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Abstract: This paper focuses on the solutions for the distributed optimization coordination problem
(DOCP) for heterogeneous multiagent systems under directed topologies. To begin with, a different
convex optimization problem is proposed, which implies a weighted average of the objective function
of each agent. Sufficient conditions are set to ensure the unique solution for the DOCP. Then, despite
the external disruption, a distributed control mechanism is constructed to drive the state of each
agent to the auxiliary state in a finite time. Furthermore, it is demonstrated that the outputs of all
agents can achieve the optimal value, ensuring global convergence. Moreover, the controller design
rule is expanded with event-triggered communication, and there is no Zeno behavior. Finally, to
exemplify the usefulness of the theoretical conclusions, a simulation example is offered.
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1. Introduction

The distributed cooperative control of multiagent systems (MASs) has received a
substantial amount of attention in recent years due to its wide range of applications in
consensus [1,2], the rendezvous of mobile vehicles [3], cooperative monitoring [4,5], the
synchronous operation of distant generators in the power grid [6], and other domains.
In recent years, consensus as a material collective behavior in MASs has received a sub-
stantial amount of attention from academics and practitioners alike [7–10]. On account
of the conceivable utilization of this technology in various fields of engineering, physics,
mathematics, and sociology, substantial effort has been concentrated on designing the
distributed protocols to achieve consensus under various considerations.

Amidst the extensive investigation of MASs, the distributed optimization problem
(DOP), in which all agents reach the ideal value that minimizes the total of local objective
functions [11], is one of the most rudimental and widely studied problems. The DOP is
widely used in a variety of real-world applications [12,13]. There have been numerous
studies about discrete-time and continuous-time optimization protocols, including the
gradient algorithms in [14,15] and the Lagrangian-based algorithms in [16–18], to solve
the DOP. In [19], distributed subgradient methods were proposed to solve the DOP. The
adaptive optimization problem was studied in [20] based on an innovative distributed
adaptive algorithm with irregular gradient gains. A fully distributed optimal algorithm
was proposed in [21] for the continuous-time MASs. The optimization problem was turned
into a tracking problem by estimating the property of the global optimal state in [22].

The traditional DOP was recently extended to the distributed optimum coordination
problem (DOCP) in [23,24] by regarding the conception of the virtual-objective systems.
DOCP stands for the collaboration of various continuous-time objective systems for opti-
mum overall performance. As pointed out in [24], the existing distributed optimization
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algorithms cannot be straightly enforced for the sake of the agent dynamic behaviors. The
DOCP can be resolved by constructing an integrated control law that does not require the
best solution to be present in the closed-loop system [24–26]. The stability of the agents can
be assured due to the characteristics of the complete graph Laplacian matrix, which means
that the approaches in [24] may not be used to the directed graph. With different considera-
tions on gradients and local objective functions, Mao et al. [25] devised a distributed ETC
for solving DOCP with time-varying networks. In [26], a distributed optimization control
strategy for heterogeneous agents with disruption was proposed to solve the DOCP with
an undirected graph. Li et al. [27] investigated the distributed optimal output consensus of
heterogeneous linear multi-agent systems on unbalanced directed networks, in which the
system disregards the impact of outside disturbances. The distributed consensus optimiza-
tion problem of a multi-agent system with a delay on weighted–balanced networks was
studied in [28], which uses a continuous-time distributed optimization algorithm. In [29], a
generalized distributed optimization problem for second-order multi-agent systems over a
detail-balanced graph was studied based on a centralized event-firing control algorithm.
Despite the effectiveness of the aforementioned approaches, there are only a few works
that examine the DOCP for heterogeneous MASs with directed topologies, which is still
open and remain challenging.

Directed topologies are found in the bulk of practical networks, including industrial
transmission lines and quotation systems [30]. Synchronization and consensus in directed
networks have received a substantial amount of attention so far [31,32]. It is worthwhile to
point out that, in the aforementioned works, many approaches developed for the DOCP can
be applied to MASs only under an undirected network. A type of distributed coordination
algorithms to work out the DOCP with a weight-balanced digraph is proposed in [33],
which contains the global information. According to [24,33,34], since the network topology
is undirected, the average state of the multiagent system is the optimal value of the DOCP.
This feature may not be guaranteed in directed topologies, necessitating a rethinking of the
optimization goal in directed topologies.

Among the aforementioned distributed optimization methods, event-triggered com-
munication (ETC) is particularly appealing since it allows for fewer updating instants
while still conserving resources. The ETC strategy, as illustrated in [35,36], can reduce
communication and computing overhead in networked coupled systems while maintaining
control performance. In ETC, instead of using the continuous state to reach a consensus,
the interaction between agents is piecewise-constant. Consequently, many problems, such
as data congestion and continuous communication, can be mitigated to a large extent.
Many efforts have been concentrated on developing the DOCP for multiagent systems with
ETC, which have been influenced by the aforementioned idea of ETC [33,34,37,38]. Wu
et al. [34] investigated continuous-time optimization by utilizing adaptive event-based
methods that rely solely on neighboring agents’ relevant information. Deng et al. [37]
proposed a distributed optimization algorithm combining gradient measurement and ETC
to guarantee the exponential convergence of the system. The fundamental challenge in
developing event-triggered control is avoiding Zeno behavior, which can disrupt the con-
troller’s normal operation and result in endless triggers on a limited period. The suggested
event-triggered algorithm in [39] can handle a broad range of sensor network problems;
however, it is not guaranteed to prevent Zeno behavior. In [33,37], Zeno behavior is avoided
by placing an upper constraint on the communication frequency.

In this paper, we continue the previous research by looking at the DOCP for heteroge-
neous MASs with directed topologies, which is known to be quite challenging. Based on
output-regulation techniques, some criteria are proposed to ensure that the DOCP under
directed topologies is solved. The following are the primary contributions of this paper.
(1) Distinct from [24–26,33,40], our work investigates the DOCP with directed topologies
and does not require the networks to be node-balanced. By exploring the properties of the
directed network, a different convex optimization problem is proposed, which implies a
weighted average of the objective function of each agent. (2) Compared to the previous
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works [24–26,33,40,41], a novel distributed control law is suggested, which is composed of
the solutions of carefully chosen matrix equations. It is demonstrated that all agents’ outputs
can attain the ideal value that minimizes the sum of local objective functions, ensuring global
convergence. (3) The ETC method is added to the proposed control law. Distinct from [33,37],
our work designs two different triggering conditions into our ETC strategy, and the Zeno
behavior is precluded without a communication frequency upper restriction.

This paper is organized as follows. Some required definitions and lemmas are provided
in Section 2. In Section 3, a different convex optimization problem and some assumptions
are proposed. In Section 4, the distributed optimization schemes with continuous com-
munication and ETC are designed for heterogeneous MASs over directed networks. A
numerical example is provided in Section 5 to demonstrate the usefulness of the theoretical
results. Finally, in Section 6, the conclusion is drawn.

2. Preliminaries
2.1. Notations

Let R, Rn, Rn×m denote sets of real numbers, real n-dimensional vectors, and real
n×m-dimensional matrices, respectively. R>0 denotes the set of positive real numbers. In
represents the n-dimensional identity matrix, and 1n stands for an n-dimensional vector
with all components equal to 1. ‖ · ‖ is the induced 2-norm of matrices or the Euclidean
norm of a vector. Given vectors x1, · · · , xN , col(x1, · · · , xN) =

[
xT

1 , · · · , xT
N
]T . A diagonal

matrix Σ is denoted by Σ = diag(σ1, · · · , σN), where σi, i ∈ {1, 2, · · · , N}, is the diagonal
element. For a matrix A ∈ Rn×n, AT is the transpose of A; A � 0 (or A � 0 ) implies that A
is positive definite (or positive semidefinite). The symbol ⊗ denotes the Kronecker product
of matrices. For a differentiable function f : Rn → R, ∇ f is the gradient of f . σmin(A)
represents the smallest singular value of nonsquare matrix A.

2.2. Graph Theory

For a directed network G = (V , E , A) with N agents, and V = {1, 2, · · · , N} is the set
of agents, E ⊆ V × V is the set of links. For every pair of nodes i and j, i, j ∈ V . If a directed
path exists between i and j, then the directed network G is said to be strongly connected.
The weighted adjacency matrix A =

[
aij
]

N×N of a directed network G is defined as aij > 0
if (i, j) ∈ E , and aij = 0 if (i, j) /∈ E . The out- and in-degrees of the node i, i ∈ V are
σout

i = ∑N
j=1 aji and σin

i = ∑N
j=1 aij, respectively. The degree matrix of the directed network

G is defined as Σ = diag
{

σin
1 , σin

2 , · · · , σin
N
}

. The weighted Laplacian matrix associated
with the directed network G is defined as L =Σ− A.

Lemma 1 ([42]). If L is irreducible, then rank(L) = N − 1, and 1 = (1, 1, · · · , 1)T is the
right eigenvector of L corresponding to eigenvalue 0 with multiplicity 1, i.e., L · 1 = 0. Let
ξT = (ξ1, · · · , ξN)

T be the left eigenvector of L corresponding to the eigenvalue 0 , i.e., ξTL = 0,
and its multiplicity is 1. Then, ξi > 0, i = 1, 2, · · · , N. In the following, we always assume that
∑N

i=1 ξi = 1. Let Ξ = diag(ξ1, · · · , ξN), then L̂ = 1
2
(
ΞL+ LTΞ

)
is a symmetric matrix with all

row sums equal to zeros, and it has zero eigenvalue with algebraic dimension one.

Lemma 2 ([43]). If Q ∈ Rn×n is such that qij = qji and qii = −∑N
j=1,j 6=i qij, i, j = 1, · · · , n,

then for all vectors, x = (x1, x2, · · · , xn)
T , y = (y1, y2, · · · , yn)

T

xTQy = −
n

∑
j>i

qij
(
xi − xj

)(
yi − yj

)
.
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Lemma 3 ([44]). The general algebraic connectivity of the matrix L under the strongly connected
directed network G is defined as

aδ(L) = min
zTξ=0,z 6=0

zTL̂z
zTΞz

.

Lemma 4 ([45]). The linear matrix inequality K is defined by

K =

(
K1 K2
KT

2 K3

)
,

where K1 = KT
1 , and K3 = KT

3 . Therefore, K � 0 is equal to one of the following conditions:

(1) K1 � 0, K3 − KT
2 K−1

1 K2 � 0.

(2) K3 � 0, K1 − K2K−1
3 KT

2 � 0.

Lemma 5 ([46]). Consider a continuous and positive definite function F(x) : Q→ R. The system
ẋ = f (x), x ⊆ Rm, f (0n) = 0n is locally finite-time-stable. If there is a neighborhood Q0 ⊂ U of
the origin which makes Ḟ(x) + α1Fα2(x) ≤ 0, ∀x ∈ Q0\0, real numbers α1 > 0 and α2 ∈ (0, 1)
hold. If Q = Q0 = Rm holds, the system is globally finite-time-stable, and the finite convergence

time T satisfies T ≤ V1−α2 (x0)
α1(1−α2)

.

3. Problem Description

Consider the following equations that explain the dynamics of a group of N heteroge-
neous agents:

ẋi(t) = Aixi(t) + Bi(ui(t) + di(t))

yi(t) = Cixi(t) + Diui(t), i = 1, 2, · · · , N
(1)

where xi ∈ Rni , yi ∈ Rq, and ui ∈ Rpi are the sate, the output, and the control input of
the ith agent, respectively. Ai ∈ Rni×ni , Bi ∈ Rni×pi , Ci ∈ Rq×ni , Di ∈ Rq×pi are constant
matrices. The continuous nonlinear time-varying function di(t) ∈ Rpi denotes external
disruption.

Assumption 1. The directed communication topology is strongly connected.

Assumption 2. For any t > 0, there exists a constant d > 0, such that max‖di(t)‖ ≤ d, i =
1, 2, · · · , N.

Remark 1. Compared with [27–29], this paper considers the effects of external disturbances on the
system as well as the regulation of control input on the output. Distinct from the network considered
in [28,29], the directed network considered in this paper does not require balancing, which renders it
more general.

The major goal of this work is to provide a distributed optimization method for each
agent that allows all of the agents’ outputs to attain the optimal value y∗, which solves the
following optimization problem:

min
y∈Rq

N

∑
i=1

ξigi(y), (2)

where gi : Rq → R is a local objective function of the ith agent.

Remark 2. Unlike the convex optimization problem considered in [22–26] with undirected net-
works, the DOCP with heterogeneous agent dynamics of directed networks is considered in our
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work. Combined with the properties of the Laplacian matrix of the directed graph, a new convex
optimization problem (2) is proposed, which implies the weighted average of the objective function of
each node.

Remark 3. The optimization problem (2) considered in this paper has the same form as that
in [27–29] when ξi = 1

N . If we take into account how weighted average πi affects the objec-
tive function gi, then the optimization problem miny∈Rq ∑N

i=1 πigi(y) can be transformed into
miny∈Rq Π ∑N

i=1 ξigi(y) with Π = ∑N
i=1 πi, ξi = πi

Π , which has the same form as problem (2)
because ∑N

i=1 ξi = 1 and Π is a constant.

If we define g̃(y) = ∑N
i=1 ξigi(yi), y = col(y1, · · · , yN), the optimization problem (2)

can be reformulated as

min
y∈RNq

g̃(y) = min
yi∈Rq

N

∑
i=1

ξigi(yi), (3a)

s.t.
(
L⊗ Iq

)
y = 0Nq, (3b)

Assumption 3 ([24]). For each agent i, the local objective function gi : Rq → R, i = 1, 2, · · · , N
is strongly convex, differentiable on Rq. Its gradient ∇gi(z) is locally Lipschitz on Rq and satisfies
‖∇gi(x)−∇gj(y)‖ ≤ κ‖x− y‖, with κ > 0, for all x, y ∈ Rq, i, j = 1, 2, · · · , N.

Remark 4. To guarantee the unique solution to problem (3), the local objective function gi(y) must
be strictly convex. That means that the control input ui(t) needs to be redesigned so that the outputs
of all agents can attain the optimal value y∗ = argminy∈RNq g̃(y), i.e. g̃(y∗) = miny∈RNq g̃(y)

and ∇g̃(y∗) = ∑N
i=1 ξi∇gi

(
y∗i
)
= 0 , y∗ = col(y∗1 , · · · , y∗N).

Assumption 4. (Ai, Bi) is controllable, σmin(BT
i ) > 0 and

rank
[

CiBi Di
AiBi Bi

]
= ni + q, i = 1, 2, · · · , N.

Lemma 6 ([24]). Under Assumption 4, the linear matrix equations

BiΥ1i −Ψi = 0ni×q, (4a)

BiΥ2i + AiΨi = 0ni×q, (4b)

CiΨi + DiΥ2i = Iq×q, i = 1, · · · , N (4c)

have solution triplets (Υ1,i, Υ2,i, Ψi), respectively.

4. Main Results
4.1. DOCP for MASs with Continuous Communications

In this section, by using the output regulation techniques, a distributed control law
is proposed to solve the DOCP. According to the solutions of matrices Equation (4), the
distributed control method is given by (5)

ui =K1ixi + Υ1iη̇i + (Υ2i − K1iΨi)ηi − c1 sgn(K2i(xi −Ψiηi)), (5a)

η̇i =−∇gi(yi)− α1

N

∑
j=1
Lijyj − α2

N

∑
j=1
Lij

∫ t

0
yj(σ)dσ, (5b)

where ηi ∈ Rq is the auxiliary state of agent i; c1 ∈ R>0, α1 ∈ R>0, α2 ∈ R>0, K1i ∈ Rpi×ni ,
and K2i ∈ Rpi×ni are matrices to be determined; and Υ1i, Υ2i, Ψi are the solutions of (4).
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Remark 5. The first three items in the controller ui are designed for ensuring that the state xi
approaches the auxiliary state ηi(t); −c1 sgn(K2i(xi −Ψiηi)) is the term to remove the influence
of external disruption di(t); −∇gi(yi) is the gradient term to guide the agents for optimization;
−α1 ∑N

j=1 Lijyj − α2 ∑N
j=1 Lij

∫ t
0 yj(σ)dσ is the consensus term to ensure that all the agents con-

verge to the optimal state.

The closed-loop system can be stated by inputting the control input (5) into system (1)

ẋi(t) =(Ai + BiK1i)xi(t) + BiΥ1iη̇i + (BiΥ2i − BiK1iΨi)ηi

− c1Bi sgn(K2i(xi(t)−Ψiηi)) + Bidi(t).
(6)

Substituting (4a) and (4b) into (6), the following compact form of system (6) can
be obtained:

ẋ−Ψη̇ =(A + BK1)(x−Ψη)− c1B sgn(K2(x−Ωη)) + Bd, (7)

where x = col(x1, · · · , xN), η = col(η1, · · · , ηN), d = col(d1, · · · , dN), A = diag(A1, · · · ,
AN), B = diag(B1, · · · , BN), K1 = diag(K11, · · · , K1N), K2 = diag(K21, · · · , K2N),
Ψ = diag(Ψ1, · · · , ΨN) , ∇g̃(y) = col(∇g1(y1), · · · ,∇gN(yN)).

Let δx = x−Ψη, Ac = (A + BK1). Then, (7) can be written as

δ̇x = Acδx − c1B sgn(K2δx) + Bd, (8)

where K2 = BT P is the feedback control with matrix P to be determined later. Therefore,
we have the following theorem.

Theorem 1. Suppose Assumptions 1–4 hold. Ai + BiK1i is Hurwitz by choosing the appropriate
matrices K1i, i = 1, 2, · · · , N , and Υ1i, Υ2i, Ψi that are given in (4). Then, δx can converge to zero
in a finite time T1 if there exists a positive matrix P and constant c1 > 0 satisfying

c1 > d; (H1)

PAc + (Ac)
T P ≺ 0.(H2)

Proof. Define the Lyapunov function candidate as follows:

V1 =
1
2

δT
x Pδx.

Taking the derivative of V1 along with (8) yields

V̇1 =δT
x P(Acδx − c1B sgn(K2δx) + Bd)

=
1
2

δT
x

(
PAc + (Ac)

T P
)

δxi +
(

δT
x PBd− c1δT

x PB sgn
(

BT Pδx

))
≤‖BT Pδx‖‖d‖ − c1‖BT Pδx‖

≤−
√

2(c1 − d)σmin(BT)σmin(P
1
2 )V

1
2

1 .

Thus, on the basis of the condition of the theorem , one has

V̇1 +
√

2(c1 − d)σmin(BT)σmin(P
1
2 )V

1
2

1 ≤ 0. (9)

By Lemma 5, one has limt→T1 V1 → 0. Therefore, δx converges to zero in a finite time
T1. According to (9), the convergence time has the following form:

T1 =
V

1
2 (0)

√
2(c1 − d)σmin(BT)σmin(P

1
2 )

.
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By (4c), one has yi = Cixi + Diui = ηi, t > T1, ∀i ∈ V . The control law (5b) can be
further obtained as follows:

ẏi = −∇gi(yi)− α1

N

∑
j=1
Lijyj − α2

N

∑
j=1
Lij

∫ t

0
yj(σ)dσ. (10)

Remark 6. It is clear from the foregoing analysis that when t > T1,xi = Ψiηi, yi = ηi, ∀i ∈ V
hold. In fact, the solutions of carefully designed matrix Equation (4) ensures that the output of all
agents can be tracked to the auxiliary variable, thereby facilitating the solving of the DOCP (3). To
ensure the solvability of the matrix equations, sufficient conditions in terms of constant matrix are
constructed. The matrices Equation (4) is an important part of the control law (5).

Let ỹ = ∑N
i=1 ξiyi be the average state and δyi = yi − ỹ be the consensus error for the

sake of convenience later in this study. Given that ∑N
j=1 Lijỹ = 0, (10) is converted into the

following form

ẏi = −∇gi(yi)− α1

N

∑
j=1
Lijδyj − α2

N

∑
j=1
Lij

∫ t

0
δyj(σ)dσ. (11)

If we let ϕj(t) =
∫ t

0 δyj(σ)dσ, the control law (5) can be written as

ui =K1ixi + Υ1iπi + (Υ2i − K1iΨi)ηi − c1 sgn(K2i(xi −Ψiηi)); (12a)

ẏi =−∇gi(yi)− α1

N

∑
j=1
Lijδyj − α2

N

∑
j=1
Lij ϕj(t); (12b)

ϕ̇i =δyi . (12c)

Let ϕ(t) = (ϕT
1 (t), · · · , ϕT

N(t))
T , y =

(
yT

1 , · · · , yT
N
)T , δy(t) =

(
δT

y1
(t), δT

y2
(t), · · · ,

δT
yN
(t)
)T . Then, (12) can be rewritten in a compact form as

ẏ(t) = −∇g̃(y)− α1
(
L⊗ Iq

)
δy(t)− α2

(
L⊗ Iq

)
ϕ(t); (13a)

ϕ̇ = δy(t). (13b)

From (13), the equilibrium point ȳ satisfies

0 = −∇g̃(ȳ)− α1
(
L⊗ Iq

)
δȳ(t)− α2

(
L⊗ Iq

)
ϕ̄(t). (14)

Then, by multiplying both sides of (14) by
(
ξT ⊗ Iq

)
, and because ξTL = 0, one obtains

∑N
i=1 ξi∇gi(ȳ) = 0, which means that ȳ is an optimal solution of the DOCP (3).

If M = IN − 1NξT , it is easy to check that LM = ML = L. Then, the error system can
be obtained as follows:

δ̇y(t) =− (M⊗ Iq)∇g̃(y)− α1
(
L⊗ Iq

)
δy(t)− α2

(
L⊗ Iq

)
ϕ(t);

ϕ̇ =δy(t).

The compact matrix form can be recast as(
δ̇y(t)
ϕ̇(t)

)
= Q

(
δy(t)
ϕ(t)

)
+

(
−(M⊗ Iq)∇g̃(y)

0Nq

)
, (15)

where
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Q =

(
−α1

(
L⊗ Iq

)
−α2

(
L⊗ Iq

)
INq 0Nq

)
.

We are now in a position to present our major result on closed-loop system (13) con-
vergence.

Theorem 2. Suppose Assumptions 1–4 hold. Ac
i is Hurwitz by choosing the appropriate matrices

K1i, i = 1, 2, · · · , N, and Υ1i, Υ2i, Ψi that are given in (4). The control law stated in (12) can be
used to solve the DOCP for multiagent system (1) if

α1 >

√
2(κ + 2)α2aδ(L) + κ2 + κ

2aδ(L)
; (16)

α2 >
κ

2aδ(L)
. (17)

Proof. Consider the following Lyapunov function

V2 =
1
2

(
δT

y (t) ϕT(t)
)

R
(

δy(t)
ϕ(t)

)
,

where

R =

(
Ξ⊗ Iq

α2
α1

(
Ξ⊗ Iq

)
α2
α1

(
Ξ⊗ Iq

)
2α2(L̂ ⊗ Iq)

)
.

The proof is completed in two parts. In the first part, we show that V2 ≥ 0 and V2 = 0
only when δy = 0 and ϕ(t) = 0. In the second part, we construct criteria in which V̇2 ≤ 0
and V̇2 = 0 only if δy = 0 and ϕ(t) = 0.

Part 1: From Lemma 3, one can obtain

V2(t) ≥
1
2

δT
y (t)

(
Ξ⊗ Iq

)
δy(t) + α2aδ(L)ϕT(t)

(
Ξ⊗ Iq

)
ϕ(t) +

1
2

α2

α1
ϕT(t)

(
Ξ⊗ Iq

)
δy(t)

+
1
2

α2

α1
ϕT(t)

(
Ξ⊗ Iq

)
δy(t)

=
1
2

(
δT

y (t) ϕT(t)
)

R̃
(

δy(t)
ϕ(t)

)
,

where

R̃ =

(
Ξ⊗ Iq

α2
α1

(
Ξ⊗ Iq

)
α2
α1

(
Ξ⊗ Iq

)
2α2aδ(L)(Ξ⊗ Iq)

)
.

By Lemma 4 and conditions (16), (17), we have aδ(L) ≥ α2
2α2

1
. Therefore, R̃ � 0, and

one can conclude that V2 ≥ 0 and V2 = 0 only when δy(t) = 0 and ϕ(t) = 0.
Part 2: Taking the derivative of V2 along (15) yields

V̇2 =
(

δT
y (t) ϕT(t)

)
R
(
−(M⊗ Iq)∇g̃(y)

0Nq

)
+
(

δT
y (t) ϕT(t)

)
RQ
(

δy(t)
ϕ(t)

)
=W1(t) + W2(t), (18)

where

W1(t) =
(

δT
y (t) ϕT(t)

)
R
(
−(M⊗ Iq)∇g̃(y)

0Nq

)
=− δT

y (t)(ΞM⊗ Iq)∇g̃(y)− α2

α1
ϕT(t)(ΞM⊗ Iq)∇g̃(y). (19)



Mathematics 2023, 11, 1479 9 of 16

By Lemma 2 and Assumption 3, one can obtain

−δT
y (t)(ΞM⊗ Iq)∇g̃(y) ≤ κ

2

N

∑
i=1

∑
j 6=i

ξiξ j‖yi − yj‖2 ≤ κ
N

∑
i=1

ξi‖δyi (t)‖
2. (20)

Similarly, we can obtain that

−ϕT(t)(ΞM⊗ Iq)∇g̃(y) ≤ κ

2

N

∑
i=1

ξi‖ϕi‖2 +
κ

2

N

∑
i=1

ξi‖δyi (t)‖
2. (21)

Then, by substituting (20), (21) into (19), one obtains that

W1(t) ≤
κ

2
α2

α1

N

∑
i=1

ξi‖ϕi(t)‖2 +

(
κ

2
α2

α1
+ κ

) N

∑
i=1

ξi‖δyi (t)‖
2. (22)

In addition,

1
2
(RQ + QTR) =

(
−α1(L̂ ⊗ Iq) +

α2
α1

(
Ξ⊗ Iq

)
0

0 − α2
2

α1
(L̂ ⊗ Iq)

)
.

By the definition of aδ(L) , it yields that

W2(t) =
(

δT
y (t) ϕT(t)

)[1
2
(RQ + QT R)

](
δy(t)
ϕ(t)

)
=δT

y (t)
[

α2

α1
(Ξ⊗ Iq)− α1(L̂ ⊗ Iq)

]
δy(t)−

α2
2

α1
ϕT(t)(L̂ ⊗ Iq)ϕ(t)

≤δT
y (t)

[
α2

α1
− α1aδ(L)

]
(Ξ⊗ Iq)δy(t)−

α2
2

α1
aδ(L)ϕT(t)(Ξ⊗ Iq)ϕ(t)

=

[
α2

α1
− α1aδ(L)

] N

∑
i=1

ξi‖δyi (t)‖
2 −

α2
2

α1
aδ(L)

N

∑
i=1

ξi‖ϕi(t)‖2. (23)

Then, by substituting (22), (23) into (18) and using (16), (17), one obtains that

V̇2 ≤
[(

κ

2
α2

α1
+ κ

)
+

α2

α1
− α1aδ(L)

] N

∑
i=1

ξi‖δyi (t)‖
2 +

[
κ

2
α2

α1
−

α2
2

α1
aδ(L)

]
N

∑
i=1

ξi‖ϕi(t)‖2 ≤ 0.

Thus, V̇2 ≤ 0 and V̇2 = 0 only when δy(t) = 0 and ϕ(t) = 0. Therefore, the multiagent
system (1) reaches global consensus. Finally, all of the agents’ outputs reach the equilibrium
point ȳ, and the DOCP (3) is solved.

Remark 7. Control protocol design for the DOCP under a directed network is acknowledged to be
tough. In this paper, we put the proportional integral control protocols into the control strategy (5)
and use the output regulation techniques so that all of the agents’ outputs reach the equilibrium
point, and the DOCP (3) is solved. Theorem 2 shows that the perturbations of parameters α1 and α2
do not change the consensus performance as long as condition (16) is satisfied.

4.2. DOCP for MASs with ETC

Due to the control law’s communication structure (12), agents must constantly collect
local messages and adjust their control signals, which is extravagant and would result in a
waste of resources. To this end, to tackle problem (3) for heterogeneous MASs (1), an ETC
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strategy is developed, in which communications are required only at specific time instants,
and no Zeno behavior is seen. The ETC law is proposed as

ui =K1ixi + Υ1iπi + (Υ2i − K1iΨi)ηi − c1 sgn(K2i(xi −Ψiηi)); (24a)

ẏi =−∇gi(yi)− α1

N

∑
j=1
Lijδyj

(
ti
ki(t)

)
− α2

N

∑
j=1
Lij ϕj

(
ti
ki(t)

)
; (24b)

ϕ̇i =δyi . (24c)

where ti
k is the kth triggering instant of the ith agent, and ki(t) = argmaxk

{
ti
k ≤ t

}
. The

triggering criteria, which will be defined later, decide the triggering instants of the ith agent
ti
1, · · · , ti

k, · · · .
For simplicity for ∀t ∈ [ti

k, ti
k+1), k = 1, 2, · · · , we denote θi(t) = −∑N

j=1 Lijδyj(t), ϑi(t) =
−∑N

j=1 Lij ϕj(t), eθi (t) = θi(ti
k)− θi(t), eϑi (t) = ϑi(ti

k)− ϑi(t), eθ(t) = [eθ1(t), · · · , eθN (t)]
T ,

eϑ(t) = [eϑ1(t), · · · , eϑN (t)]
T .

Then, one can obtain

δ̇y(t) =− (M⊗ Iq)∇g̃(y)− α1
(
L⊗ Iq

)
δy(t)− α2

(
L⊗ Iq

)
ϕ(t) + α1(M⊗ Iq)eθ(t)

+ α2(M⊗ Iq)eϑ(t);

ϕ̇(t) =δy(t).

Similar to (15) is the following:(
δ̇y(t)
ϕ̇(t)

)
= Q

(
δy(t)
ϕ(t)

)
+

(
Z

0Nq.

)
, (25)

where Z = −(M⊗ Iq)∇g̃(y) + α1(M⊗ Iq)eθ(t) + α2(M⊗ Iq)eϑ(t).
When we say that agent i triggers at time ti

ki
, we imply that agent i recommences its

control value at time ti
ki+1 and sends its current state to its out-neighbors. The measurement

errors eθi (t) and eϑi (t) are both reset to zero meanwhile. Given that agent i is triggered at
the instant ti

ki
, the following triggering condition can be used to calculate its next triggering

instant.

ti
ki+1 , in f {t : t > ti

ki
, Πθi (t) ≥ 0∪Πϑi (t) ≥ 0}, (26)

where

Πθi (t) = ‖eθi (t)‖
2 − 1

µ1
e−σ1t; Πϑi (t) = ‖eϑi (t)‖

2 − 1
µ2

e−σ2t,

where µ1,µ2, σ1, σ2 are positive constants. An event is triggered for agent i when one of the
triggering conditions of ‖eθi (t)‖

2 ≥ 1
µ1

e−σ1t and ‖eϑi (t)‖
2 ≥ 1

µ2
e−σ2t is fulfilled.

Remark 8. Compared with the centralized event-triggering mechanism designed in [29], which
needs global information, the distributed event-triggering mechanism designed in this needs only
the information of neighbor nodes, which effectively reduces the communication burden.

We are now in a position to provide our second main result on system (25) convergence.
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Theorem 3. Suppose Assumptions 1–4 hold. Ai + BiK1i is Hurwitz by choosing the appropriate
matrices K1i, i = 1, 2, · · · , N , and Υ1i, Υ2i, Ψi that are given in (4). With the triggering condition
(26), the DOCP for the multiagent system (1) is solved by the event-triggered control law (24) if

α1 >

√
2(κ + 6)α2aδ(L) + κ2 + κ

2aδ(L)
; (27)

α2 >
κ + 4

2aδ(L)
. (28)

Furthermore, the closed-loop system (25) does exhibit the Zeno behavior.

Proof. The time derivative of V2 along the trajectory of (25) can be calculated using the
same method as in the demonstration of Theorem 2.

V̇2 =
(

δT
y (t) ϕT(t)

)
R
(

Z
0Nq

)
+
(

δT
y (t) ϕT(t)

)
RQ
(

δy(t)
ϕ(t)

)
=W1(t) + W2(t) + W3(t). (29)

where W1(t),W2(t) are the same as in Theorem (2).
Let U = EM, and its eigenvalues (counting multiplicities) are as follows: 0 = χ1 ≤

χ2 ≤ · · · ≤ χq. Let µ1 = (
α3

1
α2

+ α1α2)χ
2
q , µ2 = (

α3
2

α1
+ α1α2)χ

2
q. Thus, we have

W3(t) =α1δT
y (t)(U ⊗ Iq)eθ(t) + α2δT

y (t)(U ⊗ Iq)eϑ(t) + α2 ϕT(t)(U ⊗ Iq)eθ(t)

+
α2

2
α1

ϕT(t)(U ⊗ Iq)eϑ(t)

≤2α2

α1

N

∑
i=1

ξi‖δyi (t)‖
2 + µ1

N

∑
i=1
‖eθi (t)‖

2 +
2α2

α1

N

∑
i=1

ξi‖ϕi(t)‖2 + µ2

N

∑
i=1
‖eϑi (t)‖

2. (30)

Then, by substituting (22), (23), (30) into (29), one obtains that

V̇2 ≤
(

κ

2
α2

α1
+ κ +

3α2

α1
− α1aδ(L)

) N

∑
i=1

ξi‖δyi (t)‖
2 +

(
κ

2
α2

α1
−

α2
2

α1
aδ(L) +

2α2

α1

)
N

∑
i=1

ξi‖ϕi(t)‖2

+ µ1

N

∑
i=1
‖eθi (t)‖

2 + µ2

N

∑
i=1
‖eϑi (t)‖

2.

Combining condition (26), we deduce that

V̇2 ≤
(

κ

2
α2

α1
+ κ +

3α2

α1
− α1aδ(L)

) N

∑
i=1

ξi‖δyi (t)‖
2 +

(
κ

2
α2

α1
−

α2
2

α1
aδ(L) +

2α2

α1

)
N

∑
i=1

ξi‖ϕi(t)‖2

+ Ne−σ1t + Ne−σ2t.

Let V3 = V2 +
N
σ1

e−σ1t + N
σ2

e−σ2t. By using (27), (28), one has

V̇3 =V̇2 − Ne−σ1t − Ne−σ2t

≤
(

κ

2
α2

α1
+ κ +

3α2

α1
− α1aδ(L)

) N

∑
i=1

ξi‖δyi (t)‖
2 +

(
κ

2
α2

α1
−

α2
2

α1
aδ(L) +

2α2

α1

)
N

∑
i=1

ξi‖ϕi(t)‖2 (31)

≤0.

Thus, the multiagent system (1) reaches global consensus, and the DOCP (3) is solved.
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Then, we prove that the Zeno behavior could be excluded. From (24), over the interval
[ti

k, ti
k+1), the upper right-hand Dini derivative of eθi (t) can be expressed as

D+eθi (t) =−
N

∑
j=1
Lij∇gi(yi) + α1

N

∑
j=1
Lijθj

(
ti
k

)
+ α2

N

∑
j=1
Lijϑj

(
ti
k

)
.

By noting that eθi (t
i
k) = 0, the solution of eθi (t) is given as

eθi (t) =
∫ t

ti
k

(−
N

∑
j=1
Lij∇gi(yi(τ)) + α1

N

∑
j=1
Lijθj

(
ti
k

)
+ α2

N

∑
j=1
Lijϑj

(
ti
k

)
)dτ, .

Define ti
k+1 as the next triggering instant of agent i. Since di(t), i = 1, 2, · · · , N, is

bounded, limt→∞ δy(t) = 0, and limt→∞ ϕ(t) = 0, one can obtain the boundedness of the
variables∇gi(yi), θj(t), ϑj(t). Define h0, h1, h2, ζ ∈ R>0 such that ‖∇gi(yi)‖ ≤ h0,

∥∥θj(t)
∥∥ ≤

h1,
∥∥ϑj(t)

∥∥ ≤ h2, ∀i = 1, · · · , N, and denote max{Lii} ≤ ζ, i = 1, 2, · · · , N. Thus, it is
concluded that

‖eθi (t)‖ ≤ (2ζh0 + 2ζα1h1 + 2ζα2h2)(t− ti
k).

By noting the triggering condition (26), one obtains

‖eθi (t)‖
2 ≤ 1

µ1
e−σ1t, ∀t ∈ [ti

k, ti
k+1).

Then, a lower bound τi
k of ti

k+1− ti
k can be obtained by solving the following inequality√

1
µ1

e−σ1(τi
k+ti

k) ≤ (2ζh0 + 2ζα1h1 + 2ζα2h2)τ
i
k. (32)

It should be noticed that τi
k always exists and is strictly positive in a finite time by (32).

Consequently, no Zeno behavior is exhibited, and this completes the proof.

Remark 9. By carefully designing the ETC parameters µ1, µ2, σ1, σ2, it can be ensured that the
DOCP can be solved and global convergence can be guaranteed. The exponential functions in the
triggering condition (26) play a significant role in restricting measurement errors and eliminating
Zeno behavior without placing an upper bound on the communications frequency.

5. Illustrative Examples

In this section, a numerical example is given to visualize the theoretical results in
Section 4. Consider a heterogeneous multiagent with seven agents described by (1), where
A1 = [0, 1; 0, 0], B1 = [0, 1; 1,−2], C1 = [1, 1], A2 = [0, 1; 1, 0], B2 = [0,−2; 1, 1], C2 = [1, 1],
A3 = [0,−1; 1,−2], B3 = [1, 0; 3,−1], C3 = [−1, 1], A4 = [−1, 0;−2, 2], B4 = [1, 2; 3, 4],
C4 = [−1, 1], A5 = [0, 0;−1, 0] , B5 = [1, 2; 1, 0], C5 = [1,−1], A6,7 = [0, 0; 0, 1] , B6,7 =
[1,−2; 1,−4], C6,7 = [1,−1], D1,2,3 = [−1, 1], D4,5 = [1,−1], D6,7 = [1, 1]. The Laplacian
matrix L of the directed and strongly connected network described in Figure 1 is

L =



1 0 0 0 0 0 −1
−1 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
0 0 0 0 −1 1 0
0 0 0 0 0 −1 1


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The local objective function of the ith agent is given by gi(y) = sin( i
10 y), i = 1, 2 · · · 7.

As an example, take the bounded external disturbance as follows:

d1,2 = [sin(t), cos(t)]T , d3,4 = [2 cos(t), sin(t)]T , d5,6,7 = [2 cos(t), cos(t)]T .

The control law (5) and triggering function (26) parameters are chosen as follows:
K11 = [−2,−3;−1,−1] , Υ11 = [0;−0.2], Υ21 = [−0.8;−0.4], Ψ1 = [−0.4; 0.4] ; K12 =
[−1.5,−1.5; 0.5, 0.5],Υ12 = [0.25;−0.25], Υ22 = [−0.5; 0], Ψ2 = [0.5; 0]; K13 = [−1, 1;−2, 2],
Υ13 = [0.333; 0], Υ23 = [1; 1.333], Ψ3 = [0.333; 1] ; K14 = [2,−3;−1, 1.5], Υ14 = [0;−0.09],
Υ24 = [0.73;−0.45], Ψ4 = [−0.18; 0.36]; K15 = [1,−1;−1, 0.5], Υ15 = [0; 0.2], Υ25 =
[0.4;−0.2],Ψ5 = [0.4; 0]; K16 = [−2, 2;−0.5, 1], Υ16 = [0;−0.25], Υ26 = [1; 0.5], Ψ6 = [0.5; 1];
K17 = [−2, 2;−0.5, 1], Υ17 = [0;−0.25], Υ27 = [1; 0.5], Ψ7 = [0.5; 1], c1 = 5, α1 = 5, α2 = 1.5,
σ1 = σ2 = 0.2, aδ(L) = 0.3765. By Theorem 3, we select α1 = 10 and α2 = 7 in the control
protocols (24). The initial values x(0) are randomly given, and ϕ(0) = 0.

It is clear from Figure 1 that the network is strongly connected. Figure 2 displays that
the consensus errors δyi (t), i = 1, 2, · · · , 7 converge to 0 in a finite time, which means the
output of all agents yi(t) achieves an optimal value of y∗ = −0.4101. The evolution of
the optimization goal is depicted in Figure 3, where we can see that the global objective
function ∑N

i=1 ξigi(yi) converges to the global optimal solution ∑N
i=1 ξigi(y∗) = −0.1684.

Therefore, the optimization problem (2) is solved. Figure 4 depicts the triggering instants
of all agents, which reveal that the communication is discrete. Thus, no Zeno behavior is
displayed.

Figure 1. Topologies of a strongly connected network.
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Figure 2. Trajectory of consensus error δyi (t), i = 1, 2, . . . , 7.
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Figure 3. The sum of local objection functions ∑N
i=1 ξigi(yi).
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Figure 4. Triggering instants of each agent.

6. Conclusions

Firstly, a control rule for the DOCP of heterogeneous MASs with directed topology is
provided. By using the output regulation techniques, the proposed control law can solve
the DOCP and ensure that global convergence despite the existence of bounded external
disturbances. The proposed control law is then extended to ETC methods, which enable
agents to avoid continuous communication. It is demonstrated that with this algorithm,
consensus can be achieved, and the Zeno behavior can be avoided. One numerical example
validates the efficiency of the theoretical conclusions. The future study will focus on
extending this paper to directed networks with a switching topology.
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