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Abstract: Several problems have been solved by nonlinear equation systems (NESs), including
real-life issues in chemistry and neurophysiology. However, the accuracy of solutions is highly
dependent on the efficiency of the algorithm used. In this paper, a Modified Sperm Swarm Optimiza-
tion Algorithm called MSSO is introduced to solve NESs. MSSO combines Newton’s second-order
iterative method with the Sperm Swarm Optimization Algorithm (SSO). Through this combination,
MSSO’s search mechanism is improved, its convergence rate is accelerated, local optima are avoided,
and more accurate solutions are provided. The method overcomes several drawbacks of Newton’s
method, such as the initial points’ selection, falling into the trap of local optima, and divergence.
In this study, MSSO was evaluated using eight NES benchmarks that are commonly used in the
literature, three of which are from real-life applications. Furthermore, MSSO was compared with
several well-known optimization algorithms, including the original SSO, Harris Hawk Optimization
(HHO), Butterfly Optimization Algorithm (BOA), Ant Lion Optimizer (ALO), Particle Swarm Opti-
mization (PSO), and Equilibrium Optimization (EO). According to the results, MSSO outperformed
the compared algorithms across all selected benchmark systems in four aspects: stability, fitness
values, best solutions, and convergence speed.

Keywords: nonlinear systems; Newton’s method; iterative methods; sperm swarm optimization
algorithm; optimization algorithm

MSC: 65D99; 65H10; 65K10

1. Introduction

Many issues in the natural and applied sciences are represented by systems of non-
linear equations F(X) = 0 that require solving, where F(X) = ( f1, f2, . . . , fn ) such that fi
is nonlinear for all i = 1, 2, . . . , n. It is well known that determining the precise solution
α = (α1, α2, . . . , αn)

t to the nonlinear system F(X) = 0 is a difficult undertaking, especially
when the equation comprises terms made up of logarithmic, exponential, trigonometric,
or a mix of any transcendental terms. Thus, finding approximate solutions to this type of
problem has emerged as a need. The iterative methods, including Newton’s method, are
some of the most famous methods for finding approximate solutions to nonlinear equation
systems (NESs) [1]. Alternatively, optimization algorithms have been applied in attempts
to extract the root solution of nonlinear systems.

In the last ten years, various optimization algorithms have been developed. Those
methods can be divided into four primary categories: human-based methods, swarm-based
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methods, physical-based methods, and evolutionary-based methods [2]. Human percep-
tion, attitude, or lifestyle influence human-based methods. Examples of these methods
are the “Harmony Search Algorithm (HSA)” [3] and the “Fireworks Algorithm (FA)” [4].
Swarm-based methods mimic the behavior of swarms or animals to reproduce or survive.
Examples of this algorithm are “Sperm Swarm Optimization (SSO)” [5–8], “Harris Hawks
Optimization (HHO)” [9], “The Ant Lion Optimizer (ALO)” [10], and “Butterfly Opti-
mization Algorithm (BOA)” [11]. Some representative swarm intelligence optimization
methods and applications have also been proposed; see for example, [12]. Physical-based
methods are inspired by both physical theories and the universe’s rules. An example of
these algorithms is the “Gravitational Search Algorithm (GSA)” [2], and “Equilibrium
Optimizer (EO)” [13]. Evolutionary-based methods are inspired by the Darwinian theory of
evolution. An example of this method is the “Genetics Algorithm (GA)” [14]. Finally, some
advanced optimization methods with applications from the real-life have been proposed,
for example [15,16].

The primary objectives of these methods are to yield the optimal solution and a
higher convergence rate. Meta-heuristic optimization should be based on exploration
and exploitation concepts to achieve global optimum solutions. The exploitation concept
indicates the ability of a method to converge to the optimal potential solution. In contrast,
exploration refers to the power of algorithms to search the entire space of a problem domain.
Therefore, the main goal of meta-heuristic methods is to balance the two concepts.

However, different meta-heuristic methods have been developed to find solutions to
various real-life tasks. The use of optimization algorithms for solving NESs is significant
and critical. Various optimization algorithms are used in the solution of nonlinear systems.
The following may be summarized:

By improving the performance of optimization algorithms, researchers have been
able to target more accurate solutions. For example, Zhou and Li [17] provided a unified
solution to nonlinear equations using a modified CSA version. FA was modified by
Ariyaratne et al. [18], who made it possible to make the root approximation simultaneously
with continuity, differentiation, and initial assumptions. Ren et al. [19] proposed another
variation by combining GA with harmonic and symmetric individuals. Chang [20] also
revised the GA to estimate better parameters for NESs.

Furthermore, complex systems were handled by Grosan and Abraham [21] by putting
them in the form of multi-objective optimization problems. Jaberipour et al. [22] addressed
NESs using a modified PSO method; the modification aims to overcome the core PSO’s
drawbacks, such as delayed convergence and trapping at local minimums. Further, NESs
have been addressed by Mo and Liu [23], who added the “Conjugate Direction Method
(CDM)” into the PSO algorithm. The algorithm’s efficiency for solving high-dimensional
problems and overcoming local minima was increased by using CDM [24].

Several research methods involved combining two population-based algorithms
(PBAs) to achieve more precise results in nonlinear modeling systems. These combinations
produce hybrid algorithms that inherit the benefits of both techniques while reducing
their downsides [25]. Hybrid ABC [26], hybrid ABC and PSO [27], hybrid FA [28], hybrid
GA [29], hybrid KHA [30], hybrid PSO [31], and many others [32–36] are some examples of
hybridizing PBAs.

NESs have often been solved using optimization techniques, either using a “Single
Optimization Algorithm (SOA)” or a hybrid algorithm that combines two optimization
procedures. Only a few researchers have attempted to combine the iterative method and
an optimization approach. Karr et al. [37] presented a hybrid method combining Newton’s
method and GA for obtaining solutions for nonlinear testbed problems. After using GA
to identify the most efficient starting solution, Newton’s approach was utilized. To solve
systems of nonlinear models, a hybrid algorithm described by Luo et al. [38] can be utilized;
the combination includes GA, Powell algorithm, and Newton’s method. Luo et al. [39]
have provided a method for solving NESs by integrating chaos and quasi-Newton tech-
niques. Most of the previous research has concentrated on a specific topic or issue rather



Mathematics 2023, 11, 1473 3 of 21

than attempting to examine NESs. In a relatively recent study, Sihwail et al. [40] developed
a hybrid algorithm known as NHHO to solve arbitrary NESs of equations that combine
Harris Hawks’ optimization method and Newton’s method. Very recently, Sihwail et al. [41]
proposed a new algorithm for solving NESs of equations in which Jarratt’s iterative ap-
proach and the Butterfly optimization algorithm were combined to create the new scheme
known as JBOA.

A hybrid algorithm can leverage the benefits of one method while overcoming the
drawbacks of the other. However, most hybrid methods face problems with premature
convergence due to the technique used in the original algorithms [42]. As a result, choosing
a dependable combination of algorithms to produce an efficient hybrid algorithm is a
crucial step.

One of the more recent swarm-based methods is Sperm Swarm Optimization (SSO),
which is based on the mobility of flocks of sperm to fertilize an ovum. There are various
benefits of SSO, which can be listed as follows [2,5,6]:

• The capability of exploitation of SSO is very robust.
• Several kinds of research have validated its simplicity, efficiency, and ability to con-

verge to the optimal solution.
• Its theory can be applied to a wide range of problems in the areas of engineering

and science.
• Its mathematical formulation is easy to implement, understand, and utilize.

However, most NESs simulate different data science and engineering problems that
have more than one solution. Hence, it is difficult to give accurate solutions to these prob-
lems. Like other optimization algorithms, SSO may fall into a local minimum (solution)
instead of the optimal solution. As a result, we developed a hybrid approach that incor-
porates Newton’s iterative scheme with the SSO algorithm to mitigate the drawback. It is
worth mentioning that Newton’s method is the first known iterative scheme for solving
nonlinear equations using the successive approximation technique. According to Newton’s
method, the correct digits nearly double each time a step is performed, referred to as the
second order of convergence.

Newton’s method is highly dependent on choosing the correct initial point. To achieve
good convergence toward the root, the starting point, like other iterative approaches, must
be close enough to the root. The scheme may converge slowly or diverge if the initial point
is incorrect. Consequently, Newton’s method can only perform limited local searches in
some cases.

For the reasons outlined above, a hybrid SSO algorithm (MSSO) has been proposed to
solve NESs, where Newton’s method is applied to improve the search technique and SSO
is used to enhance the selection of initial solutions and make global search more efficient.

It is not the concern of this study to demonstrate that hybridizing the SSO and New-
ton’s methods performs better than other optimization algorithms such as PSO or genetic
algorithms. However, this work aims to highlight the benefits of hybridizing an opti-
mization algorithm with an iterative method. This is to enhance the iterative method’s
accuracy in solving nonlinear systems and reduce its complexity. Further, it is also able to
overcome several drawbacks of Newton’s method, such as initial point selection, trapping
in local optima, and divergence problems. Moreover, hybridization in MSSO is beneficial
in finding better roots for the selected NSEs. Optimization algorithms alone are unlikely to
provide precise solutions compared to iterative methods such as Newton’s method and
Jarratt’s method.

The proposed modification improves the initial solution distribution in the search
space domain. Moreover, compared to the random distribution used by the original
technique, Newton’s approach improves the computational accuracy of SSO and accelerates
its convergence rate. Hence, this research paper aims to improve the accuracy of NES
solutions. The following are the main contributions of this paper:
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1. We present a Modified Newton–Sperm Swarm Optimization Algorithm (MSSO) that
combines Newton’s method and SSO to enhance its search mechanism and speed up
its convergence rate.

2. The proposed MSSO method is intended to solve nonlinear systems of different orders.
3. Different optimization techniques were compared with MSSO, including the original

SSO, PSO, ALO, BOA, HHO, and EO. The comparison was made based on multiple
metrics, such as accuracy, fitness value, stability, and convergence speed.

The rest of the paper is organized as follows: Section 2 discusses SSO algorithms and
Newton’s iterative method. Section 3 describes the proposed MSSO. Section 4 describes the
experiments on the benchmark systems and their results. Further discussion of the findings
is provided in Section 5. Finally, Section 6 presents the study’s conclusion.

2. Background
2.1. Standard Sperm Swarm Optimization (SSO) Algorithm

SSO is a newly created swarm-based technique proposed by Shehadeh et al. [2,5,6]
that draws inspiration from the actions of a group of sperm as they fertilize an ovum.
In the process of fertilization, a single sperm navigates a path against overwhelming
odds to merge with an egg (ova). In general, there are 130 million sperm involved in the
insemination process. Eventually, one of these sperm will fertilize the ovum. Based on
Shehadeh et al. [6], the procedure of fertilization can be summarized as follows:

A male’s reproductive system releases the sperm into the cervix, where the fertilization
process starts. Each sperm is given a random location inside the cervix to begin the
fertilization process as part of this task. Further, every sperm has two velocities on the
Cartesian plane. The initial velocity value of sperm denotes this velocity. The procedure of
fertilization is demonstrated in Figure 1.
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Figure 1. The procedure of fertilization [6].

From this point, every sperm in the swarm is ready to swim until it reaches the outer
surface of the ovum. Scientists found that the sperm float on the surface as a flock or swarm,
moving from the zone of low temperature to the area of high temperature. Moreover,
they observed that the ovum triggers a chemical to pull the swarm; this is known as a
chemotactic process. According to researchers, these cells also beat at the same frequency
as the tail movements through the grouping. The ovum and its location in the fallopian
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tubes are illustrated in Figure 1. Based on Shehadeh et al. [6], this velocity is denoted by
the personal best velocity of the sperm.

Usually, in a typical scenario, one sperm can fertilize an ovum. Based on that,
Shehadeh et al. [2,5–8] calls this sperm the winner. The winner and the flock of sperm
are illustrated in Figure 2.
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The best answer is found and obtained using this strategy, which makes use of a
group of sperm (potential solutions) floating over the whole search area. Concurrently, the
possible solutions will consider the most suitable sperm in their path, who will be the victor
(the sperm that is closest to the egg). Alternatively, the flock will consider on the winner’s
position and the position of its prior best solution. Thus, every sperm enhances its initial
zone across the optimum area by taking into consideration its current velocity, current
location, and the location of both the global’s best solution (the winner) and the sperm’s
best solution. Mathematically speaking, in SSO, the flock updated their sites according to
the following formula:

xi+1(t) = xi(t) + vi(t) (1)

where

• vi is the velocity of potential solution i at iteration t;
• xi is the current position of possible solution i at iteration t;

Three velocities can be used to calculate the sperm’s velocity: the initial velocity of a
potential solution, the personal best solution, and the global best solution.

First is the initial velocity of sperm, which takes a random value based on the velocity
dumping parameter and the pH value of the initial location. The model can be calculated
by applying the following formula:

Initial_Velocity = D ·Vi(t) · Log10(pH_Rand1) (2)

Second is a personal best location for the potential solution, adjusted in memory based
on the prior location until it is closest to the optimal value. However, this velocity can be
changed based on the pH and temperature values. The following formula may be used to
calculate this model:

Current _Best _Solution = Log10(pH_Rand2) · Log10(Temp_Rand1) ·
(
xsbesti []−xi[]

)
(3)

Third, the global best solution is simulated by the winner, which is denoted by the
closest sperm to the ovum. The mathematical model of the winning velocity of the potential
solution Vi(t) can be represented in Equation (4). The flock of sperm and the value of the
winner are depicted in Figure 2.
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Global_Best_Solution(the_winner) = Log10(pH_Rand3) · Log10(Temp_Rand2) ·
(
xsgbesti []−xi []

)
(4)

The symbols of the prior equations are as follows:

• vi is the velocity of potential solution i at iteration t;
• D is the velocity damping factor and is a random parameter with a range of 0 to 1;
• pH_Rand1, pH_Rand2, and pH_Rand3 are the reached site pH values, which are random

parameters that take values between 7 to 14;
• Temp_Rand1 and Temp_Rand2 are values of the site temperature, which are random

parameters that take values between 35.1 to 38.5;
• xi is the current position of potential solution i at iteration t;
• xsbest is the personal best location of potential solution i at iteration t;
• xsgbest is the global best location of the flock.

Based on the equations mentioned above, the total velocity rule Vi(t) can be formal-
ized based on velocity initial value, personal best solution, and global best solution as
follows [2,5–8]:

Vi(t) = Log10(pH_Rand1).Vi + Log10(pH_Rand2).Log10(Temp_Rand1).) ·
(

xsbesti
− xi(t)

)
+

Log10(pH_Rand3).Log10(Temp_Rand2).
(

xsbesti
− xi(t)

) (5)

Based on the theory of SSO, both pH and temperature affect the velocity rule. The pH
changes depending on the woman’s attitude, whether depressed or happy, and on the food
consumed. The value of the pH parameter falls in a range between seven and fourteen.
Alternatively, the temperature ranges from 35.1 to 38.5 ◦C according to blood pressure
circulation in the reproductive system [7].

Further, SSO is a swarm-based method that simulates the metaphor of natural fer-
tilization. SSO, however, has a few disadvantages in terms of efficiency. Applied to a
broad search domain, SSO is prone to getting trapped in local optima [2], which is one
of its main drawbacks. Therefore, improvements are needed to enhance the method’s
exploration process.

2.2. Newton’s Method

An iterative technique is a technique (method) for finding an approximate solution by
making successive approximations. Iterative approaches usually cannot deliver accurate
answers. Accordingly, researchers generally select a tolerance level to distinguish between
approximate and exact answers for the solutions obtained through iterative approaches.
Newton’s method, also known as the Newton–Raphson method, was proposed by Isaac
Newton and is the most widely used iterative method. The procedure of Newton’s scheme
is described by

Xn+1 = Xn − F′−1
(Xn).F(Xn), (6)

where F(X) is the nonlinear system of equations, and F′(Xn) represents the “Jacobian of
F(X)”. Newton’s second-order convergence method may be easily applied to various
nonlinear algebraic problems [1]. As a result, mathematical tools such as Mathematica
and MATLAB provide built-in routines for finding nonlinear equations’ roots based on
Newton’s scheme.

In Newton’s method, many studies and refinements have been performed to improve
approximation solutions to nonlinear problems as well as the order of convergence, which
impact the speed at which the desired solution can be reached; see, for example, [43–47]
and their references.

3. Modified Sperm Swarm Optimization (MSSO)

SSO is a powerful optimization technique that can address various issues. No algo-
rithm, however, is suitable for tackling all problems, according to the “No Free Lunch
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(NFL)” theorem [48]. By using Newton’s method, the proposed MSSO outperforms the
original SSO in terms of solving nonlinear equation systems. In MSSO, Newton’s methods
are used as a local search to enhance the search process, as shown in Figure 3.
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When Newton’s method is applied to the sperm position, at each iteration, the fitness
value of the potential solution is compared to the fitness of the location calculated by
Newton’s scheme. The newly computed location by Newton’s method is shown in Figure 3
as (Xn+1).

In each iteration, MSSO employs both the SSO algorithm and Newton’s method. The
SSO first determines the most optimal sperm location among the twenty initial locations as
an optimal candidate location. The optimal candidate location is then fed into Newton’s
method. In other words, the output from SSO is considered a potential solution or a tem-
porary solution. The obtained solution is then treated as an input for Newton’s method.
Newton’s method as an iterative method calculates the next candidate solution based on
Equation (6). Newton’s method’s ability to find a better candidate is very high since it is a
second-order convergence method. However, in order to avoid a local optimal solution,
the candidate solution obtained from Newton’s method (Xn+1) is compared to the solution
calculated by SSO (Xsperm). Thus, the location with the lowest fitness value determines
the potential solution to the problem. The next iteration is then performed based on the
current most promising solution. Algorithm 1 shows the pseudocode for the suggested
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MSSO algorithm.

Algorithm 1. Modified Sperm Swarm Optimization (MSSO).

Begin
Step 1: Initialize potential solutions.
Step 2: for i = 1: size of flock do
Step 3: apply the fitness for potential solution.

if obtained fitness > best solution of the potential solution then
give the current value as the best solution of the potential solution.

end if
end for

Step 4: depends on the winner, give the value of winner.
Step 5: for i =1: size of flock do

Perform Equation (5)
Perform Equation (1).

end for
Step 6: Calculate Newton’s location Xn+1 using Equation (6)

Calculate the fitness of Xn+1 and Xsperm using Equation (7)
if fitness (Xn+1) < fitness (Xsperm)

Xsperm = Xn+1
end if

Step 7: while final iterations is not reached go to Step 2.
End.

The initialization, exploitation, and exploration phases of the SSO method are shown
in the algorithm. The alterations specified in the red box are implemented at the end of
each iteration. We compare Newton’s location with the sperm’s optimal location based on
their fitness values and select the one that has the best fitness value.

Computational Complexity

The complexity of the new MSSO’s can be obtained by adding up the SSO’s complexity
and Newton’s method’s complexity. At first glance, Newton’s technique is overly com-
plicated compared to optimization methods. At each iteration, one has to solve a N × N
system of linear models, which is time-consuming because every Jacobian calculation
requires n2 scalar function evaluations. As a result, combining Newton’s approach with
any optimization process is likely to make it more complicated.

On the other hand, combining SSO with Newton’s technique did not significantly
increase processing time. However, the MSSO can overcome Newton’s method limitations,
including selecting the starting points and divergence difficulties. As a result, the MSSO is
superior at solving nonlinear equation systems.

The MSSO’s time complexity is influenced by the initial phase, the process of updat-
ing the position of the sperm, and the use of Newton’s scheme. The complexity of the
initialization process is O(S), where S is the total number of sperm. The updating process,
which includes determining the optimal solution and updating sperm positions, has a
complexity equal to O(I × S) + O(I × S × M), where I and M represent the maximum
number of iterations and the complexity of the tested benchmark equation respectively.
Furthermore, Newton’s scheme complexity is calculated as O(I × T), where T is the compu-
tation time. Consequently, the proposed MSSO has an overall computational complexity of
O(S × (I + IM + 1) + IT).

Every improvement certainly has a cost. The principal objective of the proposed
hybrid algorithm is to enhance the fitness value and the convergence speed of the existing
algorithms. However, as a result of adding one algorithm to another, the complexity and
the time cost of the hybrid algorithm are increased compared to the original algorithm.
Eventually, a tradeoff between the merits and disadvantages should be considered while
using any algorithm.
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4. Numerical Tests

Eight nonlinear systems of several orders were selected as indicators to clarify the
efficiency and capability of the new hybrid MSSO scheme. Comparisons between MSSO
and the other six well-known optimization algorithms have been performed. Those op-
timization algorithms are the original SSO [2], HHO [9], PSO [49], ALO [10], BOA [11],
and EO [13]. For consistency, all selected systems used in the comparisons are arbitrary
problems that are common in the literature, for instance, [19,21,40,44,50–53].

The comparison between the optimization algorithms is based on the fitness value of
each algorithm in each benchmark. A solution with less fitness value is more accurate than
a solution with a higher fitness value. Hence, the most effective optimization algorithm is
the one that solves with the least fitness value. The fitness function used in the comparison
is the Euclidean norm, also called the square norm or norm-2. Using the Euclidean norm,
we can determine the distance from the origin, which is expressed as follows:

Fitness = ‖F(x)‖2 =
√

f 2
1 + f 2

2 + . . . + f 2
n , (7)

Similar settings have been used in all benchmarks to guarantee a fair comparison of
all selected algorithms. The parameter values of all optimization algorithms have been
fine-tuned to improve the performance of the algorithms. The best solution was chosen
by every optimization method 30 times. Search agents (population size) have been set to
20 and the maximum iteration to 50. Furthermore, the best solution with the least fitness
value is chosen if there is more than one solution for a particular benchmark. In the end,
for lack of space, answers are shortened to 11 decimal places.

Calculations were conducted using MATLAB software version R2020a with the default
variable precision of 16 digits. This was on an Intel Core i5 processor running at 2.2 GHz
and 8 GB of RAM under the Microsoft Windows 8 operating system.

Problem 1: Let us consider the first problem to be the following nonlinear system of
two equations:

F1(X) =

{
x1 + 1− ex2 = 0,
x1 + cos(x2)− 2 = 0,

For this system, the precise solution is given by α = {1.3401918575555883401 . . . ,
0.8502329164169513268 . . .}t. After running the algorithms 30 times, MSSO significantly
surpassed all other optimization algorithms in the comparison. Table 1 shows that the
proposed hybrid MSSO algorithm has attained the best solution with the least fitness value
equaling zero. This means that the solution obtained by MSSO is an exact solution for the
given system.

Table 1. Comparison of different optimization algorithms for Problem 1.

MSSO HHO [9] PSO [49] ALO [10] BOA [11] EO [13] SSO [2]

x1 1.34019185756 1.34020535556 1.34019185727 1.34019196042 1.34359319240 1.34019194567 1.34502836805
x2 0.85023291642 0.85023195766 0.85023291632 0.85023300025 0.85138606082 0.85023289034 0.85355356706
Fitness 0 2.1212 × 10−5 2.2401 × 10−10 1.0147 × 10−7 2.6296 × 10−3 1.8396 × 10−7 3.7618 × 10−3

Problem 2: The second benchmark is the system of two nonlinear equations given by:

F2(X) =

{
2− ex1 + tan−1 x2 = 0,
tan−1(x2

1 + x2
2 − 5

)
= 0,

Here, the exact zero for the system in this problem is given by α = ( 1.1290650391602 . . . ,
1.9300808629035 . . .)t. As shown in Table 2, it is evident that MSSO achieved the exact
solution of this system with a fitness value of zero. It also outperformed all other algorithms
with a substantial difference, especially in comparison with SSO, BOA, and HHO.
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Table 2. Comparison of different optimization algorithms for Problem 2.

MSSO HHO [9] PSO [49] ALO [10] BOA [11] EO [13] SSO [2]

x1 1.12906503916 1.12903302177 1.12906503916 1.12906515112 1.12588512395 1.12906504185 1.14402014766
x2 1.93008086290 1.93011297982 1.93008086290 1.93008085965 1.93375637741 1.93008086329 1.92067058635
Fitness 0 0.000117763 8.01 × 10−15 4.22 × 10−7 0.012716315 1.1201 × 10−8 0.048651092

Problem 3: The third system of nonlinear equations is given by:

F3(X) =


cos(x2)− sin(x1) = 0,
x3

x1 − 1
x2

= 0,
ex1 − x2

3 = 0.

This NES of three equations has the exact solution α = {0.9095694945200448838 . . . ,
0.6612268322748517354 . . ., 1.575834143906999036 . . .}t. According to Table 3, the proposed
MSSO achieved a zero fitness value. The superiority of MSSO is evident in this example,
with a significant difference between MSSO and all other compared optimization algorithms.

Table 3. Comparison of different optimization algorithms for Problem 3.

MSSO HHO [9] PSO [49] ALO [10] BOA [11] EO [13] SSO [2]

x1 0.90956949452 0.90449212115 0.89176809239 0.85453639710 0.83212389642 0.90775456824 1.03817572093
x2 0.66122683227 0.66642798414 0.67275154835 0.69673611158 0.69808559231 0.66254037960 0.56914672488
x3 1.57583414391 1.57229467736 1.56169705842 1.53258611089 1.52262989677 1.57448413869 1.69602879530
Fitness 0 0.005442108 0.004315295 0.013715754 0.036158224 0.000699083 0.061770954

Problem 4: Consider the following system of three nonlinear equations:

F4(X) =


x2 + x3 − e−x1 = 0,
x1 + x3 − e−x2 = 0,
x1 + x2 − e−x3 = 0.

The precise solution of the nonlinear system in this problem is equal to α = (0.351733711249 . . . ,
0.351733711249 . . . , 0.351733711249 . . .)t. The best solution achieved by the compared
schemes for the given system is illustrated in Table 4. The proposed MSSO found a precise
answer, with zero as a fitness value. ALO recorded the second-best solution with a fitness
value of 2.27 × 10−6, while the rest of the compared algorithms were far from the exact
answer. Again, the proposed MSSO has proved it has an efficient local search mechanism.
Hence, it can achieve more accurate solutions for nonlinear systems.

Table 4. Comparison of different optimization algorithms for Problem 4.

MSSO HHO [9] PSO [49] ALO [10] BOA [11] EO [13] SSO [2]

x1 0.35173371125 0.36165321762 0.35083292352 0.35172698088 0.38459199838 0.35086562122 0.37260511330
x2 0.35173371125 0.35137717774 0.35226253114 0.35173655019 0.33171697596 0.35200965295 0.34576550099
x3 0.35173371125 0.34410796587 0.35213140099 0.35173726704 0.34030291514 0.35226146573 0.33588500543
Fitness 0 0.005300022 0.000379475 2.2674 × 10−6 0.016625262 0.000294859 0.010254721

Problem 5: The next benchmark is the following system of two nonlinear equations:

F5(X) =

{
x1 + ex2 − cos(x2) = 0,
3x1 − sin(x1)− x2 = 0,

This nonlinear system has the trivial solution α = (0, 0)t. Table 5 illustrates the comparison
between the different optimization algorithms for the given system. Compared with the
other algorithms, the original SSO and HHO achieved excellent results, with fitness values
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of 5.36 × 10−15 and 6.92 × 10−14, respectively. However, MSSO outperformed both of them
and delivered the exact solution for the given system.

Table 5. Comparison of different optimization algorithms for Problem 5.

MSSO HHO [9] PSO [49] ALO [10] BOA [11] EO [13] SSO [2]

x 3.6298689 × 10−22 1.0162783 × 10−14 −2.0631743 × 10−8 −2.0631743 × 10−8 0.00019546601 −1.0265357 × 10−14 −5.8109345 × 10−16

y 7.2597377 × 10−22 -4.1451213 × 10−14 2.4507340 × 10−7 2.4507340 × 10−7 1.1132830 × 10−5 1.0797593 × 10−13 −3.9989603 × 10−15

Fitness 0 6.92 × 10−14 3.64 × 10−7 3.64 × 10−7 4.32 × 10−4 1.61 × 10−13 5.36 × 10−15

Problem 6: The sixth system considered for the comparison is an interval arithmetic
benchmark [53] given by the following system of ten equations:

F6(X) =



x1 − 0.25428722− 0.18324757x4x3x9 = 0,
x2 − 0.37842197− 0.16275449x1x10x6 = 0,
x3 − 0.27162577− 0.16955071x1x2x10 = 0,
x4 − 0.19807914− 0.15585316x7x1x6 = 0,
x5 − 0.44166728− 0.19950920x7x6x3 = 0,
x6 − 0.14654113− 0.18922793x8x5x10 = 0,
x7 − 0.42937161− 0.21180486x2x5x8 = 0,
x8 − 0.07056438− 0.17081208x1x7x6 = 0,
x9 − 0.34504906− 0.19612740x10x6x8 = 0,
x10 − 0.42651102− 0.21466544x4x8x1 = 0,
−10 ≤ x1, x2, . . . , x10 ≤ 10.

In this benchmark, MSSO has proven its efficiency. Table 6 clearly shows the significant
differences between MSSO and the other compared algorithms. MSSO achieved the best
solution with a fitness value of 5.21 × 10−17, while all different algorithms achieved
solutions far from the exact answer. When we compare the fitness values of the hybrid
MSSO and the original SSO, we can see how substantial modifications were made to the
local search mechanism of the original SSO to produce the hybrid MSSO.

Table 6. Comparison of different optimization algorithms for Problem 6.

MSSO HHO [9] PSO [49] ALO [10] BOA [11] EO [13] SSO [2]

x1 0.25783339370 0.34365751785 0.25784839865 0.26464526597 0.33136834430 0.25516109743 0.20435054402
x2 0.38109715460 0.33753782972 0.38110810543 0.40023813660 0.38789340931 0.37760106529 0.28412716608
x3 0.27874501735 0.29465973836 0.27883198050 0.30288150337 0.21629745964 0.27543881117 0
x4 0.20066896423 0.25159175619 0.20067772983 0.19561671789 0.11897384735 0.20247039332 4.6624555 × 10−14

x5 0.44525142484 0.29083336278 0.44529373708 0.42832138835 0.43899648474 0.44562023380 0.21484320995
x6 0.14918391997 0.17861978035 0.14916957364 0.13017287705 0.11989963467 0.14456849647 0.04811561607
x7 0.43200969898 0.45287147997 0.43201094116 0.42448051059 0.41892967958 0.43104930617 0.46906778944
x8 0.07340277778 0.12886919949 0.07336337021 0.08657096366 0.00941718057 0.07245346262 0.04141333025
x9 0.34596682688 0.41390929124 0.34597891260 0.35142553752 0.31940825594 0.34552658400 0.44010425014
x10 0.42732627599 0.31843020513 0.42732508540 0.40501764912 0.31956474381 0.42687560151 0.45420039449
Fitness 5.21 × 10−17 0.238337 0.000107027 0.049509462 0.182742367 0.007434684 0.448061654
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Problem 7: Consider the model A combustion chemistry problem for a temperature
of 3000 ◦C [21], which can be described by the following nonlinear system of equations:

F7(X) =



x2 + 2x6 + x9 + 2x10 − 10−5 = 0,
x3 + x8 − 3× 10−5 = 0,
x1 + x3 + 2x5 + 2x8 + x9 + x10 − 5× 10−5 = 0,
x4 + 2x7 − 10−5 = 0,
0.5140437× 10−7x5 − x2

1 = 0,
0.1006932× 10−6x6 − 2x2

2 = 0,
0.7816278× 10−15x7 − x2

4 = 0,
0.1496236× 10−6x8 − x1x3 = 0,
0.6194411× 10−7x9 − x1x2 = 0,
0.2089296× 10−14x10 − x1x2

2 = 0,
−10 ≤ x1, x2, . . . , x10 ≤ 10.

In Table 7, the comparison for this system shows that MSSO has the least fitness value of
7.09× 10−21, while PSO and EO have fitness values of 2.85× 10−9 and 3.45× 10−8, respectively.

Table 7. Comparison of different optimization algorithms for Problem 7.

MSSO HHO [9] PSO [49] ALO [10] BOA [11] EO [13] SSO [2]

x1 1.8492683 × 10−7 4.8416050 × 10−6 1.9790922 × 10−5 1.0594162 × 10−5 1 × 10−22 1.0078652 × 10−5 1 × 10−22

x2 1.5794030 × 10−7 1 × 10−22 1.3635593 × 10−15 3.3602174 × 10−7 1 × 10−22 3.5661155 × 10−8 1 × 10−22

x3 1.3864372 × 10−5 1.6731599 × 10−5 3.1002047 × 10−5 3.0337169 × 10−5 4.1974292 × 10−6 3.0993197 × 10−5 3.8503515 × 10−6

x4 7.1476236 × 10−11 9.8490309 × 10−6 5.7239289 × 10−10 1.4332843 × 10−8 6.9533835 × 10−6 9.9663562 × 10−6 8.9634004 × 10−7

x5 6.6527288 × 10−21 1 × 10−22 1.3480554 × 10−18 1 × 10−22 1 × 10−22 1.0400080 × 10−22 1 × 10−22

x6 2.4773409 × 10−6 1 × 10−22 4.8969622 × 10−6 2.6156272 × 10−7 2.6521256 × 10−6 1.0305788 × 10−9 2.7036389 × 10−7

x7 4.9999643 × 10−6 1 × 10−22 4.9991846 × 10−6 5.0388691 × 10−6 1 × 10−22 9.0975075 × 10−10 4.1982561 × 10−6

x8 1.7135628 × 10−5 1.1426668 × 10−5 1.1003359 × 10−10 7.7891263 × 10−7 2.1564327 × 10−5 2.1008819 × 10−22 2.2239423 × 10−5

x9 4.7151213 × 10−7 5.6143966 × 10−6 2.0556945 × 10−7 7.7518075 × 10−6 3.3294486 × 10−6 9.9131258 × 10−6 6.2906500 × 10−6

x10 2.2079329 × 10−6 2.4214874 × 10−6 2.7225791 × 10−15 6.7696638 × 10−7 1 × 10−22 1.9269643 × 10−8 1 × 10−22

Fitness 7.09 × 10−21 3.23 × 10−6 2.85 × 10−9 1.73 × 10−7 6.22 × 10−6 3.45 × 10−8 6.91 × 10−6

Problem 8: The last benchmark is an application from neurophysiology [52], described
by the nonlinear system of six equations:

F8(X) =



x2
1 + x2

3 − 1 = 0
x2

2 + x2
4 − 1 = 0

x5x3
3 + x6x4

3 = 0
x5x3

1 + x6x2
3 = 0

x5x1x2
3 + x6x2x4

2 = 0,
x5x3x2

1 + x6x4x2
2 = 0

−10 ≤ x1, x2, . . . , x6 ≤ 10.

There is more than one exact solution to this system. Table 8 shows that the proposed
MSSO algorithm achieved the most accurate solution with a fitness value of 1.18 × 10−24,
and the PSO algorithm achieved second place with a fitness value of 5.26 × 10−7. In
contrast, the rest of the algorithms recorded answers that differ significantly from the exact
solution. Further, NESs in problems 6–8 prove the flexibility of the proposed hybrid MSSO
as it remains efficient even in a wide interval [−10, 10].

Table 8. Comparison of different optimization algorithms for Problem 8.

MSSO HHO [9] PSO [49] ALO [10] BOA [11] EO [13] SSO [2]

x1 0.68279148724 0.52702319411 0.76960300904 0.28887548289 0.95829879077 0.26693676403 1.00511003439
x2 0.50647432076 0.29250343550 0.66834059064 0.24588295652 0.10377244360 0.73023242916 −0.14156714998
x3 −0.7306132937 0.84391409892 0.63852284443 −0.95725516399 0.20563151204 −0.96364982722 0.12921880541
x4 −0.8622550449 0.96128971140 −0.74385526431 0.96902915055 −0.98879741269 0.68370357562 0.99423873612
x5 3.8805276 × 10−19 −0.01763142313 −5.5341563 × 10−7 0.00262835607 −0.02586929684 −0.00260602535 0.01451788346
x6 −3.013005 × 10−19 −0.00227648751 −2.3175063 × 10−7 0.00282255517 0.01218071672 −0.00190637065 −0.00244565414
Fitness 1.18 × 10−24 0.020764231 5.26 × 10−7 0.001489 0.048684 0.002456 0.032031
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The comparison results in all benchmarks confirm the hypothesis that we have men-
tioned in the first section; that is, that the hybridization of two algorithms inherits the
efficient merits of both algorithms (SSO and Newton’s methods). This can be seen by
looking at the comparison results between the MSSO and the original SSO, where the
MSSO has outperformed the original SSO in all selected benchmarks. The reason for this
remarkable performance is the use of Newton’s method as a local search, which strengthens
the hybrid’s capability to avoid the local optimum in Problems 1–5 (where MSSO has
obtained the exact solution), and significantly improves the obtained fitness values in
Problems 6-8. The comparisons indicate that the proposed hybrid algorithm MSSO has
avoided being trapped in the local optima in all problems, compared with the majority of
the other algorithms.

5. Results and Analysis
5.1. Stability and Consistency of MSSO

Table 9 shows the average fitness value of the MSSO and the other algorithms com-
pared in the previous benchmarks. This is when each problem is run 30 times to illustrate
the continuous efficiency and power of the proposed MSSO algorithm.

Table 9. The comparison results of the average 30-run solution for all problems.

MSSO HHO [9] PSO [49] ALO [10] BOA [11] EO [13] SSO [2]

Problem 1 2.2709 × 10−16 0.0022869 2.2927 × 10−6 6.2912 × 10−7 0.039573 9.3817 × 10−5 0.050354
Problem 2 4.7855 × 10−16 0.13913 0.037009 0.11703 0.12076 0.060332 0.27432
Problem 3 1.1842 × 10−16 0.038848 2.1189 × 10−12 7.5657 × 10−6 0.20288 3.3604 × 10−5 0.14209
Problem 4 1.1102 × 10−17 0.052119 0.0055764 0.042144 0.063878 0.015678 0.12467
Problem 5 0 2.706 × 10−9 0.011783 0.058917 0.0035033 0.011783 2.1635E-09
Problem 6 5.2147 × 10−17 0.37777 0.00092349 0.16493 0.36299 0.037007 0.56687
Problem 7 4.7872 × 10−9 4.4292 × 10−5 2.5874 × 10−6 3.4687 × 10−6 2.0904 × 10−5 2.3701 × 10−6 1.1393 × 10−5

Problem 8 0.010581 0.18797 0.01278 2.9582 0.13696 0.014989 0.11305
Mean (F-test) 1 5.375 2.625 4.375 5.5 3.375 5.625
Rank 1 5 2 4 6 3 7

According to Table 9, MSSO has surpassed all other compared algorithms. The average
fitness values of MSSO and the original SSO show a significant difference in all benchmarks.
Consequently, this improvement confirms the flexibility of the hybrid MSSO in seeking the
best solution without being entrapped by local optima. Furthermore, as shown in Table 9,
MSSO outperforms all of the other compared algorithms, particularly for problems 2, 4, 6,
and 8.

Additionally, the algorithm is considered consistent and stable if it maintains consis-
tency over 30 runs. The average of the solutions must, therefore, be the same as or very
close to the best solution in order to achieve consistency. It has been demonstrated in
this study that MSSO consistency has been maintained for all selected problems. More-
over, the average standard deviation achieved by each algorithm is shown in Table 10,
in which smaller values of standard deviation indicate more stability. The hybrid MSSO
demonstrated stable results in most of the selected problems.

Table 10. The average standard deviation for all problems.

MSSO HHO [9] PSO [49] ALO [10] BOA [11] EO [13] SSO [2]

Problem 1 7.7097 × 10−16 0.0035697 4.4735 × 10−6 8.3914 × 10−7 0.046935 0.00012725 0.030655
Problem 2 1.1592 × 10−16 0.062883 0.021589 0.069769 0.058383 0.058383 0.085942
Problem 3 3.4857 × 10−16 0.039902 3.889 × 10−12 8.6567 × 10−6 0.18297 5.8122 × 10−5 0.069194
Problem 4 6.0809 × 10−17 0.031155 0.0043532 0.039841 0.022589 0.045526 0.082401
Problem 5 0 9.7731 × 10−9 0.064539 0.13399 0.0026465 0.064539 4.3991 × 10−9

Problem 6 0 0.076223 0.00068543 0.061743 0.064055 0.038589 0.07177
Problem 7 6.8883 × 10−9 2.0068 × 10−5 4.9339 × 10−6 2.582 × 10−6 1.0476 × 10−5 2.8284 × 10−6 2.3389 × 10−6

Problem 8 0.057522 0.11493 0.0348 12.8391 0.051742 0.016544 0.050028
Mean (F-test) 1.5 5.25 2.875 4.625 4.875 3.75 4.875
Rank 1 7 2 4 5.5 3 5.5
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Furthermore, the significance of MSSO improvements was examined using the statis-
tical t-test in Table 11. Improvements were considered significant if the p-value was less
than 0.05; otherwise, they were not. Results show that all algorithms have p-values lower
than 0.05 in all tested problems, except for HHO, which has a single value above 0.05 in
Problem 5. It is evident from this that MSSO has a higher level of reliability than competing
algorithms. Further, MSSO’s solutions are significantly more accurate than those of other
algorithms since the majority of its p-values are close to 0. The results demonstrate that the
MSSO is a robust search method capable of finding precise solutions. Moreover, it is able to
avoid local optimal traps and immature convergence.

Table 11. p-values for the fitness based on the t-test.

HHO [9] PSO [49] ALO [10] SSO [2] EO [13] BOA [11]

Problem 1 7.425 × 10−5 0.0032362 7.305 × 10−5 6.322 × 10−11 0.00053712 0.032655
Problem 2 1.396 × 10−8 0.0078581 0.00018975 7.512 × 10−17 0.0053228 0.002542
Problem 3 2.1404 × 10−8 0.00038876 1.7706 × 10−6 2.171 × 10−13 5.5596 × 10−5 0.000194
Problem 4 6.4406 × 10−10 5.0472 × 10−5 1.2494 × 10−7 6.948 × 10−11 0.013013 6.918 × 10−11

Problem 5 0.32558 9.7628 × 10−8 0.0012288 0.32563 0.001503 4.3991 × 10−6

Problem 6 1.8665 × 10−26 3.7433 × 10−5 1.1361 × 10−16 2.345 × 10−26 2.9061 × 10−10 2.855 × 10−22

Problem 7 3.7355 × 10−12 0.0044676 3.9777 × 10−9 7.247 × 10−21 0.00029067 2.3389 × 10−6

Problem 8 2.3479 × 10−12 0.049502 0.00014768 1.574 × 10−9 2.3043 × 10−6 0.000028

Moreover, one of the criteria that is considered when comparing algorithms is their
speed of convergence. Figure 4 indicates that MSSO enhanced the convergence speed of the
original SSO in all problems. It also shows that MSSO achieves the best solution with much
fewer iterations than the other algorithms. Consequently, the superiority of the proposed
MSSO is confirmed.

It is known that any optimization method has some constraints that slow down the
algorithm from finding the optimum solution or, in some cases, prevent it from finding the
solution. HHO, for instance, probably attains local optima instead of the optimal answer.
SSO quickly falls into a local minimum of systems of nonlinear equations, which consists
of a set of models [2]. PSO has some drawbacks, such as a lack of population variety and
the inability to balance local optima and global optima [54]. The EO method, on the other
hand, does not function well for large-scale situations [55].

The novel hybrid algorithm MSSO’s convergence speed is attributed to combining
Newton’s iterative method as a local search and the SSO algorithm. On the one hand, MSSO
benefits from the originality of Newton’s method, which was developed to find solutions to
nonlinear equation systems. On the other hand, SSO ensures appropriate initial solutions
for Newton’s method by employing search agents. Furthermore, Newton’s method features
a second-order of convergence, which implies that the scheme converges to approximately
two significant digits in each iteration [1]. Thus, the hybridization between Newton’s
method and the SSO algorithm inherits the merits from both sides to produce an efficient
algorithm that can overcome the main disadvantages [56,57].

It is worth noting that the default precision value of the variable in MATLAB was used
for all calculations in this study, which is 16 digits of precision. This precision is timesaving
compared with more significant digits. However, in some situations, this may impact the
outcome. In MATLAB, the function ”vpa” may be used to enhance variable precision.
Thus, increasing the number of digits can improve the accuracy of the findings, but this is
a time-consuming operation. More details and examples of this case can be seen in [40].
In this research, the use of ”vpa” has increased the accuracy of the results in Problem 5,
Problem 7, and Problem 8.



Mathematics 2023, 11, 1473 15 of 21Mathematics 2023, 11, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 4. The convergence speed for the eight problems based on an average of 30 runs. 

5.2. Comparison between MSSO and Newton’s Method 
The effectiveness of MSSO is demonstrated by the correctness of the generated solu-

tions and its ability to avoid local optima compared to Newton’s method. Accordingly, 
both strategies were examined for problems 1–4. Tables 12–15 compare the fitness values 

Figure 4. The convergence speed for the eight problems based on an average of 30 runs.

5.2. Comparison between MSSO and Newton’s Method

The effectiveness of MSSO is demonstrated by the correctness of the generated solu-
tions and its ability to avoid local optima compared to Newton’s method. Accordingly,
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both strategies were examined for problems 1–4. Tables 12–15 compare the fitness values
achieved by MSSO and Newton’s method using three randomly chosen starting points. We
examined both strategies for comparison purposes at iteration 5, iteration 7, and iteration 10.
In addition, variables of 1200-digit precision in all selected problems were used to clarify
the solutions’ accuracy. If, as noted earlier, the number of digits is increased, the findings
may also improve.

Table 12. A comparison of Newton’s method and MSSO for Problem 1.

Iteration Newton
x0=(0,0)

Newton
x0=(1.5,0.5)

Newton
x0=(1,1) MSSO

5 1.14 × 10−17 1.17 × 10−24 3.01 × 10−35 0
7 2.08 × 10−70 2.26 × 10−98 9.97 × 10−141 0
10 1.20 × 10−562 2.34 × 10−786 3.33 × 10−1125 0

Table 13. A comparison of Newton’s method and MSSO for Problem 2.

Iteration Newton
x0=(1.5,2)

Newton
x0=(1,1.5)

Newton
x0=(2,2)

MSSO

5 6.38 × 10−9 Diverge Diverge 0
7 2.61 × 10−37 Diverge Diverge 0
10 1.92 × 10−302 Diverge Diverge 0

Table 14. A comparison of Newton’s method and MSSO for Problem 3.

Iteration Newton
x0=(0,0,0)

Newton
x0=(1,0,0.5)

Newton
x0=(1,1,1)

MSSO

5 4.68 × 10−4 Not Applicable 6.15 × 10−8 2.82 × 10−16

7 6.10 × 10−13 Not Applicable 1.67 × 10−28 8.09 × 10−57

10 7.68 × 10−96 Not Applicable 2.35 × 10−220 0

Table 15. A comparison of Newton’s method and MSSO for Problem 4.

Iteration Newton
x0=(0,0,0)

Newton
x0=(1,0,0.5)

Newton
x0=(1,1,1)

MSSO

5 Not Applicable 1.72 × 10−17 1.45 × 10−35 1.12 × 10−45

7 Not Applicable 4.77 × 10−68 1.73 × 10−144 3.76 × 10−183

10 Not Applicable 1.85 × 10−538 4.22 × 10−1161 0

MSSO surpassed Newton’s approach in all of the chosen problems, as shown in
Tables 12–15. Newton’s method, like all other iterative methods, is extremely sensitive to
the starting answer x0. Choosing an incorrect starting point can slow down the convergence
of Newton’s method (see Tables 12 and 14) or cause Newton’s method to diverge (see
Table 13). Further, a singularity in the Jacobian in Newton’s method’s denominator can be
caused by the improper selection of the initial point. The Jacobian’s inverse does not thus
exist. Therefore, it is impossible to utilize Newton’s approach (refer to Tables 14 and 15).

Tables 12–15 show a considerable improvement in MSSO outcomes compared with
Newton’s technique. The primary issue with Newton’s starting point has been addressed
by relying on 20 search agents at the early stages of the hybrid MSSO. This is rather than
picking one point as Newton does. The MSSO selects several random starting points, called
search agents, unlike Newton’s method. MSSO examines each search agent’s fitness value,
then chooses the search agent with the lowest fitness value as an initial guess. Selecting the
starting point in this manner is crucial for improving the accuracy of the answer.

The previous experiments show that the proposed MSSO outperforms Newton’s
method in selected problems. As opposed to Newton’s method, which normally starts
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with one initial point, MSSO starts with 20 search agents. The superiority of the MSSO is
demonstrated by the accuracy of its solutions. In addition, the time required to reach the
convergence criteria is less in MSSO. Having 20 random initial solutions clearly requires
more time for Newton’s method. Therefore, this is another reason why hybridizing both
SSO and Newton’s method is better than depending on one of them.

Moreover, the speed of convergence towards the best solution is astonishing. MSSO
can choose the best initial point in a few iterations and move quickly toward the global
optima. Figure 5 shows the convergence speed of problems 1–4 for the first five iterations
on an average of 30 runs.
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To clarify the significant improvements of MSSO over Newton’s iterative method,
a comparison between Newton’s technique and MSSO for Problems 1, 2, 3, and 4 were
performed. Table 16 shows the CPU-time needed for Newton’s technique and MSSO to
attain the stopping criterion (ε ≤ 1 × 10−15).

Table 16. Comparing Newton’s method and MSSO in terms of average time (in seconds).

Problem
Newton MSSO

ε ≤ 1 × 10 −15Initial Guess Iteration ε ≤ 1 × 10 −15

Problem 1 {0,0} 5 1.389 0.283
Problem 2 {1.5,1.5} 5 1.871 0.179
Problem 3 {1,1,1} 8 2.497 0.234
Problem 4 {0.5,0.5} 4 2.137 0.244

Based on the results, an apparent enhancement has been added to Newton’s method
by using the hybridized MSSO. The CPU-time needed to satisfy the selected stopping
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limit is much better for MSSO than Newton’s method. Even though Newton’s method is
a part of the proposed MSSO, MSSO showed better results because of the mechanism of
SSO in selecting the best initial guess for Newton’s technique as a local search inside the
hybrid algorithm.

It is well known that choosing a starting point that is far from the root of the system
could negatively affect the convergence of Newton’s method. Therefore, since Newton’s
method is included in the MSSO, this could negatively affect MSSO’s convergence as well.
However, based on the mechanism of the MSSO, the algorithm randomly selects 20 agents
that are considered as initial points within a specific interval. In general, optimization
algorithms have more choices to start with compared to Newton’s method. Iterative
methods can benefit from hybridization in selecting initial points because optimization
algorithms can have many initial points. On the other hand, optimization algorithms can
benefit from the fast and accurate convergence of iterative methods.

6. Conclusions

In this work, a hybrid method known as MSSO was introduced for solving systems of
nonlinear equations using Newton’s iterative method as a local search for the Sperm Swarm
Optimization algorithm SSO. The main goal of the MSSO is to solve the problem of New-
ton’s method’s initial guess, the achievement of which results in a better selection of initial
points, enabling it to be applied to a wider variety of real-world applications. Moreover,
Newton’s scheme was used in MSSO as a local search, which improved the accuracy of the
tested solutions. In addition, the MSSO’s convergence speed is substantially improved.

Eight nonlinear systems of varying orders were utilized to illustrate the effectiveness
of the proposed MSSO. The novel MSSO was also compared to six well-known optimization
methods, including the original SSO, BOA, ALO, EO, HHO, and PSO. The Euclidean norm
has been utilized as a fitness function in all benchmarks. According to the results, MSSO
outperforms all other compared algorithms in four metrics: fitness value, solution accuracy,
stability, and speed of convergence. In addition, the consistency of the MSSO is confirmed
by running the methods thirty times. Additionally, the standard deviation showed that
MSSO was the most stable optimization algorithm.

Additionally, we compared the performance of MSSO and Newton’s method on four
problems from the benchmarks. Across all four datasets, the MSSO outperformed Newton’s
method. The MSSO method also overcomes some of Newton’s scheme’s limitations, such
as divergence and selection of initial guesses.

Future work can address some related issues, such as how the suggested method
performs against common optimization benchmarks. Future research will also focus
on solving nonlinear equations arising from real-world applications, such as Burgers’
Equation. In addition, future work needs to address the efficiency of the proposed algorithm
when solving big systems. Finally, the use of a derivative-free iterative method instead
of Newton’s method reduces the computational complexity resulting from the need to
evaluate Newton’s method in each iteration and is an interesting topic that needs to be
focused on in the future.
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