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Abstract: Early illness detection enables medical professionals to deliver the best care and increases
the likelihood of a full recovery. In this work, we show that computer-aided design (CAD) systems
are capable of using chest X-ray (CXR) medical imaging modalities for the identification of respiratory
system disorders. At present, the COVID-19 pandemic is the most well-known illness. We propose a
system based on explainable artificial intelligence to detect COVID-19 from CXR images by using
several cutting-edge convolutional neural network (CNN) models, as well as the Vision of Transformer
(ViT) models. The proposed system also visualizes the infected areas of the CXR images. This gives
doctors and other medical professionals a second option for supporting their decision. The proposed
system uses some preprocessing of the images, which includes the segmentation of the region of
interest using a UNet model and rotation augmentation. CNN employs pixel arrays, while ViT
divides the image into visual tokens; therefore, one of the objectives is to compare their performance
in COVID-19 detection. In the experiments, a publicly available dataset (COVID-QU-Ex) is used.
The experimental results show that the performances of the CNN-based models and the ViT-based
models are comparable. The best accuracy was 99.82%, obtained by the EfficientNetB7 (CNN-based)
model, followed by the SegFormer (ViT-based). In addition, the segmentation and augmentation
enhanced the performance.

Keywords: COVID-19; chest X-ray; convolutional neural network; vision transformer; artificial
intelligence

MSC: 68T07; 68T45; 00-02; 94-08

1. Introduction

Many illnesses are regarded as being fatal. The disease and its impact on human life
determine the risk factors [1]. Some of these illnesses are brought on by various bacterial,
viral, fungal, and parasitic species. One of the key systems in the human body is the
respiratory system. There are various reasons why the respiratory system is significant.
Clinical judgment and empirical treatment or waiting for the findings of diagnostics per-
formed in specialist laboratories were formerly the only options available to clinicians
when diagnosing a patient with common symptoms with a variety of potential diseases,
such as respiratory infections. While the pandemic poses a significant risk to economics
and public health around the world, an infectious disease also poses a hazard. In 2018, the
World Health Organization (WHO) listed antimicrobial resistance (AMR) as one of the top
ten risks to public health [2].

The new, extremely fatal disease known as COVID-19 was born in December 2019 in
Wuhan Province, China, and it quickly spread throughout the world [3]. The biological
structure of COVID-19 is a single-stranded RNA-type with a positive orientation. The
COVID-19 outbreak has been of significant concern to the medical community because there
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is now no effective treatment for the condition, making it difficult to treat [4]. COVID-19 is
an acronym denoting Coronavirus Disease 2019. The severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is the infectious agent that causes it [5]. Rapid quarantine
and medical treatment are essential for patient prognosis, epidemic control, and public
health security [6]. The accurate and prompt diagnosis of suspected COVID-19 patients
at an early stage is also essential. The most common COVID-19 symptoms are coughing,
fever, and shortness of breath; other symptoms include vomiting, diarrhea, sore muscles,
a painful throat, the formation of sputum, stomach pain, and a loss of taste and smell [7].
Additionally, the WHO indicated that the top six countries for confirmed cases and deaths
until today are the United States, China, India, France, Germany, and Brazil (ranked
based on confirmed cases until 21 February 2023). The United States has 1,103,936 deaths
out of 101,496,168 cases; China has 697,894 deaths out of 98,873,697 cases; India has
530,757 deaths out of 44,684,658 cases; France has 161,009 deaths out of 38,475,606 cases;
Germany has 167,214 deaths out of 37,986,750 cases, while Brazil has 697,899 deaths out of
36,960,888 cases.

A significant and crucial step in eradicating COVID-19 is the effective screening of
infected persons so that positive people may be discovered and treated. The most frequently
used technique for COVID-19 detection is the reverse transcription-polymerase chain
reaction (RT-PCR) [8]. A chest X-ray (CXR) is performed after a sample of nasopharyngeal
exudate is obtained for testing the RT-PCR during the main examination. According to
the researchers in [9], infected people with pneumonia may exhibit a pattern on CXR and
computed tomography (CT) scans, which is merely distinguishable to the human eye. X-ray
imaging and CT scans have played crucial roles in the early detection and quick diagnosis
of this disease. As a RT-PCR requires a lot of time and has a low sensitivity, of 60–70%, it is
possible to detect the detrimental effects of COVID-19 by examining images of the patient’s
lungs and guarantee early treatment. X-ray imaging can be used to diagnose COVID-19
and is a relatively affordable way to find lung infections. CXR images of COVID-19 patients
usually show patchy infiltrates or opacities, which are akin to other viral pneumonia
symptoms. CXR images taken early on in COVID-19 do not reveal any anomalies [10].
On CT scans, almost all COVID-19 patients displayed similar features, including early
ground-glass opacities and later lung consolidation [11].

Many studies describing the techniques for finding COVID-19 in chest radiography
images have been published by numerous researchers. On a small dataset, these strategies
yielded interesting results, but they are not at all adequate for production [12]. Researchers
are using deep learning algorithms to identify certain characteristics in chest radiography
images of COVID-19 patients. Recent research shows that deep learning is quite successful
in a range of visual applications, including medical image processing. Cough, fever, and
shortness of breath are among the moderate to severe symptoms that most COVID-19
patients suffer. The new coronavirus may cause severe pneumonia in both lungs in certain
patients; however, pneumonia caused by COVID-19 has the potential to be lethal [1].
Surprisingly, effusions, tuberculosis (TB), and pneumonia all had lower average certainty
ratings. This shows that there are several levels of diagnostic confidence—doubt with the
right diagnosis, and overconfidence with a false diagnosis [13].

A CXR image assists medical professionals in the diagnosis of several respiratory
disorders. Doctors may identify a variety of illnesses, including pneumonia and COVID-19,
by analyzing CXR images. Figure 1 depicts a variety of respiratory illnesses that medical
professionals may identify [13]. Science advances continuously, and the medical area of
CXR patient assessment is no exception. However, mistakes might occur while conducting
CXR screening [14]. Some medical facilities in nations with few resources and dense
populations lack the essential or modern equipment to conduct CXR screening [15]. The
sooner COVID-19 is identified, the more successful the therapy will be, in turn decreasing
the risk of infection, as well as the spread of illness. COVID-19 and viral pneumonitis are
fatal respiratory diseases. They are dangerous because they may spread quickly among
humans [11,16]. To diagnose any condition, clinicians often examine and focus on a
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particular region of the CXR of a patient. A computer with image processing capabilities
may segment, analyze, and filter CXR images to enhance the diagnostic performance by
enabling a neural network to forecast illness. Doctors can more quickly and accurately
diagnose pneumonia from a chest X-ray thanks to computer-aided diagnosis (CAD). The
application of artificial intelligence methods in healthcare is growing as a result of their
potential to handle very large datasets [17].
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Numerous viruses, bacteria, and their combinations may cause disease, but few rapid
and easily available laboratory assays exist for the majority of pathogens, which may help
to explain why antibiotic treatment is mostly empirical and etiology is seldom proven in
clinical practice [18]. The ability of standard radiographic and laboratory examinations to
differentiate between viral and bacterial pneumonia is therefore unknown. The majority
of infants with alveolar pneumonia, especially those who have lobar infiltrates, display
laboratory evidence of a bacterial infection, according to the authors in [18]. Interstitial
infiltrates may be seen in pneumonia caused by bacteria or viruses. In [19], the authors
assert that, whereas viral pneumonia affects both lungs, bacterial pneumonia only affects
one side of the lung. For example, bacterial pneumonia may display focal lobar consolida-
tion in one lung, and viral pneumonia may create diffuse interstitial patterns in two lungs.
Depending on the kind of bacteria involved, antibiotics are often used to treat bacterial
pneumonia, while antiviral medications may be used to treat viral pneumonia when it
comes to influenza. Viral pneumonia has no definitive therapy, but is typically managed by
drinking a lot of fluids.

At present, due to the potency and utility of the Machine Learning (ML) approaches,
they are now being used in a wide range of medical sectors, including the categorization of
diverse illnesses, as well as the detection of corneal patterns [20]. Deep learning (DL) is a
kind of artificial neural network (ANN) that is inspired by human cognition. Due to their
remarkable capacity to learn underlying patterns and features from picture databases and
then make predictions on fresh and unseen data, deep learning algorithms have recently
attracted a lot of study attention.

As a result, we focus on an artificial intelligence (AI) approach that employs a deep
learning model to identify CXR images of active COVID-19, automatically and accurately,
against inactive COVID-19 CXR images. An explainable artificial intelligence (XAI)-based
system can provide visualization cues to doctors to assist in making the correct decisions.
These strategies have shown promise in terms of minimizing medical mistakes, as well as
the early discovery or monitoring of asymptomatic carriers, and techniques to improve
disease treatment and patient care [13,14,21].

Transformer models have been particularly effective in the field of natural language
processing (NLP) in recent years [22]. The transformer architecture, which is entirely
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built on attention mechanisms, can naturally simulate token long-term reliance and learn
contextual information. Convolutional neural networks (CNNs), on the other hand, lack
this capacity as convolutions are inherently local processes [23,24].

Recently, a vision transformer model called ViT [25] was suggested that is exclusively
built on a stack of transformer blocks and has equaled or exceeded state-of-the-art CNNs
when pre-trained on extremely large-scale ImageNet-21K [26] type datasets. Following
that, several transformer models, for example, [24,27], were presented to enhance the
transformer design, with remarkable performance advantages when trained on ImageNet
with 1K classes [28].

The main research problem focused on in this paper is the lack of a sophisticated
system with XAI to detect COVID-19. An accurate XAI-based COVID-19 detection system
will not only help screen the patients automatically, but also assist the doctors in making
their decision.

The goal of the proposed study is to create an automated COVID-19 identification
system from CXR images utilizing image processing methods and deep learning models to
enhance the performance across many kinds of objective and subjective measures. First,
CXR images are segmented in terms of regions of interest. Then, we make a comparative
study between several state-of-the-art CNN models and transformer models for the appli-
cation of an automatic COVID-19 system using CXR images. By scanning the CXR, the
suggested system would automatically forecast whether COVID-19 is active or inactive.
The performance of the system is evaluated on multiple public datasets with three cases:
COVID-19, viral pneumonia, and normal health cases. In both the original and segmented
CXR images, we additionally apply augmentation in the form of a rotation at nine distinct
angles. The proposed system also includes a visualization tool for prediction outputs to
help medical professionals diagnose COVID-19 and viral pneumonia. The proposed system
may identify COVID-19 infections more quickly by identifying the signs of infected people
as hazy or black spots in X-ray images of the lungs.

The major research contributions of this paper can be summarized as follows:

- An automated COVID-19 detection system using state-of-the-art CNN models and
transformer models is proposed.

- The performances using the CNN models and the transformer models are compared
in the COVID-19 detection system with lung CXR images.

- Visualization in CXR images is provided to boost the doctor’s decision. Normally,
doctors do not rely on the output accuracy of a system; rather, they mainly focus on
the radiographic images themselves. Therefore, if the system can produce a colorful
visual representation of an image to indicate which area to focus on or to give more
attention to, it will be a great help to the doctors. The proposed system outputs this
colorful image.

- The study compares the performances between balanced and unbalanced cases of the
proposed system.

The remaining sections of the paper are as follows: The original UNet model for
lung segmentation, exclusive pretrained CNN models, and transformer models for image
classification are summarized in Section 2. The proposed study’s methodology, suggested
system, dataset utilized in the tests, and augmentation phases are all described in Section 3.
The experiment results for the unsegmented CXR images, segmented CXR images, and each
kind of image with and without augmentation are provided in Section 4. A performance
comparison between the proposed system and more recent systems is also provided in this
section. Section 5 concludes the study and offers ideas for the next research.

2. Related Work

AI describes computer programs and systems that imitate human intelligence-assisted
functions, including reasoning, deep learning, adaptability, engagement, and sensory
perception. Since the 1950s, when doctors have tried to improve their diagnosis using
computer-aided algorithms, AI has been applied in healthcare. Due to the greatly enhanced
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processing power of modern computers and the vast quantity of digital data available
for collection and use, the interest and advancement in medical AI applications have
intensified recently [29].

As stated by Arthur Samuel (in 1959), a pioneer in the field of machine learning (ML),
ML is differentiated by the fact that it is data-driven, providing machines (computers) “the
capacity to learn without being explicitly instructed” [30]. Massive volumes of data may be
used by machine learning algorithms. They do it as part of their search for crucial linkages
to decision-making.

To develop the computer system into an expert that can be used for prediction and
decision-making, DL methods can perform well. A kind of machine learning known as
“deep learning” enables computers to learn from a fact and to understand the world in
terms of idea hierarchy. While DL is being researched, it may be utilized as a backup plan
to assist physicians in making judgments.

2.1. State-of-the-Art DL in Medical Imaging

A CNN is a well-known deep-learning architecture that is often used for image analy-
sis and classification. It directly extracts and learns characteristics from images. Different
CNN models are available, each with unique features and benefits. Pure transformer
models reliably build final classifiers using only the classification tokens, never explicitly
incorporating high-level word tokens, despite significant development. Although the clas-
sification token interacts with all of the word tokens through the attention mechanisms of
the network backbone [23], we believe that high-level word tokens contain rich information
that the classification token cannot handle.

2.1.1. CNN-Based Transfer Learning

Different models were proposed in [9,12,31] with the same objective: the detection
of the COVID-19 virus. The objective is the same, but the behavior is different. A model
was created by the authors in [9] to initialize the VGGNet model and prepare it ready
for fine-tuning. They developed a new fully connected layer head with the following
layers: AveragePooling2D, Flatten, Dense, Dropout, and a final Dense with the “softmax”
activation to categorize the classes. It is layered over VGG16. The VGG16 convolutional
weights are then frozen, allowing for the training of only the fully connected layer head.
The VGG16-based model is computationally expensive.

A model termed CoroNet with three instances for the desired purpose was proposed
in [12]. With a CNN, the authors classified the image into four categories in the first
model. The primary multi-class model is modified in the other two models by the binary
2-class CoroNet model (Normal and abnormal) and the 3-class CoroNet model (COVID-19,
Normal and Pneumonia). The authors in [13] proposed a system to detect Tuberculosis
from CXR images. They did not compare the balanced and unbalanced cases because the
number of image samples was limited.

Based on [11], different types of image modalities can be used to detect COVID-19.
These modalities include CXR images, CT scans, and ultrasound images. With the aid of
various AI-based approaches, numerous efforts have been conducted to detect COVID-19
using CXR images [32]. The described research was unable to generalize the findings and
could not guarantee that the findings would be replicated when these models were tested
on a bigger dataset because they used a dataset with a very small number of COVID-19
CXR images. Therefore, it will be very helpful to examine alternative CXR image-enhancing
methods on a large dataset of normal (healthy class), non-COVID (other lung illnesses), and
COVID-19-affected individuals. The quality of the X-ray images acquired for COVID-19
patients, which are acquired in vast numbers each day in hospitals, can vary for several
reasons, including patient condition, breathing pattern, and human error. The most popular
techniques for chest X-ray images are posterior-anterior (PA) and anterior-posterior (AP)
front-view X-rays.
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2.1.2. Transformer-Based Vision Backbones

Transformer models are helpful in both computer vision and natural language process-
ing (NLP). Despite significant progress, the majority of studies favor classification above
architectural improvement [27]. Image classification challenges have been dominated by
CNN-based algorithms. Transformer-based techniques, nevertheless, have just begun to
acquire acceptance and use [24]. The DenseNet, InceptionV3 WideResNet101, and Vision
Transformer models were employed by the authors of [24] in the transfer learning proce-
dure, where the model is pre-trained on the ImageNet dataset. The comparison was based
on natural images, not on COVID-19-related images. As it only extracts broad aspects, the
lowest layer of the architecture is frozen. They changed the model’s top layer such that the
linear layer now outputs dataset-specific results.

The Mix Transformer encoders (MiT) from MiT-B0 to MiT-B5, all with the same design,
but different sizes, were developed by the authors in [33]. The smallest model, MiT-B0, is
designed for speedy inference, while the biggest model, MiT-B5, is designed for maximum
performance. While ViT served as some of the design inspiration for MiT, it was modi-
fied and optimized for semantic segmentation. This module aims to produce CNN-like
multi-level features from an input picture, in contrast to ViT, which can only build a single-
resolution feature map. These qualities provide both low-resolution fine-grained features
and high-resolution coarse features, which often enhance the semantic segmentation per-
formance. ViT uses positional encoding (PE) to transmit location information. PE has a
fixed resolution. To avoid losing accuracy, the positional information must be interpolated
when the test resolution and training resolution are different. PE, according to the authors,
is not necessary for semantic segmentation. Instead, they intentionally used a 3 × 3 Conv
in the feed-forward network to offer Mix-FFN, which considers the impact of zero padding
on location information leaking (FFN). The model is named the SegFormer. Although this
model is promising, it has not yet been used to detect COVID-19.

An RGB input picture is first divided into discrete, non-overlapping patches via a
patch-splitting module, such as in ViT. Each patch is seen as a “token,” with its feature
set being composed of the RGB values of the raw pixels. These patch tokens receive a
lot of Swin Transformer blocks, which have altered self-attention computation [34]. By
patch-combining the layers to form a hierarchical representation, the number of tokens
decreases as the network depth grows. Each pair of neighboring patches’ characteristics
are combined in the first patch merging layer. A window-shifted module is used to create
the Swin Transformer by swapping out the traditional multi-head self-attention (MSA)
module in a Transformer block, while leaving the other layers alone. The shifted window
partitioning technique builds linkages between the adjacent non-overlapping windows in
the previous layer, which is why it is effective in image classification, object identification,
and semantic segmentation [34]. Although Swin Transformer is a good model for image
classification tasks, it has not been utilized for COVID-19 detection.

Two simple but effective spatial designs for vision transformers are provided by the
authors in [35]. The first tactic only uses global attention and is based on Polymorphic
Ventricular Tachycardia (PVT) and Catecholaminergic PVT (CPVT); Twins-PCPVT is the
name given to the architecture as a consequence. The second is based on the combination
of local and global attention and is known as Twins-SVT. Vision transformers suffer heavily
from the high processing cost of dense prediction workloads because of the high-resolution
inputs. The proposed designs overcome this limitation.

3. Methodology

We research and evaluate several DL techniques for the accurate COVID-19 and
Pneumonia radiographic diagnosis of a patient’s respiratory condition. In this paper, we
propose an automated COVID-19 and pneumonitis identification system for CXR images.
To obtain a binary image with a white spot in the lungs of the original image, we use a
state-of-the-art UNet to extract the region of interest (ROI). The result is a cropped image
that only shows the lungs. Subsequently, in order to improve the overall performance of
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the system, we apply the image pre-processing approach as an augmentation rotation at
various angles. For image classification, the system combines the segmented lung CXR
images with the existing pre-trained CNN models and ViT models. The dataset with three
classes is used to assess the system. The system consists of several components, each of
which will be discussed, in turn, below. The outcomes will be divided into two types. While
some of the outcomes will help us demonstrate the efficacy and accuracy of the proposed
system, the other type of outcomes will assist physicians in making judgments. A block
diagram of the proposed detection system is shown in Figure 2.
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3.1. Dataset

We used a large CXR dataset (COVID-QU-Ex) consisting of, at the time of the experi-
ments: 21,165 CXR images with 10192 normal (healthy), 7357 non-COVID lung infections
(viral pneumonia), and 3616 COVID-19 images and their corresponding ground truth lung
masks. This dataset is released in stages [36]. This is the largest public COVID-positive
database and lung masks. The images are converted into a portable graphics format (PNG).
The bit depth of the images is 8-bit gray-scale, the resolution is 256 × 256, and the images
are of the frontal view. This dataset is available to download, and the link is provided in
the data availability statement towards the end of the paper.

In the experiment, we studied two cases. In the first case, we had all of the samples
mentioned in the above paragraph. This is called the unbalanced case. However, in the
second case, we took an equivalent number of samples for each class. The second case is
called the balanced case. Table 1 shows the number of samples in both cases. The system’s
resilience will be shown through trials employing the imbalanced dataset, regardless of the
images acquired at a certain setting.

Table 1. Samples in balanced and unbalanced cases.

Case COVID-19 Viral Pneumonia Normal

Unbalanced 3616 7357 10,192
Balanced 3616 3616 3616

3.2. Data Augmentation

It takes a lot of data to increase the learning performance of DL models as the perfor-
mance of DL relies on the quantity of accessible data. Data augmentation is a method for
artificially generating new training data from the current training data. We must make it
clear that monochromatic data is the kind used in medical images. We will thus have a more
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effective/accurate outcome if we add more CXR images to the model to train. There are
many strategies for data augmentation, such as zooming, filtering, histogram equalization,
flipping, rotating, adding noise, and scaling [11,31,37,38]; the authors in these papers found
that data augmentation increased the performance of the systems using CXR images.

In this paper, we use only rotation augmentation with angles 0◦, 45◦, 90◦, 135◦, 180◦,
225◦, 270◦, 315◦, and 360◦. We do not use other types of augmentation because they may
disturb the semantic meaning of the CXR images.

3.3. UNet-Based Segmentation

The network topology of the method, which resembles the letter U, is where the name
came from. Segmenting medical images is the primary goal of UNet [39]. The step-by-step
output of the U-net technique is shown in Figure 3. The network has 23 layers in total,
which is far fewer than the existing networks, yet guarantees accuracy. Up-sampling and
down-sampling are the two divisions of the UNet network. Given that it mainly uses the
convolutional and pooling layers to extract features from the input image, down-sampling
is sometimes referred to as the feature extraction stage. The feature map is up-sampled
using a deconvolution method. The arrangement of down- and up-sampling is frequently
referred to as a decoder-encoder structure. In the down-sampling stage, convolutional
and pooling layers are applied to the input image to produce feature maps at different
levels. These feature maps include variously abstracted image features. The down-sampled
feature map is combined with the up-sampled feature map to restore the less abstract detail
information lost during the training phase and to boost the segmentation accuracy of the
network. The deconvolution layer is used in the up-sampling section to gradually recover
the size of the feature map.
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Figure 3. UNet architecture.

In the system proposed in this paper, we use UNet to extract the ROI of the CXR
image. This helps the system concentrate only on the focused area and reduce the amount
of unnecessary information in the image.

3.4. Visualization

Recently, the deep learning community has been more interested in the t-Distributed
Stochastic Neighbour Embedding (t-SNE) method for visualizing model activations and
unique properties of datasets. The goal of t-SNE is to preserve the local structure of the data
by matching pairwise similarity distributions in both the lower-dimensional projection
space and the higher-dimensional original data space [40]. However, the current t-SNE
implementations are ineffective for showing huge datasets. Running t-SNE on larger
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datasets is infeasible as all of the currently available publicly accessible implementations,
which all run on the CPU, require a lengthy time to process even small datasets [41].

Gradient-weighted Class Activation Mapping (Grad-CAM), which was created to
draw attention to important areas of an input image for CNN prediction utilizing deep
feature maps, may preserve both the semantic and spatial information [42]. Grad-CAM
is defined as a linear combination of feature maps in which each feature map’s weight is
equal to the average of its gradients. Deep learning applications are commonly hampered
by the lack of a sufficient amount of annotation data; hence, much of this research focuses
on the specific illnesses for which benchmark data is available. Obtaining solid annotation
data is becoming more difficult as medical imaging analysis demands expertise in data
annotation [41]. Several methods employ simply image-level category data for training to
overcome the need for thorough supervision (weak annotation data). One such method
is localization using class activation mapping (CAM) [42]. From the standpoint of the
physicians, the outcome is extremely helpful in explaining their choice.

3.5. CNN Processing

Before training and analyzing the DL models, image normalization should be carried
out. As a first stage in DL, shrinking the input images will cause the dimension of the input
images to be reduced. The image sizes for CNN models used in classification applications
are predetermined. Thus, the models adapt to the varied sizes of the convolutional layers
by first using the input image size. In the proposed system, we investigate three pretrained
CNN models: ResNet-50 [43], MobileNet [44], and EfficientNetB7 [45]. The sizes of each
CNN model used in our experiment are shown in Table 2.

Table 2. CNN models’ general information. ‘M’ stands for million.

Information ResNet-50 MobileNet EfficientNetB7

Input size 224 × 224 224 × 224 224 × 224
Parameters 60.4 M 4.3 M 66.7 M

Year published 2015 2017 2019
Size (MB) 232 16 256

Depth 311 55 438
Layers number 150 28 813

3.6. ViT Processing

In the proposed system, three versions of ViT are adopted. These are Twins, Swins,
and Segformer. The input image is split into several patches, usually in the shape of
height × width × channels. In addition, the augmentation rotation is performed individ-
ually. The input image splits into patches, and those patches are the same size in height
and width. The size of the Swin and Twin transformers is 800 × 800, whereas the size of
the SegFormer is 512 × 512. The transformer learns how to follow a pattern by measur-
ing the relationship between the input token pairs. Most input token pairs for cropped
images are 0 (black). Then, the input images are ready for the next step, which flattens
the images to reach the next level. This feeds the sequence of flattened images to the next
step, which is encoding inside each transformer. In the encoder, there are three main layers.
A multi-head self-attention layer linearly concatenates all of the attention outputs to the
appropriate dimensions. The several attention heads aid in the training of the local and
global dependencies in an image. A multi-layer perceptron layer is made up of two layers
with activation functions. A normalization layer is inserted before each block as it has no
new dependencies between the training images. As a result, the training time and overall
performance are improved. A simplified block diagram of CXR image processing using the
ViT is shown in Figure 4.
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Different parameters of ViT models used in our experiment are shown in Table 3.

Table 3. ViT models’ general information.

Information Twins [35] Swin [34] Segformer [33]

Input size 800 × 800 800 × 800 512 × 512
Year published Aug-2021 Sep-2021 Oct-2021
Input Channel Any 3-RBG Any

Patch Size Based on Function 4 × 4 7 × 7
Block Name LSA and GSA blocks Swin Transformer block Transformer block

Number of Block 4 4 4
Windows Shifted local Non-overlapping Multi-size

4. Results and Discussion

This section describes the different parameters of the proposed system, the experimen-
tal results, and the discussion.

4.1. Experimental Setup

The publicly accessible COVID-QU-Ex dataset, which contains a significant number of
instances of COVID-19, viral pneumonia, and healthy cases, was used in the experiments.
Randomly selected 80% of the samples were used for the training, and the remaining 20%
were used for the testing. Additionally, we investigated the effectiveness and accuracy
of the system in two cases: a balanced case and an imbalanced case. We would want to
compare the ViT and CNNs in CXR classification using various metrics to describe the
suggested model or to aid physicians in making better judgments, given the enormous
volume of training data and processing resources.

During the experiment, we used the Adam optimizer with a learning rate of 1 × 10−3,
a mini-batch size of 64 images, a dropout rate of 0.3, and 300 epochs. These parameters were
empirically chosen. We also used a Windows® system with Intel® Xeon® CPU E5-2640v3
3.00-GHz processor, 2 TB of hard disk space, 16-GB RAM, and a CUDA-enabled NVIDIA
GTX 1080 Ti 11-GB graphical processing unit. The networks were implemented using
Pytorch libraries in Python 3.8. Instead of starting with random weight values during the
training of the five CNN and ViT models, we used pretrained models (pretrained with the
ImageNet database), and the convergence was achieved after at least 30 epochs, with a
batch size of 32 images as a default value. In addition, all of the images in the experiments
were CXR in frontal view PA, as previously mentioned.

4.2. Performance Metrics

The following performance metrics are used in this study:

• Accuracy
• Recall
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• Precision
• F1-score
• Kappa value

The equations of the performance metrics are given below.

Accuracy =

(
∑ Correct Prediction

∑ Input Samples

)
(1)

Recall =
(

∑ Only positive cases prediction
∑ Input Samples

)
(2)

Precision =

(
∑ Identi f y positive

∑ Identi f ied positive

)
(3)

F1 Score =

(
Precision−1 + Recall−1

2

)−1

(4)

Kappa Value =
(

P0 − Pe

1 − Pe

)
(5)

where Pe represents the expected value of the correct prediction and P0 is the observed
value of prediction. The kappa value can also be calculated as follows.

κ =

N
n
∑

i=1
mi,i −

n
∑

i=1
TiPi

N2 −
n
∑

i=1
TiPi

(6)

where N is the total number of samples, n is the total number of classes (in our case, n = 3), Ti
is the total number of true samples of class i, and Pi is the total number of predicted samples
of class i. Therefore, the kappa value is an agreement between the classification map and the
true data. A high value of kappa (near 100%) indicates a reliable performance of the system.

The following visualization metrics can provide an assessment and illustration:

• Model Accuracy vs. epoch
• Model Loss vs. epoch
• The area under the curve (AUC)-receiver operating characteristics (ROC)
• t-SNE
• grad-CAM

The UNet is used to extract the ROI of the CXR images. The parameters of the UNet are
given in Table 4. Figure 5 shows the results of the UNet samples and the steps for segmenting
lung images. The segmented images are then fed to the classifier to detect COVID-19.

Table 4. UNet information used in the experiments.

# Information Values/Method

1 Training images 400
2 Testing Images 18,479
3 Input Image size 512 × 512
4 Optimizer Adam
5 Training time 05:13:15
6 Learning rate 0.001
7 Epochs 5
8 Epochs per step 400
9 Testing time 02:18:12
10 Training accuracy 96.17%
11 Loss 0.1245
12 Total params 30,789,145
13 Trainable params 30,777,522
14 Non-trainable params 11,623
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Figure 5. UNet output segmentation results for three samples from different three classes for lung
CXR images. (A) shows the original images. (B) shows the results of UNet. (C) shows the results
after ROI extraction. (D) shows the process of labeling the lungs.

After the segmentation, the images are input to the CNN-based and ViT-based models.
The information on the different settings of the experiments is provided in Table 5.

Table 5. Experiment information.

# Information Detail Notes

1 Number of images 21,165 3 Classes
2 Number of cropped images 21,165 After applying ROI
3 Augmentation Rotation 9 different angles
4 Normalized Yes (Dataset)/255
5 Dropout Yes 0.25
6 Number of Epochs 300 300 iterations.
7 Optimizer Adam
8 Learning Rate 0.0001
9 COVID-19 3616
10 Pneumonia 7357
11 Healthy 10,192
12 Unbalanced Case Total Images 21,165
13 80% Training 16,932
14 20% Testing 4233
15 COVID-19 3616
16 Pneumonia 3616
17 Balanced Case Healthy 3616
18 Total Images 10,848
19 80% Training 8679
20 20% Testing 2169, Each class 723
21 Data Shuffle True activate
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Figure 6 shows the training and testing loss versus epochs for the different models
of CNN and ViT. It is shown that the CNN EfficientNetB7 model and the ViT Segformer-
B5 model curves are smoother than the others within the same type of models. Most of
the models’ loss graphs are smooth, and the system is nicely converged. The figures are
achieved using augmented and segmented lung CXR images.
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The ROC curve of the three classes (COVID-19, Pneumonia, and Healthy) of detection
demonstrates the proposed system’s excellent ability to localize abnormal areas in the CXR.
The False Positive Rate (FPR) is on the x-axis within the values between (0,1), and the True
Positive Rate (TPR) is within the values between (0,1). The area that has been covered,
which is under the ROC curve, is more efficient and more accurate for estimating the
accuracy of the model. In addition, an excellent model poses an AUC near value 1, which
shows that it has a good measure of separability. We compare the best results within the
CNN and ViT models using segmented and augmented lung CXR images in the balanced
case. Figure 7 shows the performance of the best CNN model (EfficientNetB7) and ViT
model (Segformer-B5). In both cases, the AUC is very close to 1, and the EfficientNetB7 has
a slight edge over the Segformer-B5.
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Figure 7. Comparison between best results between EfficientNetB7 “CNN” and SegFormer-B5 “ViT”
using ROC-AUC. In both cases, the AUC is very close to 1.0.

Table 6 displays the results of 80% of the training and 20% of the testing for the
original CXR images (without segmentation) without applying augmentation rotation, in
both cases, for the balanced and unbalanced cases. Table 7 illustrates the results of 80% of
the training and 20% of the testing for the segmented cropped CXR with augmentation
applied, in both cases, for the balanced and unbalanced cases. According to the results
in Tables 6 and 7, we see that the performance for the balanced case is better than for
the unbalanced case. EfficientNetB performed the best among the CNN-based models,
and SegFormer performed the best among the ViT-based models. The performances of
EfficientNetB7 and SegFormer are comparable to each other.

Table 6. Comparative results of CNN and ViT models for COVID-19 detection in the original dataset
(no segmentation) with no augmentation.

Schema Case Models
Average (%)

Accuracy Recall Precision F1-Score Specificity Kappa
Value

Without
Segmentation
Without
Augmentation

Unbalanced
CNN

ResNet50 78.87 84.61 78.57 81.48 71.87 56.96

MobileNet 81.10 85.94 78.57 82.09 76.19 62.17

EfficientNetB 87.00 92.80 82.85 87.54 81.39 74.10

Unbalanced
ViT

Swin 64.56 72.22 56.52 63.41 58.89 30.03

Twins 78.73 82.09 78.57 80.29 75.00 57.00

SegFormer 86.53 90.62 83.93 87.15 82.38 73.05

Balanced CNN

ResNet50 82.98 89.02 89.07 89.05 61.98 50.96

MobileNet 85.38 90.00 91.07 90.53 69.32 58.47

EfficientNetB 93.13 96.87 93.82 95.33 83.33 82.37

Balanced ViT

Swin 84.55 89.02 90.90 89.95 69.00 56.57

Twins 87.13 94.96 88.16 91.44 66.67 65.72

SegFormer 94.51 97.50 95.00 9623 86.89 86.15
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Table 7. Comparative results of CNN and ViT models for COVID-19 detection in the segmented
images with augmentation.

Schema Case Models
Average (%)

Accuracy Recall Precision F1-Score Specificity Kappa
Value

With
Segmentation
With
Augmentation

Unbalanced
CNN

ResNet50 92.91 95.65 91.66 93.62 89.65 85.66

MobileNet 95.27 95.04 96.64 95.83 95.59 90.38

EfficientNetB 98.11 99.19 97.61 98.40 96.60 96.10

Unbalanced
ViT

Swin 92.60 95.62 91.04 93.28 88.96 84.99

Twins 95.98 96.28 96.68 96.48 95.59 91.80

SegFormer 97.64 99.12 96.82 97.97 95.51 95.13

Balanced CNN

ResNet50 98.94 98.90 97.95 98.42 98.96 97.63

MobileNet 99.20 99.20 98.34 98.75 99.17 98.13

EfficientNetB 99.82 99.72 99.72 99.72 99.86 99.59

Balanced ViT

Swin 98.20 97.43 97.30 97.36 98.60 96.00

Twins 99.63 99.72 99.17 99.45 99.59 99.17

SegFormer 99.81 99.86 99.58 99.72 99.79 99.58

Although the kappa values are mostly used for the qualitative assessment between
the raters, they are often used in many machine learning-based systems. In the proposed
approach, with the balanced sample case, ViT-based SegFormer achieved a kappa value
of 86.15% without segmentation and augmentation, and 99.58% with segmentation and
augmentation. This implies that the approach with segmentation and augmentation has
more certainty or reliability to detect the correct class than that without segmentation
and augmentation.

Figure 8 visualizes the class-separation capability of the different CNN-based and
ViT-based models. The EfficientNetB and Segformer models have better class-separation
capability than the other models. Figure 9 shows the grad-CAM images of six models for
two samples.

While using the CNN-based models, EfficientNet performed the best. This is due to
the characteristics of the model. The CNN model is scaled evenly over depth, breadth,
and resolution using EfficientNet, a network design and scaling approach that uses a
compound coefficient. The EfficientNet scaling approach uses a set of preset scaling
coefficients to consistently scale the network width, depth, and resolution, as opposed to
the standard practice of arbitrarily scaling these elements. Among the ViT models, the
SegFormer performed the best in the experiments. This can be explained by the fact that
the SegFormer uses semantic information, and fuses multi-level features in the form of
low-resolution and high-resolution features. In addition, it uses FFN instead of PE to avoid
information leakage.

Table 8 shows a comparison of the performances between the state-of-the-art models.
We compared the proposed model with more than ten models, where all the models were
deployed from the year 2020 onwards. The work in [32,46–48] and the proposed method
use the same dataset and the same number of samples [36]. Compared to these four
models, our proposed model achieved the highest accuracy by some distance. The work
in [9,11,14,31,49–51] used CNN-based methods but different datasets. Compared to the
other models, the proposed model’s performance is better in most cases. EfficientNetB
(CNN-based) and SegFormer (ViT-based) performed the best, achieving an accuracy higher
than 99.8%.
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Table 8. Comparison with state-of-the-art models. 

Work Year Image Number Dataset Method Results 

Mesut, et al. 

[49] 
2020 

458: Three 

classes. 

University of Montreal and Joseph 

Paul Cohen dataset accessible 

publicly. CXR 

(CNNs): 

MobileNetV2 

Overall Accuracy 

99.27%. 

Fatima, et al. 

[50] 
2020 

260: Two 

classes. 

University of Montreal and Kaggle 

repository accessible publicly. CXR 

(CNNs): VGG16 

ResNet50 

InceptionV3 

Accuracy, 
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Sadman et al. 

[37] 
2020 

33,231: Three 

classes. 

GitHub for COVID-19 X-rays, 

Stanford ML group, accessible 

publicly. CXR and CT. 
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InceptionV3 

ResNet 

DenseNet 

Accuracy 98.83% 
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2020 Two classes. CT (CNNs): DeCoVNet Accuracy 90.80% 

Figure 9. Grad-CAM visualization of classified between three classes but we focused on COVID-19
in raw CXR images with augmentation with segmentation cropped images balanced case.
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Table 8. Comparison with state-of-the-art models.

Work Year Image Number Dataset Method Results

Mesut, et al. [49] 2020 458: Three classes.

University of Montreal
and Joseph Paul Cohen

dataset accessible
publicly. CXR

(CNNs): MobileNetV2 Overall Accuracy
99.27%.

Fatima, et al. [50] 2020 260: Two classes.
University of Montreal
and Kaggle repository

accessible publicly. CXR

(CNNs): VGG16
ResNet50 InceptionV3

Accuracy, Sensitivity
100%

Sadman et al. [37] 2020 33,231: Three classes.

GitHub for COVID-19
X-rays, Stanford ML

group, accessible publicly.
CXR and CT.

(CNNs): proposed
DL-CRC

InceptionV3
ResNet

DenseNet

Accuracy 98.83%

Xinggang, et al. [51] 2020 Two classes. CT (CNNs): DeCoVNet Accuracy 90.80%

Luca, et al. [9] 2020 6523: Three classes.

COVID-19 image data
collection, National

Institutes of Health Chest
X-Ray. CXR accessible

publicly

(CNNs): proposed
model Accuracy 98%

Micheal, et al. [11] 2020 5840 CXR From multiple resources.

(CNNs): VGG16
VGG19
ResNet

Xception
InceptionV3

positive predictive
value of 99%

Shashank, et al. [14] 2020 364 CXR

collected from a
collection of recently

published papers
accessible publicly. CXR

(CNNs):
Modified VGG-19 Accuracy 96.3%

Ahmed Sedik, et al. [31] 2020 Limited number of CXR
and CT with rotation

Publicly available
datasets. CXR, CT.

(CNNs): proposed
model Accuracy 99%

Alam et al. [32] 2021 21165CXR: Three classes.
large X-ray dataset

(COVQU) accessible
publicly.

(CNNs): Resnet18
Resnet50

ResNet101
DenseNet201

Inceptionresnet V3

Accuracy 96.29%

Jiang, J et al. [47] 2021 21165CXR: Three classes.
large X-ray dataset

(COVQU) accessible
publicly.

(ViT): Swin Accuracy 94.48%

El-Dahshan et al. [46] 2021 21165CXR: Three classes.
large X-ray dataset

(COVQU) accessible
publicly.

(CNNs): ResNet with
TCN and EWT Precision 0.984

Laouarem, A, et al. [48] 2022 21165CXR: Three classes.
large X-ray dataset

(COVQU) accessible
publicly.

(CNNs): Proposed
Model Accuracy 97%

This Study 2021 21165CXR: Three classes.
large X-ray dataset

(COVQU) accessible
publicly.

CNNs
98.94%, 99.20%,

99.82%
ViT

98.20%
99.63%
99.81%

5. Conclusions

A deep learning-based automated approach for the early identification of COVID-19
and pneumonia was presented in this work. This study specifically provided a variety of
cutting-edge CNN models and transformer models for comparison and investigation into
which performs better in terms of various metrics that will characterize the performance
visually and in numerical figures. Instead of learning from the whole CXR image, the
ROI was first extracted and then fed into the models. In addition to the ViT-based Swin,
Twins, and SegFormer models, we also studied the CNN-based ResNet50, MobileNet,
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and EfficientNetB7 models. In the experiments, we found that the ROI-segmented images
performed better than the raw CXR images. The performance of deep learning models may
be impacted by network depth; thus, it is crucial to balance the number of parameters and
training data utilized in the training. Notably, the network performance is not dependent on
the network depth in the experiments. RenNet50 is deeper than MobileNet, but MobileNet
achieved a better performance. EfficientNetB7 demonstrated a good example of transfer
learning and output compared to the other networks for detecting COVID-19 between
three classes. On the other hand, SegFormerB5 provided the best results among the ViT-
based models. The performances of CNN-based EfficientNetB7 (accuracy of 99.82%) and
ViT-based SegFormerB5 (accuracy of 99.81%) are comparable.

The proposed approach was not evaluated on edge computing. In addition, in the
proposed approach, we only used rotation augmentation. The number of samples could be
increased by generating new samples using generative adversarial networks. Further, the
generalization of the proposed models was not performed using cross-dataset experiments.
However, we want to mention that the COVID-QU-Ex dataset was developed using CXR
images of different settings and environments.

This study’s state-of-the-art detection performance may be used as a quick and efficient
diagnostic tool, which would greatly reduce the number of fatalities annually brought
on by inaccurate or delayed diagnoses. In a future study, we will investigate the use of
multi-head attention in CNN-based models.
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