numerical example with given intensity functions was not considered.

The contributions of this paper can be summarized as follows:
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¢  Using the C-matrix method, we pass from the direct Kolmogorov system to a system
of the form % = W(t)z(t), for t > 0, (see [13]). Previously, this method was used to
study one class of supercomputer systems in [14]. The general approach was discussed
in [15]. We managed to obtain exhaustive estimates of the rate of convergence to the
limiting regime for the general case of the model PH/M/1.

* In Section 5, we considered a particular case of the PH/M /1 model for m = 3 and
obtained estimates based on the results obtained for the general case.

*  Numerical examples are considered and the corresponding graphs are constructed.

In [14] considers a transitional analysis of a Markov two-server model of a supercom-
puter in which clients served by a random number of servers simultaneously.

One of the most important problems in the study of Markov models of queuing
systems is the construction of their probabilistic characteristics. Their precise calculation
is a rather difficult task even for stationary models, and in the non-stationary case, the
situation becomes much more complicated, due to with which the use of approximation
approaches with certain guarantees of their accuracy is inevitable. Using standard research
approaches (diagonal and triangular transformations, see [16,17] for an example), it is not
possible to obtain “good” estimates for the PH/M /1 model. There are other methods for
studying quasi-birth-death processes, for example [18-20], but the comparison of methods
is not the purpose of this article.

2. Basic Notions
Denote by || - || the l;-norm and ||x|| = X |x;|, [| B|| = max; ¥; ;| for matrix B = (b;;).
Recall that a Markov chain X(t) is called weakly ergodic, if ||p*(t) — p**(£)|| — 0
as t — oo for any initial conditions p*(0) and p**(0), where p*(t) and p**(t) are the
corresponding solutions of forward Kolmogorov system

3. Model Description

We will consider the queuing model PH/M/1 (Figure 1), which has the following
specific features:

*  The system has one server that serves customers;
*  Service times are exponentially distributed;
e Intervals between arrivals have distribution Fy,, (x) (Erlang distribution),

By (x) = {0, x <0 "

ﬁvmxm‘le_”, x>0m>1.

where

Figure 1. Transition graph for the PH/M /1 model.

This queue can be explored using a two-dimensional Markov process (we will reduce
it to a one-dimensional process) {(N(t),¢(t)),t > 0} on the state space U,>ol(n), with
I(n) ={(n,1),..,(n,m)} for all n > 0. Let N(t) represent the number of customers in the
system and ¢(t) be the position of the token at time .
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We assume that the following transitions are possible for a two-dimensional Markov
process:
e (n,j) — (n—1,j) with intensity function u(t) for n > 1;
e (n,j) — (n,j— 1) with intensity function v(t) forn > 0,j > 2;
e (n,1) = (n+1, m) with intensity function v(t) for n > 0.

The intensity matrix has the following form:

)l Q—ut)l  w-¥ 0
Q(t) = 0 ut)l  Q-ul @ ¥ | o

0 0 u(t)I Q—u(H)I

v
0
w = . ’
0
—v(t) 0 0 0
v(t) —v(t) 0 0
a=| o v v 0
7
: 0
0 0 v(t) —v(t)
e write the matrix A =
We write the matrix A T
—v(t) v(t) 0 u(t) 0 0 0 0 0
0 —v(t) 0 u(t) 0 0 0
v(t) : 0
0 0 —u(t) 0 0 u(t) 0 0 0
0 0 0 —v(t) —u(t) v(t) 0 u(t) 0 0
0 0 0 0 —v(t)—pu(t) - X 0 u(t) :
Al =1 - | S | I &)
v(t) 0 0 0 0 —v(t) —u(t) 0 0 u(t)
0 0 0 0 0 0 —v(t) — u(t) v(t) 0
0 0 0 0 0 0 0 —u(t) = u(t)
f o)
0 0 0 v(t) 0 0 0 0 —v(t) — p(t)

Denote the time-dependent probability distribution of the Markov process by p,, ;(t) i.e.,

pnj(t) = PAN(t) = n,¢(t) = j},
Putk=n-m+j—1and py = P{N(t) = n,¢(t) =j} forany1 < j <mandn > 0.
Hence, we obtain p(t) = (po(t), p1(t), -+ )T.

Now, we have the forward Kolmogorov system for X(t), which has the form

WU _ Awp(r). @
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4. Bounds for the General Case

Consider the transposed intensity matrix A, which has the form (3). To obtain estimates
for the rate of convergence to the limiting regime, we will use the C-matrix method, which
was described in detail in [15].

As in [21], we consider two solutions p*(t) and p**(t) of the forward Kolmogorov
system (4) and the corresponding different initial conditions p*(0), p**(0). Hence, their
difference z(t) = p*(t) — p**(t) = (zo(t), z1(¢), ...) satisfies the equation

d

2 _ A(bz(t), t>o0. )
dt

Notice that Y° , z;(t) = 0.

Then, one can add ¢ };°, z;(t) = 0 (for any c) to the equation dz Y720 a0jzj- Now,

dt ]
rewrite the system (5) in the form

dz
—_— = >
7 W(t)z(t), t>0,

where W(t) = A(t) — C(t) and C(t) has the form

0 0 0 0 0
4
0 0 0 0 0
and
v —c)) vty —e(t) - —elt) | ut)—c(t) —e(t) b —(t) —et) - —et)
0 —u(t) 0 n(t) 0 0 0
: v(t) : : ’ 0
0 0 —u(t) 0 0 u(t) 0 0 0
0 0 0 —u(t) - pult) v(t) 0 u() 0 0
0 0 0 0 —v(t)—p(t) - : 0 u() : .
wo=| o SR : SRR : ) A ()
v(t) 0 0 0 0 s —u(t) —p(t) 0 0 u(t)
0 0 0 0 0 0 v(t) — p(t) 0) 0
0 0 0 0 0 0 0 —u(t) - u(t) :
: : : : : . : : : v(t)
0 0 o0 v(t) 0 0 0 0 e () ) -

Theorem 1. Let there exist sequence dy and a function c(t) such that c(t) < v(t) and u(t) > v(t)
for almost all t > 0. Then, X(t) is weakly ergodic and

— [ B«(7)
lp*(t) —p™ (B)] <e o

for any initial conditions p*(0), p**(0) and all t > 0 and B = infay(t), ifall ar(t) > 0,k > 0.

Proof. Letdy (k > 0) be some sequence. Consider the diagonal matrix D = diag(do,d1,d>, ...).
Denote [1z]l1p = 1Dzl
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Hence, DWD ! has the form:

() —e(t) PO =c®) -+ =o)L —c(t)  —gRc) -+ -t —de(t)  —gile(t) o —ge() -
0 —v(t) : 0 ut - : 0 0 0
: : 0! : : 0 : : . :
0 0 et 0 0 B = 110) 0 0 0
0 0 0 —v(t) — u(t) () 0 2o 0 0
0 0 0 0 —v(t)—p(t) - : 0 dz’” Lu(t) e :
: : : : : R %0) : : 0 (7)
0] 0 0 0 0 C () () 0 0 SR ey (O N
0 0 . 0 0 0 . 0 () — () g2 - 0
0 0 0 0 0 0 0 —v(t) —pu(t) --- :
: : : : : : : : 0
0 0 0 %"’—‘u(t) 0 0 0 0 cee =) —p(t) -

B« (t) = inf oy, where

)=, 2<k<m—1

+(1 d3k 1)U()+C( )do k=m

dkl) k—r(modm)k>m1’750
dkﬁikml)v(t) —C( )ﬁ’ k= O(mod m),‘k >m

®)

Therefore, by Theorem 1, see [15] for details, we obtain

= [ B+(1)dr
[p™() —p™ ()] <e © Ip*(0) = p™ (0.
O

In order to use Theorem 1, we need to define the sequence dj. Recall that, by Euclid’s
division lemma, the number k (k > 0) can be represented as

k=bg+r,0<r<b,

where 7 is the remainder of the division by b.
Let dyp = 1 and let there exist positive numbers 81,6, ...,y and (6107 - ... - &) > 1
Therefore, di has the following form:

do=1k=0
dy =6,k =1
dy = 6165,k =2
de=1< ... ©)

dy = (610 . 6, if k = O(mod m); k > m
dp = (6183 - o - 6,)1T (61 - oo - 6p)1,if k = r(mod m);r # 0;k > m

Remark 1. The sequence dj can be given in another form, but it is important that the condition
ag(t) > 0 (k > 0) be satisfied.
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DWD™! =

5. Bounds for the Case m = 3

In this section, we consider a special case of the PH/M /1 model when m = 3. We will
use the results and approach from Section 4. Let the transposed intensity matrix have the
following form:

—v(t) v(t) 0 u(t) 0 0 0 0 0
0 —v(t)  v(t) 0 u(t) 0 0 0 0
0 0 —u(t) 0 0 u(t) 0 0 0
0 0 0 —v(t) —u(t) v(t) 0 u(t) 0 0
0 0 0 0 —v(t) —u(t) v(t) 0 u(t) 0
v(t) 0 0 0 0 —v(t) — u(t) 0 0 u(t) , (10)
0 0 0 0 0 0 —v(t) — u(t) v(t) 0
0 0 0 0 0 0 0 —v(t) — u(t) v(t)
0 0 0 v(t) 0 0 0 0 —v(t) — u(t)
To obtain estimates for the rate of convergence to the limiting regime, we will use the
approach from the previous section and Theorem 1.
—v(t) —c(t)  wv()—e(t)  —c(®)  p(t) —c() —e(t) —e(t) —e(t) —e(t) —c(t)
0 —v(t) v(t) 0 u(t) 0 0 0 0
0 0 —v(t) 0 0 u(t) 0 0 0
0 0 0 —v(t) — u(t) v(t) 0 u(t) 0 0
0 0 0 0 —v(t) — u(t) v(t) 0 u(t) 0
v(t) 0 0 0 0 —v(t) — u(t) 0 0 u(t) (11)
0 0 0 0 0 0 —v(t) — u(t) v(t) 0
0 0 0 0 0 0 0 —v(t) — u(t) v(t)
0 0 0 v(t) 0 0 0 0 —v(t) — u(t)
Let d (k = 0,1...) be a sequence. Again, consider the diagonal matrix D =
diag(do,dl,dz, ... ) Denote ||Z||1D = ||DZ||1
v —c(t)  FoO-ct) -Le®) LEO-cw) L)  -P2er)  -Re) L) )
0 —v(t) () 0 Fu) 0 0 0
0 0 —u(t) 0 0 %;L(t) 0 0 0
0 0 0 —v(t) — u(t) %v(t) 0 j%,l(r) 0 0
0 0 0 0 —u(t) — u(t) [d%v(t) 0 %y(t) 0
ds d5 (12)
%v(t) 0 0 0 0 —v(t) — u(t) 0 0 %}l(f)
0 0 0 0 0 0 —u(t) — u(t) %v(r) 0
0 0 0 0 0 0 0 —u(t) - p(t) %v(t)
0 0 0 %v(t) 0 0 0 0 —u(t) — u(t)

Theorem 2. Let there exist sequence dy and a function c(t) such that c(t) < v(t) and u(t) > v(t)
for almost all t > 0. Then, X(t) is weakly ergodic and

(e
lp*(t) —p™(t)]| <e © lp*(0) —p™(0)|]

for any initial conditions p*(0), p**(0) and all t > 0 and B = infay(t), ifall ar(t) > 0,k > 0.
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Proof. B.(t) = infay, where

—Z)v(t) +c(t), k=0
— () Fe()P, k=1
elt) = _% v(t) —e(t) P, k=2 d
~ 4 ‘u(t)+(1—£)v(t)+c(t)d—g,k:3
1- d;j;y(t) + E1 - d;f;v(t) —c(t)%, k= 0(mod 3);k > 3
— () + (1 B2 u(t) — (1) %, k= r(mod 3);7 # 0;k >3

Recall that, by Euclid’s division lemma, the number k can be represented as

k=bg+r,0<r<b,

where r is the remainder of division by b.

Let dy = 1 and let there exist positive number é1, d,, 3. Then, the sequence dj will be

in the form
do=1k=0
dp =6,k =1
dz = 5152,]( =2
di = { dyp = (81)5(82)5 (85)5,if k = 0(mod 3);k > 3 (13)
dp = (01)771(62)7(03)7,if k = 1(mod 3);k > 4
di = (81)71(8,)1+1(83),if k = 2(mod 3);k > 5
Hence
(1—626263)v(t) +c(t), k=0
(1= E) v +eE k=1
(1= £)v(h) — ez, k=2
a(t) = (1 - 5151253);40) + (1= 8863 v(t) + (D) 5h5, k=3 >
(1 - (51(51253>y(t) + (1 - ;l)u(t) —olt) Gy K= 1(mod3)ik > 3,9 > 1
(1= 5 ) () + (1= & )v(®) = e(t) Gy K = 2(mod 3)ik > 3,9 > 1
(1 - 535 )y(t) + (1 - 828285)v(t) — c(t)m, k = 0(mod 3);k > 3
(1—620263)v(t) +c(t), k=0
(1= & )vt) +e)d, k=1
(1= £)v(h) — ez, k=2
> (1 - k5 )y(t) + (1= 8B&)v(t) +c(D) 5h5, k=3
(1 - 51;253),4@) + (1 - %)m) el gy, k=1(mod 3);k >3
(1 - (,.1[,.1253);4(15) + (1 - %)v(t) — e(t) g, K =2(mod 3);k >3
(1 - 5in )y(t) + (1= 81363)u(t) — e(t) gz, k= 0(mod 3);k >3
O

6. Example 1
Let d; have the form (13) and
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5, = 0.6,
0 =2,
0 =1,

v(t) =14 0.1sint,
u(t) =30+ cost,
c(t) = 05.

To obtain an estimate of the rate of convergence to the limiting regime, we use Theo-

rem 2. We obtain following system:

a(t) =

(1
(1~
(1
(1
(1
(1

—06%2-2%2.1

) (1+0.1sint) — 062,

NI

)(30+cost)+

)(30+cost)+(1

oy ) (30 + cos ) + (1
0621)(30+cost)+(1

(1-
- &)(1+0.15int)

- %)(1 +0.1sint) —
06222

1)(1+0.1sint) +0.5, k=0
i) (1+0.1sint) + 9, k=1

06221'

0.5
0.62:22.17
1)(1+0.1sint) —

Recall that it is necessary that all 4, > 0

inf(ax(t)) 2

B (t) =

Ip™ (£)

0.016, k=10
01, k=1

0.033, k=2
4804, k=3
3.459, k = 1(mod 3);k > 3
4.978, k = 2(mod 3);k > 3
4.040, k = 0(mod 3);k > 3

inf(a,(t)) = 0.016

P** (t>H < 670.016t”p* (0> _ p**

62 22 127

0.62-22-1)(1+0.1sint) + 523, k=3
k=1(mod 3);k >3
k =2(mod 3);k > 3

k= 0(mod 3);k >3

O

(14)

(15)

Now, we will build graphs (Figures 2-5) by choosing the dimension of the system
equal to 90

1.0

0.8

Probability
o
=]

|

o
ES
1

0.2 1

0.0 1

— X(0)=0
- X(0) = 90

10 12 14

Figure 2. Probability of an empty queuing system for ¢ € [0, 14].



Mathematics 2023, 11, 1494

9of11

1077 +3.33318 x 107!

Probability

— X(0)=0
—— X(0) =90

Figure 3. Approximation of the limiting probability of an empty queuing system for ¢ € [14,15].

0.35 +

— p_{1} | X(0)=0

| —— p_{1} ] x(0) =90

0.30 4

0.25 4

0.20 4

Probability

0.15

0.10 A

0.05 4

0.00

Figure 4. Probability p; (t) for t € [0, 14]; this figure shows the rate of convergence.

107° +3329 % 10!

t

8

10

12 14

229 — p_{1}|x(0)=0
— p_{1} | x(0) = 90
2.04— v
1.8 A / }
&
2 /
1+
-8 1.6 4
gL
1.4 4
1.2 +—} /-’
14.0 14.2 144 146 14.8 15.0

Figure 5. Approximation of the limiting probability p; () for t € [14,15].
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7. Conclusions

We managed to obtain exhaustive estimates of the rate of convergence to the limiting
regime for the PH /M /1 model using the C-matrix method and considered a numerical
example where we solved the forward Kolmogorov system using the fourth-order Runge-
Kutta method. Theorem 1 shows that the accuracy of the main estimate depends on the
choice of the sequence dy, for k > 0.

This method can probably be applied to the M/PH/c or PH/PH/c models as well.
This may be an area for further research.
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