
Citation: Yang, C.-H.; Lee, B.; Jou,

P.-H.; Chung, Y.-F.; Lin, Y.-D.

Analysis and Forecasting of

International Airport Traffic Volume.

Mathematics 2023, 11, 1483. https://

doi.org/10.3390/math11061483

Academic Editor:

Aleksandr Rakhmangulov

Received: 19 February 2023

Revised: 10 March 2023

Accepted: 15 March 2023

Published: 17 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Analysis and Forecasting of International Airport
Traffic Volume
Cheng-Hong Yang 1,2,3,4,5, Borcy Lee 2, Pey-Huah Jou 2, Yu-Fang Chung 6 and Yu-Da Lin 7,*

1 Department of Information Management, Tainan University of Technology, Tainan 710302, Taiwan
2 Department of Electronic Engineering, National Kaohsiung University of Science and Technology,

Kaohsiung 80778, Taiwan
3 Ph.D. Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
4 School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
5 Drug Development and Value Creation Research Center, Kaohsiung Medical University,

Kaohsiung 80708, Taiwan
6 Department of Electrical Engineering, Tunghai University, Taichung 407224, Taiwan
7 Department of Computer Science and Information Engineering, National Penghu University of Science and

Technology, Magong 880011, Taiwan
* Correspondence: yudalinemail@gms.npu.edu.tw

Abstract: Globalization has resulted in increases in air transportation demand and air passenger
traffic. With the increases in air traffic, airports face challenges related to infrastructure, air services,
and future development. Air traffic forecasting is essential to ensuring appropriate investment in
airports. In this study, we combined fuzzy theory with support vector regression (SVR) to develop
a fuzzy SVR (FSVR) model for forecasting international airport traffic. This model was used to
predict the air traffic volumes at the world’s 10 busiest airports in terms of air traffic in 2018. The
predictions were made for the period from August 2014 to December 2019. For fuzzy time series,
the developed FSVR model can consider historical air traffic changes. The FSVR model can suitably
divide air traffic changes into appropriate fuzzy sets, generate membership function values, and
establish fuzzy relations to produce fuzzy interpolated values with minimal errors. Thus, in the
prediction of continuous data, the fuzzy data with the smallest errors can be subjected to SVR to find
the optimal hyperplane model with the minimum distance to the appropriate support vector sample
points. The performance of the proposed model was compared with those of five other models. Of
the compared models, the FSVR model exhibited the lowest mean absolute percentage error (MAPE),
mean absolute error, and root mean square error for all types of traffic at all of the airports analyzed;
all of the MAPE values were below 2.5. The FSVR model can predict future growth trends in air
traffic, air passenger flows, aircraft flows, and logistics. An airport authority can use this model to
analyze the existing operational facilities and service capacity, find bottlenecks in airport operations,
and create a blueprint for future development. The findings revealed that implementing a hybrid
modeling approach, specifically the FSVR model, can significantly enhance the performance of the
SVR model. The FSVR model allows airlines to predict traffic growth patterns, identify viable new
destinations, optimize their schedules or fleet, make accurate marketing decisions, and plan traffic
effectively. The FSVR model can guide the timely construction of appropriate airport facilities with
accurate predictions. Rapid, cost-effective, efficient, and balanced transportation planning enables
the provision of fast, cost-effective, comfortable, safe, and convenient passenger and cargo services
while ensuring the proper planning of the airport’s capacity for land-side transportation connections.
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1. Introduction

Globalization has brought about numerous changes in people’s lives [1]. The Interna-
tional Fund has identified four fundamental aspects of globalization: trade and interna-
tional exchange, capital and investment, population flow, and the diffusion of knowledge.
The world market has become integrated into a global village through international trade
and investment growth [2]. Air transport is a global industry that is a catalyst for inter-
connectedness and globalization [3]. Air travel can be undertaken for purposes such as
sightseeing and entertainment, attending business meetings, and delivering commercial
goods to international destinations worldwide. Air traffic has increased considerably over
the past years. The Air Passenger Traffic Forecast Report noted that the demand for air pas-
senger traffic has grown strongly and that the aviation industry’s center of gravity has
shifted eastward over time [4]. By 2022, the volume of air passenger traffic was expected
to be double the level of 2021, and the average annual growth rate of air passenger traf-
fic was expected to reach 3.5%. By 2037, the number of air passengers is expected to be
8.2 billion [5]. Air transportation in various countries is gaining momentum. The de-
velopment prospects for the aviation industry are bright, and this industry will flourish
and lead the development of the world economy in the future. The aviation industry can
benefit from better interconnection. However, the International Air Transport Association
indicated that airports and air traffic control may be unable to cope with the increasing
passenger demand. Governments and infrastructure operators should plan strategically
for future development [6], and their decisions have a strong influence on the value created
in their region [7].

The era of low-cost carriers (LCCs) began with the founding of Southwest Airlines
in 1971 as the world’s first LCC [8]. LCCs have created transportation demand and have
become a source of economic growth over the past decade. In 2008, LCCs provided ap-
proximately 3.6 billion seats in the air transport industry, which increased to approximately
5.3 billion seats by the end of 2017. The market share of LCCs increased from 21% in 2007
to 29% in 2017. The market share of LCCs on intercontinental routes increased from 4.4%
in 2008 to 11.4% in 2017. Moreover, the market share of LCCs on regional routes increased
from 23.6% to 31.4% during the aforementioned period. LCCs have thus experienced
considerable growth over the past 15 years.

The aviation industry continues to develop as air traffic continues to grow. The gov-
ernments of various countries should solve infrastructure bottlenecks when developing
their domestic aviation markets [3]. With the emergence of new infrastructure and aviation
services, the demand for air transportation has increased over time. However, forecasting
airport traffic accurately is essential for determining precise returns on investment and
avoiding investment wastage. Therefore, governments must conduct suitable traffic fore-
casting and planning for the aviation industry [6] and develop efficient air infrastructure
and air services if their countries are to meet national economic development goals [7].

Models used for aviation management forecasting range from simple techniques to
more complex approaches. Wang et al. conducted a study on forecasting the tourism
demand in Hong Kong, comparing the effectiveness of three forecasting techniques. These
techniques involved the use of a combination of models such as the autoregressive inte-
grated moving average (ARIMA) model, the autoregressive distributed lag model, the error
correction model, and the vector autoregressive model. Their results indicated that superior
forecasting results were obtained when using combinations of the aforementioned models,
rather than when using any model alone [9]. Therefore, when it is unknown which model
in a set of models produces the best predictions, the predictions of the several models
can be combined to obtain suitable results. Saayman modeled and predicted tourism in
South Africa from its major intercontinental tourism markets [10] by using a naive fore-
casting model, the Holt–Winters exponential smoothing (ETS) model [11], the ARIMA
model [12], and the seasonal ARIMA (SARIMA) model [13]. Their results indicated that,
of the aforementioned models, the SARIMA model was the most accurate in forecasting
the tourist arrivals in three time intervals: 3, 6, and 12 months. Saayman concluded that
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univariate forecasting methods are relatively accurate in predicting the number of tourists
that will visit South Africa, especially in the short run. However, the SARIMA model has
limitations in its policy applications due to its inability to assess the impact of external
events on tourist arrivals [10]. Hassani compared the performance of different models in
forecasting the number of tourists arriving in Europe in terms of their root mean square
error (RMSE) and direction of change [14]. They found that the singular spectrum analysis
R model, the singular spectrum analysis V model, and the ARIMA model, as well as
the Box-Cox transformation, the autoregressive moving average error, the trend, and the
seasonal component model [15], were superior to other models. To determine the terminal
capacity required to support the long-term growth of Taoyuan International Airport in
Taiwan, Suryani developed a system dynamics model for predicting the future air cargo
demand [16]. Alexander and Merkert developed a gravity-based model for predicting
airfreight demand. They evaluated gravity models to predict and provide accurate ex-
planations for the effects of major economic events, such as a global financial crisis, on
airfreight demand [17]. The least accurate models have been found to be the ETS [11],
AR fractionally integrated MA, AR, and weighted AR [18] models. The computational
modeling is mainly based on artificial neural networks [19–21] and the support vector
machine (SVM) model [22–24], and complex numerical models work together with physi-
cal descriptions of the processes without empirical analysis [25]. Cao et al. explored and
analyzed subway passenger traffic diversion laws during holidays by using the predictions
of an ARIMA model and a SVM model [26]. However, in terms of prediction accuracy, no
single model is superior to the alternative models under all conditions. Traditional time
series analysis models are not superior to machine learning prediction models. Although
traditional time series analysis and predictive models may be among the best models for
predicting a given time series, they still have many limitations when applied in practice.
The problem of predicting values that approximate historical data cannot be solved by
traditional methods [27]. The forecasting performances of the support vector regression
(SVR) and ARIMA models, which have unique advantages and disadvantages, has not
been compared.

The advantages of using the SVR model to produce accurate predictions become less
apparent as the length of the time series forecast increases. Further improvements can be
made to the original ML in various ways, given that hybrid models can produce effective
predictions. One solution for improvement is to use a fuzzy system with the SVR to allow
different input points to contribute in different ways to the learning of the decision surface.
The advantages of these models can be combined using a fuzzy time series (FTS) [28]. Tai
proposed an improved FTS (IFTS) model that uses historical data to make predictions about
the penetration of salt and the total population, and their model had a higher prediction
accuracy than did other fuzzy SVR models [29]. The results show that the hybrid model
can be more accurate in time series predictions because it reduces the influence of outliers.
In summary, hybrid models can achieve better prediction results than can single models.

In the present study, a self-developed fuzzy SVR (FSVR) model based on an IFTS was
used to accurately predict international airport traffic. The FSVR model was developed
using an improved fuzzy set to perform SVR, which approximates the fuzzy upper and
lower bounds to generate numerical predictions. The model parameters have been studied
to determine the optimal values for each data set in use. The results of testing the proposed
model on a large number of data sets with different characteristics showed that the pro-
posed model outperforms the existing models such as Holt–Winters’ (ADD), ETS, ARIMA,
SARIMA, and SVR. Airport traffic data are represented as fuzzy values and can be used
for membership functions to simulate economic expertise and knowledge. Seasonal time
series are suitable for interpolating historical data and predicting future data. The proposed
FSVR model can efficiently and accurately solve time series and nonlinear problems. The
contributions of this study are as follows. First, we developed and optimized an FSVR
model for forecasting international airport traffic volumes. Second, we validated the ability
of the developed FSVR model to perform well under multiple parameters. Third, robust
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statistical indicators were calculated to determine the accuracy of the proposed model.
These indicators were obtained by comparing the model forecasts with observation data
published on the websites of various airports. However, the airport traffic volume can be vi-
olently affected by the negative phenomena such as a worldwide infectious disease [30,31].
Our proposed method can only be applied to a continuous periodic sequence, and negative
phenomena can affect the accuracy of the forecast obtained using the proposed method [32].

2. Methods
2.1. Support Vector Regression

SVR is a supervised learning model that extends the traditional SVM algorithm [33].
This model uses the ε-insensitive loss function of the training data for regression analysis,
which allows the prediction of continuous data [34]. The SVR algorithm constructs a
hyperplane to minimize the distance from the farthest sample point to the hyperplane. To
transform nonlinear problems into linear problems, the SVR algorithm maps the training
data into a high-dimensional feature space. The training data are represented by {(xi, yi);
i = 1, 2, . . . , N; xi ∈ Rn; yi ∈ R}, where xi is an n-dimensional input value, yi is the actual
output value, and N is the size of the data set. The SVR function is defined as

y = f (xi) = ωT ϕ(xi) + b (1)

The predicted value f (xi) is represented by a linear combination of the feature functions
of the input ϕ(xi). Moreover, the adjustment factors ω and b are estimated using a penalty
function as follows:

R(C) =
1
2
‖ ω ‖2 + C· 1

n

n

∑
i=1
‖ yi − f (x) ‖ε (2)

|y− f (x)|ε =
{

0, |y− f (x)| ≤ ε

|y− f (x)| − ε , otherwise
(3)

The balance between model complexity and training error rate is controlled by the
penalty coefficient C and the maximum tolerable error ε. To handle the infeasible constraints
of the optimization problem, the slack variables ξi and ξ∗i are introduced as follows:

min
ωbξ(∗)

1
2‖ ω ‖2 + C

n
∑

i=1

(
ξi + ξ∗i

)
,

subject to


−yi + ωT ϕ(xi) + b ≤ ε + ξi, (i = 1, . . . , m),
yi −ωT ϕ(xi)− b ≤ ε + ξ∗i , (i = 1, . . . , m),

ξ∗i ≥ 0, (i = 1, . . . , m),

(4)

A small ε value can lead to overfitting, whereas a large ε value can lead to underfitting.
The Lagrangian equations for a dual optimization problem are expressed as follows:

min
αi,α
∗
i

1
2

n
∑

i,j=1
yi
(
αi − α∗i

)(
αj − α∗j

)
k
(
xi, xj

)
+

n
∑

i=1

(
(ε− yi)αi + (ε + yi)α

∗
i
)
,

Subject to


n
∑

i=1

(
αi − α∗i

)
= 0,

0 ≤ α∗i ≤ C, (i = 1, . . . , m)

(5)

An SVR function is expressed as follows:

f (x) =
n

∑
i=1

(αi − α∗i )k(xi , x) + b (6)

where αi and α∗i represent Lagrange multipliers and k(xi, x) represent the kernel function.
By performing additive decomposition on univariate time series models, the SVR model
can be constructed so that the kernel function class is closed under additive decomposi-
tion. Commonly used kernel functions for the SVR model include spline, Gaussian radial
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basis function (RBF), linear, polynomial, and matching hidden Markov model (MHMM)
kernels [35]. The Gaussian RBF kernel is widely used for nonlinear mapping, especially
when considering the interactions between two time series, and performs well under the
additive decomposition of these kernel functions [36]. The Gaussian RBF kernel constructs
a nonlinear decision hyperplane in the input space using the following formula:

k(xi, x) = exp
(
−σ ‖ x− xi ‖ 2

)
(7)

where σ represents the kernel width, and x and xi are input vectors. In SVR, there are three
main parameters that strongly affect performance, and they are the penalty coefficient C,
the kernel parameter, and the width ε of the insensitive loss function. C is used to balance
the relationship between model complexity and training error, while ε is used to control
the width of the SVR sensitive region and the number of support vectors. For the Gaussian
RBF kernel, the kernel parameter affects the distribution and range characteristics of the
training sample data, thus affecting the width of the local neighborhood.

2.2. Fuzzy Set Design

Let U = {u1, u2, ..., um} denote the complete set of objects under discussion, which is
called the universe. Each element in the universe is represented by u. The fuzzy set of U is
defined as follows:

A = {µA(u1)/u1, µA(u2)/u2, ..., µA(um)/um} (8)

where µA(ui) is the membership function that maps the elements of universe U to the range
[0,1]. The membership function µA(ui): U→ [0, 1] indicates the degree of membership of
element ui in set A, where i is an integer from 1 to m. The membership degree ranges from
0 to 1.

Let X(t) be a sequence of values with t = 1, 2, ..., and let X be an element in universe U.
If a real number fi(t) is given such that fi(t) is in the range [0, 1], then fi(t) is defined as
a fuzzy subset. The collection of f 1(t), f 2(t), ..., fi(t) is called the fuzzy time series of X(t),
which is denoted F(t). The deviation between the original prediction and the estimated
data—which is represented as {X̂i}, i = 1, 2, ..., n—is evaluated using metrics such as the
mean square error, mean absolute error (MAE), mean absolute percentage error (MAPE),
symmetric MAPE, mean absolute scaled error, and RMSE. A smaller variance indicates a
more accurate model prediction. Suppose that the data set Xi corresponds to the time ti,
where i = 1, 2, ..., n.

2.3. Fuzzy SVR

The FSVR model developed in this study is based on the IFTS model [29], which
uses dynamic, probabilistic, and comprehensive rules for the handling of uncertainties
in raw data [37,38]. The IFTS model is based on the concept of variation between two
consecutive periods and the fuzzy relationship between the elements in a series. For
seasonal and nonseasonal time series, this model can perform fuzzy historical interpolation
and make predictions about the future. All of the parameters of the proposed IFTS model
are calculated using the appropriate methods to accommodate data sets with different
characteristics. The IFTS model is more effective in prediction and forecasting than are
alternative models and is included in the R program as a function and thus is convenient
to implement. The steps of the IFTS model are outlined in Algorithm 1, and additional
information is provided in the subsequent text [29].
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Algorithm 1: Fuzzy time series using IFTS model

Definition:
The interval between the smallest and largest variations in the data set is contained in the
universal set U.
Ui = Xi+1 − Xi, i = 1, 2, ..., n − 1
U = [Min, Max]
Input:
Air traffic: The data set Xi of passengers, aircraft movements, and freight corresponds to the time
ti, i=1, 2, . . . , n.
Output:
Fuzzy model of the time series of the air traffic volume with the lowest RMSE value.
1 Divide U into m equal intervals of fuzzy sets ui, i =
1, 2, . . . , m. Find the midpoints of the intervals

(
u0

i , i = 1, . . . , m
)

with initial values m = 5, 6, 7,
. . . , 11.
2 Calculation of the C-value of each interval
t = 0, initial values k = 500, ε = 1e− 06, a(0) = 0, b(0) = 1, ∆C(0) = 0.5, n(0) = 1
3 If t = i and i ≥ 1

4 Compute ∆C(t) = b(t)−a(t)
k , and C(t)

i
5 If a = 0 and b = 1, C(t)

i = a(t) + i4 C(t), i = 1, 2, . . . , k− 1

6 If a = 0 and b 6= 1, C(t)
i = a(t) + i4 C(t), i = 1, 2, . . . , k

7 If a 6= 0 and b = 1, C(t)
i = a(t) + i4 C(t), i = 0, 1, 2, . . . , k− 1

8 If a 6= 0 and b 6= 1, C(t)
i = a(t) + i4 C(t), i = 0, 1, 2, . . . , k

9 IFTS to find C(t)
l , 0 ≤ l ≤ k

10 Find C = C(m)
l until b(m) − a(m) < ε

11 Determination of the respective values of the set of the fuzzy set with C,
µAi(ui) =

1
1+[C×(Ui−u0

i )]
2 , i = 1, 2, . . . , m

12 Choose a base corresponding to the previous time intervals, w = 12 (1 < w < n).

13 Calculation of the fuzzy relationship matrix Rw(t) = Ow(t) ∩ K(t) =


R11
R21

R12
R22

. . .

. . .
R1j
R2j

. . .
Ri1

. . .
Ri2

. . .

. . .
. . .
Rij

.

14 Define F(t) as the fuzzy forecast of the variations at the moment t.Ft =[
E(R11, R21, . . . , Ri1) E(R12, R22, . . . , Ri2) . . . E

(
R1j, R2j, . . . , Rij

)]
where E(R1k, R2k, . . . , Rik) =

R1k+R2k+...+Rik
w−2 , k = 1, 2, . . . , j

15 Forecast 7(m(7)×w(1)) fuzzy model data for the time series, forecast value, and the
result is calculated for the value t = w based on the variations in the result of the
previous values (t − 1, ..., t − w).
16 X̂(t) = X(t− 1) + V(t)

where V(t) = ∑w
i=1 µt(ui)×ui

m
∑w

i=1 µt(ui)

17 The data from each fuzzy model are compared with the real data. The RMSE is
calculated for all of the fuzzy model data. We use the RMSE as the evaluation
criterion to compare with the listed models.

The five steps used to construct an IFTS model [29] for the fuzzy set between Xi+1 and
Xi are as follows:

Step 1: Calculate the change between successive time periods in the data set Xi, and
determine the minimum (Min) and maximum (Max) values of universe U [39].

Ui = Xi+1 − Xi, i = 1, 2, ..., n − 1 (9)

Step 2: Divide the universe U into m equal-length intervals, each denoted by ui (i = 1,
2, ..., m), where the growth rate of each interval can vary at different times. Next, compute
the midpoint of each interval, denoted by u0

i (i = 1, 2, ..., m).
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Step 3: On the basis of the fuzzy set between Xi+1 and Xi, determine the corresponding
value of the fuzzy set Ai of F(t). The fuzzy sets A1, A2, ..., Am are defined as follows:

Ai = {µAi(ui)/ui}, ui∈U, µAi∈[0, 1] (10)

µAi(ui) =
1

1 +
[
C×

(
Ui − u0

i
)]2 , i = 1, 2, . . . , m (11)

where C is a constant, with C ∈ (0, 1); Ui is the change between successive time periods,
calculated in step 1; and u0

i is the midpoint of each time period, calculated in step 2.
Step 4: Select an interval cardinality w (1 < w < n). Based on the chosen value of w,

compute the fuzzy relation matrix Rw(t). This step generates a computation matrix Ow(t) of
size i × j, where i is the number of rows and j is the number of columns. Depending on the
number of interval changes, the computation matrix is aligned with the data at times t − 2,
t − 3, ..., t − w. Additionally, a 1 × j matrix K(t) is obtained to represent the fuzzy change
row matrix at time t − 1. Finally, the obtained fuzzy relation matrix R(t) is combined with
the fuzzy relation matrices from other time instants to form the relation matrix R(t), as
Equation (12).

R(t) = Ow(t) ∩ K(t) =


R11
R21

R12
R22

. . .

. . .
R1j
R2j

. . .
Ri1

. . .
Ri2

. . .

. . .
. . .
Rij

 (12)

The fuzzy time series F(t) is expressed as follows:

Ft =
[
E(R11, R21, . . . , Ri1) E(R12, R22, . . . , Ri2) . . . E

(
R1j, R2j, . . . , Rij

)]
(13)

where
E(R1k, R2k, . . . , Rik) =

R1k + R2k + . . . + Rik
w− 2

, k = 1, 2, . . . , j (14)

Step 5: Forecast the data for time t by using the following equation:

X̂(t) = X(t− 1) + V(t) (15)

V(t) =
∑w

i=1 µt(ui)× ui
m

∑w
i=1 µt(ui)

(16)

where µt(ui) is a component of F(t). The term V(t) is calculated on the basis of the variation
in the data throughout the time series and the previous V(t) values. X(t − 1) is the actual
value at time t− 1, and X̂(t) is the forecasted value at time t. The value of X̂(t) is influenced
by X(t − 1) and V(t). The calculation method is described in the following text.

Group data changes between consecutive time periods and assign those with larger
changes to more clusters. Equation (12) shows the fuzzy relationship between the universe
and the fuzzy sets. The time t is predicted in accordance with the result of t = w, which
is derived from the change values of t − 1, t − 2, . . . , t − w. The obtained results are
compared with the actual values to evaluate the model’s accuracy, and the error is estimated.
The constant C influences the value of µAi(ui), and the criterion for the evaluation of the
prediction model is used to determine the optimal value of C. The model evaluation process
involves the following steps:

Step 1: Define the values of k and ε, where k represents the number of divisions
in each iteration and ε represents the error in C. A smaller value of ε results in a longer
computation time.

Step 2: For t = 0, allocate the initial values as follows: a(0) = 0 and b(0) = 1.
Step 3: For t = i, i ≥ 1, calculate the terms a(t), b(t), and4C(t) as follows:

a(t) = a(t−1) +
[
n(t−1) − 1

]
4 C(t−1), (17)
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b(t) = a(t−1) +
[
n(t−1) + 1

]
4 C(t−1), (18)

4 C(t) =
b(t) − a(t)

k
, and C(t)

i , (19)

Depending on the values of a and b, calculate the values of C(t)
i as follows:

if a = 0 and b = 1, then C(t)
i = a(t) + i4 C(t), i = 1, 2, . . . , k− 1,

if a = 0 and b 6= 1, then C(t)
i = a(t) + i4 C(t), i = 1, 2, . . . , k,

if a 6= 0 and b = 1, then C(t)
i = a(t) + i4 C(t), i = 0, 1, . . . , k− 1,

if a 6= 0 and b 6= 1, then C(t)
i = a(t) + i4 C(t), i = 0, 1, . . . , k.

Step 4: Calculate the IFTS by using C(t)
i , and find C(t)

l to optimize the CEF model.

Step 5: Repeat Steps 3 and 4 to find C = C(m)
l until b(m) − a(m) < ε.

The “division of intervals for the universal set” algorithm in the IFTS model consists
of the following steps:

Step 1: If t = 0, ε > 0 is a small positive number. In this case, the initializing sequence’s
cluster elements are defined as Z(0) =

(
z(0)1 , z(0)2 , . . . , z(0)n

)
= (x1, x2, . . . , xn).

Step 2: Update each fuzzy data point by using the following formula:

z(t+1)
i =

∑n
i′=1 f

(
z(t)i , z(t)i′

)
· z(t)i′

∑n
i′=1 f

(
z(t)i , z(t)i′

) (20)

where f (z(t)i , z(t)i′ ) is a truncated Gaussian kernel. This kernel is defined as follows:

f
(

z(t)i , z(t)i′

)
=

{
exp

(
− d

λ

)
i f d = d

(
z(t)i , z′(t)i

)
≤ ds,

0 i f d > ds,
(21)

where d
(

z(t)i , z′(t)i

)
is the Euclidean distance between z(t)i and z′(t)i . Moreover, ds is the

average value of all pairs of data element distances. Calculate the parameter ds as follows:

ds =
2

n(n− 1) ∑
i<i′

d
(
xi, x′i

)
(22)

where n is the number of data points and λ depends on ds. If λ approaches 0, the data have
n intervals, and if λ approaches infinity, the data have one interval.

Step 3: Step 2 is repeated until the condition maxi

{
d
(

z(t)i , z(t+1)
i

)}
< ε i is satisfied.

When the elements of the data set converge to the representative element z(t)i , i ranges from
1 to m. After the computation is complete, a sequence containing m representative elements
is obtained, where m represents the interval value for partitioning the entire set.

The IFTS model described in the aforementioned text was used to fuzzify an original air
traffic time series. The fuzzy time series data were used as independent regression variables
for an SVR model, and fuzzy reasoning was implemented to generate corresponding fuzzy
data. The SVR model was trained for air traffic volume prediction by using independent
regression variables. Various factors affecting the partition of the fuzzy set were considered
in the fuzzification process. These factors are as follows:

1. Flight schedules in winter and summer based on each airport’s time zone.
2. The role of each airport in the global air transportation network and the unique

functions it performs based on its geographic location.
3. Consecutive public holidays in each region.
4. Off-peak and peak tourism needs or the effects of major events, such as the Olympics

or a world’s fair, on air traffic.
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Flight seasons are divided into winter and summer, covering flights from November
1 to March 31 of the following year, and from April 1 to October 31, respectively. The
main fuzzy set is constructed based on flight schedules and flight frequency tables and
includes five fuzzy sets: summer peak, winter peak, intermediate transition, summer
off-peak, and winter off-peak. In addition, other factors affecting air traffic, such as light
peaks, local tourist demand, and national holidays, are also considered. The number
of fuzzy sets is between 5 and 10, and the seasonal factors and time intervals are set to
12 months. Using the IFTS model, a fuzzy data model with seven fuzzy sets (m = 7) and
a time interval of 12 months is generated. The RMSE of each fuzzy set is calculated, and
the group with the smallest RMSE is selected as the input data for the AR independent
variable. The interval cardinality is used as the fuzzy extraction parameter for 12 periods,
and the fuzzy relationship matrix is calculated within these 12 periods, dividing the fuzzy
sets into 12 groups. The original data are used as the dependent variable for SVR, while the
independent variable is fuzzy. The data are divided into training and test sets to determine
the optimal SVR parameters and construct the proposed SVR prediction model.

2.4. Evaluation Criteria

The MAPE, MAE, and RMSE were used to evaluate indicators to determine the optimal
prediction model. These indicators are expressed as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣× 100 (23)

RMSE =

√
1
n
×

n

∑
i=1

(
Ŷi −Yi

)2 (24)

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (25)

where Yi is the actual value, Ŷi is the forecasted value, and n is the number of forecast
periods. The MAPE is a relative indicator that is independent of the unit and magnitude of
the actual and forecasted values. The difference between the predicted and actual values
can be determined objectively by using the MAPE. The MAPE is used to compare the
overall prediction accuracy of the models in an easy and quick manner. A lower MAPE
indicates a higher prediction accuracy. According to Lewis, four categories of the MAPE
exist: very accurate, solid, adequate, and imprecise.

RMSE is a statistical measure used to quantify the deviation between predicted and
actual values. It is calculated as the square root of the ratio of the average deviation between
the actual and predicted data to the number of observations. The RMSE is sensitive to small
errors in a set of measurements and thus can suitably reflect the measurement precision.
Consequently, it is used as a standard for evaluating the accuracy of a measurement process.

The MAE is the average of the absolute residuals between each predicted value and
the actual value. This parameter is a convenient tool for measuring errors and ranges from
0 to infinity. When the predicted and actual values are in perfect agreement, the MAE is 0,
and the prediction model is perfect.

3. Results and Discussion

This study focused on the International Airport Association’s time series of the air
traffic at the 10 airports with the most passenger traffic globally in 2018, namely the
Hartsfield–Jackson Atlanta International Airport (ATL) in the United States, Beijing Capital
International Airport (PEK) in China, Dubai International Airport (DXB) in the United Arab
Emirates, Los Angeles International Airport (LAX) in the United States, Tokyo International
(Haneda) Airport (HND) in Japan, Chicago O’Hare International Airport (ORD) in the
United States, London Heathrow Airport (LHR) in the United Kingdom, Hong Kong
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International Airport (HKG) in China, Shanghai Pudong International Airport (PVG) in
China, and Paris Charles de Gaulle International Airport (CDG) in France [40].

Airports Council International defines air passenger traffic as the total number of
passengers carried by departing and arriving aircraft when counting transit passengers only
once. In this study, monthly passenger traffic data were collected for the aforementioned
airports for the period between August 2014 and December 2019. These data were obtained
from Airports Council International’s statistical report or from the official websites of
the relevant airports. The time series interval was 1 month, and 1950 data records were
collected for air passenger traffic at each airport. Among these records, 1590 data records
from August 2014 to December 2018 were used as the training set data; the remaining
360 records from January to December 2019 were used as the testing set data. The training
set was used to train various prediction models (i.e., the Holt–Winters, ETS, ARIMA,
SARIMA, SVR, and FSVR models), which were then used to make predictions for the data
from January to December 2019. The predicted values were compared with the test set to
determine the models’ accuracy. Table 1 indicates the number of passengers handled at
each of the airports considered.

Table 1. Statistics on passenger traffic data of top ten airports.

Airport Min. Max. Mean Med. Q1 Q3 IQR SD CV

Atlanta 683.399 1021.628 873.448 873.326 832.123 930.807 98.684 76.045 8.706

Beijing 697.669 904.566 796.969 809.755 761.501 825.617 64.116 51.011 6.401

Dubai 519.871 837.648 701.710 697.906 658.181 761.679 103.499 71.989 10.259

Los Angeles 495.060 846.982 684.953 686.525 635.694 727.552 91.858 80.092 11.693

Haneda, Tokyo 549.112 864.140 682.344 675.672 647.462 720.944 73.482 60.881 8.922

O’Hare 477.124 815.502 665.597 674.528 624.477 724.487 100.010 82.183 12.347

Heathrow, London 495.388 781.485 647.829 652.789 595.435 693.046 97.612 68.516 10.576

Hong Kong 484.500 682.600 591.153 590.200 563.019 622.100 59.081 43.636 7.382

Pudong, Shanghai 427.736 682.594 567.193 578.441 521.474 621.585 100.111 64.557 11.382

Charles de Gaulle, Paris 434.976 747.421 578.939 575.432 515.323 649.627 134.305 78.270 13.520

Total 5264.834 8184.566 6790.132 6814.575 6354.687 7277.444 922.757 677.180 101.188

Unit: 10,000 tons; Min.: minimum value; Max.: maximum value; Mean: average value; Med.: median; Q1: first
quartile; Q3: third quartile; IQR: interquartile range; SD: standard deviation; CV: coefficient of variation.

In the collected time series data, Tt is the trend term, St is the seasonal term, and Rt is
the residual term. The formula for additive decomposition used to decompose the trend
and seasonality of the air traffic volume is as follows:

yt = Tt + St + Rt (26)

The trend strength is defined by Equation (27) and is between 0 and 1. Moreover,
Equation (28) defines the seasonality strength. A time series has no seasonality if the
seasonality strength is close to 0 [11].

FT = max
(

0, 1− Var(Rt)

Var(Tt + Rt)

)
(27)

Fs = max
(

0, 1− Var(Rt)

Var(St + Rt)

)
(28)

Table 2 shows the strength of the seasonal and trend components of the air traffic
volume. For passenger traffic, PEK had the lowest seasonal strength, at 0.74, whereas DXB,
HKG, and PVG had seasonal strengths higher than 0.8. The remaining six airports had
seasonal strengths of above 0.9 (0.94–0.97). Thus, the results indicated that the 10 airports
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considered exhibited seasonal traffic patterns and that most of them exhibited strong
seasonal patterns. Regarding flight operations, PEK and DXB had low seasonal strengths of
0.69 and 0.53, respectively; HKG and PVG exhibited moderate seasonal strengths of 0.88 and
0.81, respectively; and the other six airports exhibited moderate to high seasonal strengths.

Table 2. Seasonality and trend strength of the major air traffic volume at top ten airports.

Airport
Freight Volume

Seasonal Trend

Atlanta (ATL) 0.95 0.83
Beijing (PEK) 0.74 0.84
Dubai (DXB) 0.82 0.74

Los Angeles LAX 0.99 0.98
Haneda (HND) 0.93 0.91
O’Hare (ORD) 0.98 0.90

Heathrow, London (LHR) 0.98 0.87
Hong Kong (HKG) 0.82 0.79

Pudong (PVG) 0.86 0.97
Charles de Gaulle (CDG) 0.97 0.90

Regarding passenger volume, LAX, HND, ORD, PVG, and CDG exhibited high trend
strengths of between 0.90 and 0.98; ATL, PEK, and LHR exhibited moderate trend strengths
of 0.83–0.87; and DXB and HKG exhibited relatively low trend strengths of 0.74 and 0.79,
respectively. The passenger volume trends were moderately to highly strong at all airports.

In the FSVR model developed here, historical air traffic data were used as the input,
and the functional correlation between the dependent and independent variables was used
to obtain predictions. Airlines estimate their passenger traffic demand for each quarter and
apply for a fixed schedule, which is allocated by the international conference each year.
The annual flight schedule is divided into winter and summer seasons, and each airport
exhibits strong seasonal trends in its passenger traffic (Table 2).

Therefore, the changes in the current air traffic were hypothesized to exhibit 1- or
12-period lags with respect to the changes in the historical air traffic data. The functional
relationship of the data was calculated through SVR to fit the data that lag by 1 period or
12 periods. The optimal number of lags for the dependent variable y in the self-regression
was determined by calculating the RMSE and MAPE values. The calculation of the traffic
volume for ATL using the SVM function in R software is described as an example. In this
example, the three most important SVM parameters were set to default values as follows:
the penalty coefficient C was set as 1, the kernel parameter of the Gaussian kernel function
(RBF) σ was set as 1, and the width of the insensitive loss function ε was set as 0.1. The
results of the SVR self-regression lag analysis for the air traffic of ATL are presented in
Table 3. Regarding passenger traffic volume and aircraft take-off and landing frequency, the
12-period-lagged data were better than the 1-period-lagged data for use as independent-
variable data in the SVR model. In contrast, for freight volume, the 1-period-lagged data
were better than the 12-period-lagged data for use as independent-variable data in the
SVR model. Therefore, in the SVR model in this study, 12-period-lagged data were used as
the independent-variable data for the passenger traffic volume and aircraft take-off and
landing frequency, while 1-period-lagged data were used as the independent-variable data
for the freight volume.

The grid search method in R can be used to select C, σ, and ε. This method trains
the model for each set of parameter combinations, checks its performance, and selects
the best performing model. To ensure the reliability of the model and the adaptability
of the above parameters during the training process, the optimization function built into
the e1071 application package in R is used to adjust the parameters and perform cross-
validation automatically. Therefore, the parameters are set as C = [20, 20.1, 20.1, . . . , 214],
σ = [2−10, 2−9.9, 2−9.8, . . . , 20], and ε = [2−10, 2−9.9, 2−9.8, . . . , 20].
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Table 3. Analysis table of the number of post-regression periods of SVR auto-regression for air traffic
volume at Atlanta International Airport.

Data

Category Passenger Traffic Volume

RMSE MAPE No. of Support Vectors

lagged 12-period traffic data 40.133 3.127 41

lagged one period of traffic data 78.358 7.165 46

Peaks and seasonal patterns are characteristics of air passenger and flight traffic.
In addition, other parameters can affect traffic volume time series, such as the aviation
policy of the relevant government and the airport’s geography. Therefore, the data for
different airports are divided into different fuzzy sets for the calculation of the membership
function through fuzzy theory. Tai’s IFT model and SVR model were used to fuzzify
the air traffic volume data in the development of the FSVR model. The fuzzified traffic
volume was then used as the independent variable for the SVR self-regression model.
During the fuzzification process, the domain of the traffic volume time series data was
defined by partitioning it into fuzzy sets with different increments, resulting in low root
mean square error fuzzy data. The factors affecting air traffic—such as national and
regional holidays, travel seasons, winter and summer flight schedules, and passenger
demand—were considered when defining the fuzzy sets for air traffic volume. The number
of fuzzy sets (m) was set between 5 and 10. In addition, the cardinality w for the previous
time interval was set to 12 in accordance with the characteristics of the 12-month flight
cycle; thus, 7 fuzzy data sets were obtained for 12 periods. From these data sets, the fuzzy
data with the minimum RMSE were selected as the optimal input for FSVR self-regression.

The 10 airports considered in this study were divided into 3 regions: North America,
Middle East and Europe, and Asia. The experimental results indicated that the best number
of fuzzy sets for each airport’s fuzzy air traffic time series could be obtained from the
minimum RMSE of the fuzzy data by using the IFTS model. The best number of fuzzy sets
of passenger traffic for each North American airport, each Middle Eastern and European
airport, PVG, and HKG was between five and seven. The best number of fuzzy sets of
passenger traffic for PEK was 9 or 10, and the corresponding number for HND was 8 or 9.

The IFTS model uses historical changes in data to establish the domains and the fuzzy
relationship. Similar elements in a time series are grouped into appropriate fuzzy sets by
using fuzzy classification algorithms, which help produce fuzzy interpolated time series
with low error. In this study, the fuzzy relationship matrix was calculated using the data for
the previous 12 periods. As presented in Table 4, lower RMSE values were obtained with
the fuzzy time series produced by the IFTS model than with the 12-period-lagged data.

Table 4. The RMSE of fuzzy time series.

Passenger Traffic Volume lag12-RMSE Fuzzy-RMSE

Atlanta 35.716 22.249

Los Angeles 37.987 3.395

O’Hare 35.375 20.546

Heathrow, London 20.545 6.294

Charles de Gaulle, Paris 29.313 21.063

Dubai 42.874 19.204

Beijing 44.234 6.520

Pudong, Shanghai 46.301 6.448

Hong Kong 28.882 16.088

Haneda, Tokyo 35.335 1.268
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As shown in Table 5, the SARIMA model exhibited lower MAEs than did the Holt–
Winters, ETS, ARIMA, and SVR models in forecasting the passenger traffic for ATL, LAX,
DXB, and PEK. The SVR model exhibited lower MAEs than did the other aforementioned
models in forecasting the passenger traffic for ORD, LHR, HND, and HKG. Among the
aforementioned five models, the Holt–Winters additive model and ETS model exhibited
the lowest MAEs in forecasting the passenger traffic for CDG and PVG, respectively. The
proposed FSVR model exhibited lower MAEs than did the aforementioned five models in
forecasting passenger traffic for all of the considered airports. The lowest average MAE
among those of the six models was exhibited by the FSVR model (6.742), followed by the
SARIMA and SVR models (20.939 and 21.507, respectively). The average MAE of the FSVR
model was 67%–68% lower than those of the SARIMA and SVR models.

Table 5. The experimental results of the traffic volume forecast model MAPE, MAE, and MAPE values.

Airport Criteria Holt–Winters’(ADD) ETS ARIMA SARIMA SVR FSVR

ATL
MAPE(%) 1.909 1.937 8.453 1.535 1.884 1.253

MAE 17.735 17.881 79.074 14.076 17.258 11.883
RMSE 21.142 20.724 91.516 17.022 20.289 14.902

LAX
MAPE(%) 3.215 2.525 7.018 2.005 2.803 0.159

MAE 22.910 18.110 51.619 14.404 19.347 1.141
RMSE 29.386 23.160 66.035 19.008 24.440 1.536

ORD
MAPE(%) 2.797 2.800 12.196 2.552 2.361 1.633

MAE 18.425 18.798 86.249 16.341 15.445 11.132
RMSE 23.847 24.055 98.817 22.518 20.433 14.195

DXB
MAPE(%) 5.977 6.583 10.346 5.533 5.875 1.462

MAE 37.844 41.236 66.789 35.242 35.922 9.399
RMSE 56.545 63.778 88.062 52.941 61.619 14.215

LHR
MAPE(%) 2.209 1.579 6.842 1.371 1.297 0.742

MAE 15.034 10.712 47.682 9.363 8.954 5.146
RMSE 21.129 16.437 56.534 14.031 12.541 6.464

CDG
MAPE(%) 2.197 3.480 12.079 2.597 2.306 1.710

MAE 14.284 22.949 81.276 16.947 14.674 10.824
RMSE 17.266 26.569 98.765 20.448 18.977 14.642

PEK
MAPE(%) 6.282 4.387 3.980 2.454 3.149 0.320

MAE 52.029 36.329 33.107 20.441 26.378 2.643
RMSE 57.558 39.975 34.907 24.637 29.246 3.655

PVG
MAPE(%) 4.149 2.022 5.331 2.111 2.316 0.542

MAE 25.945 12.894 34.741 13.573 14.591 3.401
RMSE 32.565 15.317 42.404 17.056 16.664 4.408

HND
MAPE(%) 6.875 6.112 6.573 3.658 3.112 0.048

MAE 48.921 43.354 45.884 26.005 21.975 0.343
RMSE 54.773 50.451 52.102 30.997 25.721 0.447

HKG
MAPE(%) 9.508 7.868 9.124 7.746 7.500 2.021

MAE 51.452 42.581 50.676 43.002 40.529 11.512
RMSE 71.429 59.519 62.067 52.722 56.814 13.262

Ave. of MAPE(%) 4.512 3.929 8.194 3.156 3.260 0.989
Ave. of MAE 30.458 26.484 57.710 20.939 21.507 6.742
Ave. of RMSE 38.564 33.999 69.121 27.138 28.674 8.773

Bold means the lowest value. Underline means the value > 10.

The MAPE values for the predicted passenger traffic were below 10% for all airports
except ORD, DXB, and CDG. Thus, the models achieved high prediction accuracy. The
FSVR model had lower MAPE values than those of the other five models. The average
MAPE of the FSVR model was 0.989, which was approximately 68% lower than that of the
SARIMA model (3.156), which had the second-lowest average MAPE. According to the
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RMSE values presented in Table 5, the ARIMA model was the least accurate in predicting
the passenger traffic at all airports. The Holt–Winters model performed well for CDG,
and the ETS model performed well for PVG. The SARIMA model exhibited the second-
lowest RMSE values in its predictions for ATL, LAX, DXB, PEK, and HKG. The SVR model
exhibited the second-lowest RMSE values for ORD, LHR, and HND. Among the six models,
the FSVR model exhibited the lowest RMSE values in predicting the passenger traffic for all
airports. The average RMSE value of the FSVR model was 8.773, which was 67% lower than
that of the SARIMA model (27.138), which had the second-lowest average RMSE. Among
the compared models, the FSVR model provided the best results in terms of MAE, MAPE,
and RMSE for forecasting international airport passenger traffic. The relevant parameters of
each forecasting model are listed in Table 6, and the comparison of the actual and forecasted
values for 2019 is displayed in Figure 1.
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Figure 1. The forecast results for the traffic volume at each airport from January to December 2019:
(A) ATL Atlanta; (B) LAX Los Angeles; (C) ORD O’Hare; (D) DXB Dubai; (E) LHR London Heathrow;
(F) CDG Paris Charles de Gaulle; (G) PEK Beijing Capital; (H) PVG Shanghai Pudong; (I) HND Tokyo
Haneda; (J) HKG Hong Kong.

The passenger traffic at DXB decreased by 3.2 million people in 2019 because of
temporary runway closures, the bankruptcy of Jet Airways, which is a popular airline
flying to and from DXB, and the disruptions caused by the inability of Flydubai, which is
Dubai’s second-largest airline carrier after Emirates, to acquire Boeing 737 MAX aircraft.
In 2019, PEK faced several challenges, such as the escalation of trade tensions between
the US and China, geopolitical conflicts, and financial market volatility. In addition, the
opening of Daxing Airport in September 2019 resulted in the relocation of some flights
from PEK, further reducing its transportation capacity. PEK recorded 594,329 take-offs
and landings in 2019, and this number represented a decrease of 3.2% compared with the
numbers for 2018. Moreover, the passenger throughput at PEK in 2019 was 100,011,438,
which was 1% lower than that in 2018. Airline operations at HKG were considerably
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affected by the prolonged political turmoil and complex geopolitical environment in
Hong Kong from the second half of 2019, which resulted in the passenger traffic in 2019
(71.5 million passengers) being 4.2% lower than that in 2018. HKG was closed several times
because of protests and violence, which resulted in travel warnings from approximately
40 countries and led to a decline in the overall business volume, with flight movements
1.9% lower and a total cargo volume 6.1% lower (at 4.8 million tons) in 2019 compared
with the corresponding values in 2018. The decline in passenger traffic was particularly
pronounced on routes to and from mainland China and Southeast Asia.

The FSVR model produces accurate fuzzy historical interpolations because it uses
Tai’s IFTS model, which is suitable for nonseasonal time series, and because it considers
historical changes in traffic volume. The combination of an SVR model, which maps
data to high-dimensional feature spaces, with fuzzy theory, which is used to transform
nonlinear problems into linear or nearly linear problems, enables the accurate prediction of
an airport’s air traffic volume. The predictions obtained using the proposed FSVR model
for the air traffic volumes at DXB, PEK, and HKG in 2019 and the corresponding actual air
traffic volumes are displayed in Figure 2.
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Table 6. Parameters related to each forecasting model of traffic volume.

Airport Holt–Winters’ (ADD)(α, β, γ) ETS (α, β, γ) ARIMA (p, d, q) SARIMA (p, d, q)(P, D, Q)S SVR (ε, C, σ) FSVR (ε, C, σ)

ATL (0.3242271, 0.03419252, 0) (0.2486, 0.0001, 0.0009) (1,1,0) (0,1,1)(0,1,1) (0.07943282, 1448.155,
0.0002511886) (0.0001, 8192, 0.026125)

LAX (0.9180541, 0, 0.2935654) (0.6199, 0.0001, 0.0001) (0,1,0) (0,1,1)(0,1,1) (0.225, 1024, 0.05) (0.0001, 1024, 0.0002)
ORD (0.3964889, 0, 0.8077017) (0.6426, 0.0001, 0.0001) (0,1,0) (1,0,0)(0,1,1) with drift (0.1584893, 4, 0.1995262) (0.02209709, 22.62742, 0.125)
DXB (0.01336716, 1, 0.2483901) (0.0491, 0.0491, 0.0001) (5,0,0) with non-zero mean (0,0,0)(1,1,0) with drift (0.2, 32, 0.0006) (0.16, 1024, 0.04)
LHR (0.4530443, 0.009712022, 0.6942027) (0.1388, 0.0001, 0.0001) (1,0,0) with non-zero mean (1,0,0)(0,1,1) with drift (0.1, 128, 0.009) (0.0125, 1.24, 0.3125)
CDG (0.06164469, 0.6310111, 0.6988015) (0.3959, N, 0.0001) (2,1,2) with drift (0,1,1)(0,1,0) (0.153, 1024, 1.022) (0.151, 30, 0.01)
PEK (0.07326602, 0.0240825, 0.7191751) (0.0083, 0.0001, 0.0209) (0,1,1) (0,0,3)(1,0,1) with non-zero mean (0.001, 0.757, 0.51) (0.015625, 64, 0.00390625)

PVG (0.5797924, 0, 0) (0.0363, 0.0001, 0.0009) (0,1,1) (1,0,1)(1,0,0) with non-zero mean (0.329877, 63.09573,
0.00390625)

(0.03125, 90.50967,
0.001953125)

HND (0.4796565, 0, 0.9722993) (0.0898, 0.0001, 0.0001) (0,1,1) (1,0,1)(1,0,0) with non-zero mean (0.0001, 0.630957, 0.01625) (0.001953125, 14.92853,
0.001953125)

HKG (0.2538931, 0.02770604, 0.2855045) (0.0001, 0.0001, 0.0001) (3,1,0) (1,0,3)(1,0,0) with non-zero mean (0.556, 2.098, 0.971) (0.01, 512, 0.0315)
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Accurate forecasting of the air traffic demand is of paramount importance not only to
private airports, airlines, and related industries, but also to governments and international
aviation organizations [41]. In this study, we have tested the performance of the proposed
model using data from the national level, which can be applied at the corporate level. The
results demonstrate FSVR’s high accuracy and show that it outperforms SVR and performs
well across all airport types. Forecasting the air traffic demand can help private airports
plan staffing, queuing, and equipment to reduce wait times and improve service levels [42].
For airlines, accurate forecasts can be instrumental in the determination of route availability,
frequency, and capacity. In addition, the results of the forecasting can assist policy makers
and organizations in determining the capacity and scope of the aviation industry, allowing
them to reach appropriate agreements with other countries and companies to achieve
maximum efficiency and profit. Notably, air demand forecasting can also help the aviation
industry anticipate market demands, adapt to market changes, and manage resources and
finances more effectively [43].

4. Conclusions

In this study, the proposed FSVR model uses the IFTS model proposed by Tai to
fuzzify time series data on air traffic volume. Because the IFTS model can be applied
to nonseasonal time series, the FSVR model can consider historical changes in a fuzzy
time series. Fuzzy classification algorithms appropriately divide similar elements in a
time series into appropriate fuzzy sets, generate membership functions, and establish
fuzzy relationships. The fuzzy data with the smallest error are then subjected to SVR to
predicting continuous data and find the best hyperplane model with the minimum distance
to the appropriate support vector sample points. The passenger volumes of the world’s
10 busiest international airports in terms of passenger traffic in 2018 (ATL, PEK, DXB, LAX,
HND, ORD, LHR, HKG, PVG, and CDG) were predicted using the proposed FSVR model
and five other models. The predictions were made based on data from August 2014 to
December 2019. The developed FSVR model provided accurate prediction results for the
air passenger volume at each of the airports considered. Of the compared models, the
proposed FSVR model exhibited the lowest MAPE, MAE, and RMSE values for its air traffic
predictions for all of the airports considered. The average MAPE, MAE, and RMSE values
obtained with the proposed model were 0.989, 6.742, and 8.773, respectively, and all of the
MAPE values were below 2.5. This study represents the first application of FSVR to the
prediction of airport traffic. The results demonstrate the high accuracy of FSVR, which
outperforms the SVR model and performs well across different airport types. In future
airport traffic forecasting research, multivariate techniques can be used to account for the
interdependence of variables.
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