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Abstract: The high-complexity, high-reward, and high-risk characteristics of financial markets make them
an important and interesting study area. Elliott’s wave theory describes the changing models of financial
markets categorically in terms of wave models and is an advanced feature representation of financial time
series. Meanwhile, deep learning is a breakthrough technique for nonlinear intelligent models, which
aims to discover advanced feature representations of data and thus obtain the intrinsic laws underlying
the data. This study proposes an innovative combination of these two concepts to create a deep learning +
Elliott wave principle (DL-EWP) model. This model achieves the prediction of future market movements
by extracting and classifying Elliott wave models from financial time series. The model’s effectiveness is
empirically validated by running it on financial data from three major markets and comparing the results
with those of the SAE, MLP, BP network, PCA-BP, and SVD-BP models. Interestingly, the DL-EWP model
based on deep confidence networks outperforms other models in terms of stability, convergence speed,
and accuracy and has a higher forecasting performance. Thus, the DL-EWP model can improve the
accuracy of financial forecasting models that incorporate Elliott’s wave theory.

Keywords: deep learning; financial forecasting; digital economy; Elliott’s wave theory

MSC: 94-08; 94-04; 60G25; 68T07

1. Introduction

Financial markets are typically nonlinear and complex systems that are influenced by
multiple, difficult-to-quantify factors. The purpose of industry and academic research on
financial markets is to understand the laws of change, find reasonable and effective means to
describe these laws in financial markets, and ultimately achieve predictions of future markets.
Deep learning is the hottest technique in current neural network research and has been widely
and successfully applied in many fields. Deep learning models use a multilayer network
structure to learn feature information of the data layer by layer and autonomously abstract
high-level feature representations from low-level features of the data. Arévalo et al. (2016)
used deep learning to construct a high-frequency trading strategy [1]. Chong et al. (2017)
used standard deep learning models to test three feature extraction techniques–principal
component analysis (PCA), self-encoder, and restricted Boltzmann machine—and evaluated
the feasibility of deep learning in predicting stock returns [2]. Fischer et al. (2017) applied
the long short-term memory (LSTM) network for the prediction of the S&P 500 Index and
compared LSTM with standard deep networks [3]. Wei et al. (2017) first applied stacked
self-encoders for the prediction of the S&P 500 Index and compared them with standard
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deep neural networks (DNNs), logistic regression classifiers, and random forests, and were
the first to apply stacked self-encoders to financial forecasting; their proposed deep learning
model based on stacked self-encoders consisted of three parts: wavelet variation, stacked self-
encoders, and LSTM. Interestingly, these outperformed other methods in terms of forecasting
accuracy and profitability [4]. Basu, T. et al. (2022) utilized a Siamese-type neural network for
pattern recognition in images followed by a bootstrapped image similarity distribution to
predict rare events as they pertained to financial market analysis. The proposed method used
a sliding window to store the input features as tabular data (HLC price), created an image
of the time series window, and then used the feature vector of a pretrained convolutional
neural network (CNN) to leverage pre-event images and predict rare events [5]. Navon and
Kelly (2017) built an end-to-end deep learning model using raw financial time as input to
successfully provide users with investment strategies [6]. SenGupta, I., Nganje et al. (2021)
analyzed derivatives and commodity markets by using the improved Barndorff-Nielsen and
Shephard (BN-S) model, which had the advantages of a high efficiency, few parameters, and
completely random data extraction [7]. Troiano et al. (2017) used a restricted Boltzmann
machine and a self-encoder to build two separate deep learning models to predict the future
trend of the S&P Index; comparing the advantages and disadvantages of the two models, the
authors found that the self-encoder performed better [8]. However, as they concluded, research
in this area of deep learning for financial forecasting was still in its infancy and needed to be
improved. Moreover, they argued that the number of input data and the type of indicators as
well as the determination of the range of up or down of the output were open to question.

The Elliott wave can be considered as a high-level abstract representation of financial
time series, and thus feature extraction is a key point in financial forecasting models [9]. The
multilayer network structure of deep learning models can achieve this better. However, to
the best of our knowledge, there is no published literature at the research stage on modeling
Elliott wave models using deep learning techniques. The literature typically uses volume as
input data (Volna et al., 2013) [10]. This is contrary to the Elliott Wave Theory, which takes the
highest and lowest prices of stock prices as the object of study and volume is only an auxiliary
indicator. Some studies in this area include Zhen Wu et al.’s (2004), who applied the rules
of Elliott’s wave theory to wavelet-packet-decomposition-extracted features from financial
time series and then used a genetic neural network (GNN) to predict the short-term changes
in stock prices [11]. Qingfeng Li et al. (2011) combined a Fourier transform and a BP neural
network to analyze the stock spectrum and were able to fit the Elliott wave [12]. Fuzzy neural
networks have also been successfully combined with Elliott’s wave theory for predicting
future market movements (Elaal et al., 2012) [13]. Atsalakis et al. (2012) [14] combined Elliott’s
wave theory to build a neurofuzzy system called wave analysis stock prediction (WASP) for
stock market prediction. This method used the mean and oscillator as key reference tools for
analyzing the Elliott Wave. However, the mean and oscillator were only artificially set by the
trading software program to help the participants analyze the market. The settings of their
model had limitations that could affect the accuracy of the model prediction.

A major innovation of this study is attempting to model financial time series using deep
learning models. To the best of our knowledge, we propose the first deep learning + Elliott
wave principle (DL-EWP) model based on deep confidence networks for abstracting and
identifying the Elliott wave models in financial time series. Using these extracted and
classified Elliot wave models, we then empirically demonstrate the effectiveness of this
model’s prediction of future market trends versus those by other models. Five reference
models are used to model the Elliott wave model recognition in financial time series, and
then we comprehensively compare the performance with various neural networks. The
reference models include three deep learning models, and traditional BP networks and their
improvement networks. The comparative analysis demonstrates that the DL-EWP model
based on the deep confidence network outperforms other models in terms of stability,
convergence speed, and accuracy and has higher prediction performance.

The remainder of this study is structured as follows: The second part reviews the
related work on deep learning and wave theory. We describe the association between wave
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theory and deep learning, and the theoretical basis for building a deep learning model
to solve our specified problem. The third part outlines the principles of building deep
learning models integrating the Elliot Wave Theory. Specifically, we clearly describe the
principles and construction process of the DL-EWP model as well as reference models, with
the structure of the DL-EWP model based on the general framework of financial prediction
models. In the fourth part, we empirically test the DL-EWP model. We first select the
relevant categories of financial data and outline the basis of their selection. Then, we
preprocess the original financial time series. Finally, we empirically demonstrate the validity
of the model. The fifth part undertakes the comparison of the models. By introducing
five reference models for modeling the Elliott wave model recognition of financial time
series, the performance effectiveness of multiple neural network models is comprehensively
compared and investigated. Finally, the seventh part presents the conclusions of this study.

2. Related Work
2.1. Deep Learning

Deep learning uses a multilayer network structure to learn the feature information
of data layer by layer and autonomously abstracts high-level feature representations from
the low-level data features. Deep learning effectively improves the problems such as
local optimum and gradient disappearance of BP networks. Furthermore, it has a better
representation capability than shallow networks and is thus more suitable for modeling
Elliott wave models.

2.1.1. Deep Belief Network

Deep belief network (DBN) is a classical model of deep learning. It is a deep generative
network made by stacking multiple stack units. A multilayer restricted Boltzmann machine
(RBM) and a BP classifier are the classical architecture of DBNs, as shown in Figure 1. DBNs
combine unsupervised learning (RBMs) and supervised learning (BP) [15].

Figure 1. DBN’s classic architecture example.

2.1.2. Training of Deep Confidence Networks

Training a DBN consists of two phases: pretraining and fine-tuning (Hinton et al., 2006).
The pretraining phase adopts an unsupervised greedy layer-by-layer learning strategy to
train each constrained Boltzmann machine layer by layer from the bottom up. This process
enables the layer-by-layer extraction of feature information from the original data and in
turn, abstracts the high-level feature representation of the data. The fine-tuning phase uses
supervised learning algorithms (e.g., BP algorithms and support vector machines) to tune
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some or all of the parameters of the network, through which the task of classification and
recognition can be accomplished. The BP network used for the classification task in the
fine-tuning phase is generally located at the last layer of the DBN [16].

The pretraining phase is the process of training multiple RBMs from the bottom up.
An RBM model is determined by the parameters θ = {w, c, b}, where w denotes the weight
between the visible and hidden layer units, and b and c denote the offsets of the visible and
hidden layer units, respectively. The output value obtained from each RBM layer is used
as the input of the next RBM layer, and the feature vector set of samples is obtained layer
by layer. The pretraining process is to adjust the parameters of the RBM model for each
layer, which only guarantees the optimal output result of this layer but not of the whole
DBN. Therefore, a backpropagation process is needed to tune the DBN parameters. The
fine-tuning process is top-down, using the sample data label set Y and the BP algorithm to
adjust the network parameters θ = {w, c, b} [17].

For a DBN with l hidden layers, the joint probability distribution is expressed as follows.

P(v, h1, h2, · · · , hl) = p(v|h1)p(h1|h2) · · · p(hl−2|hl−1)p(hl−1, hl) (1)

Equation (1) reflects the feature that the DBN is superimposed by RBMs, which is
the probability distribution of the RBM at the top level, and p(hk|hk+1) is the conditional
probability training (k = 0, 1, 2, · · · , l − 1, among them h0 = v) of hidden layer hk of the
RBM at each layer under the hk+1 state of known visible layers. The classification problem
can be solved using a DBN.

The training sample set is:

X = (x0, x1, · · · xn) (2)

The data label set is:
Y = (y0, y1, · · · , yn) (3)

2.2. Elliott Wave Theory

The American scholar R.N. Elliott discovered and proposed a wave theory after a
long-term study of the Dow Jones Industrial Average. Elliott’s wave theory describes the
occurrence and development of phenomena in nature in terms of cyclic waves. A complete
cyclic wave consists of a driving wave and an adjustment wave. The term “drive” refers
to the behavior of the market in the direction of the trend, and “adjustment” refers to
the behavior of the change in the opposite direction of the trend. In financial markets,
the adjustment wave completes a partial price retracement of the driving wave, and this
retracement behavior follows the golden ratio relationship. Usually, the driving wave
has a five-wave structure (1-2-3-4-5) and the adjustment wave has a three-wave structure
(a-b-c). Depending on the direction of the trend, there are bull (trend direction up) and bear
markets (trend direction down) in financial markets. When the main trend is up, a complete
cyclic wave is shown in Figure 2 [18].

In the Elliott wave shown in Figure 2, wave I is the driving wave, wave II is the adjusting
wave of wave I, and waves I and II are composed of smaller versions of driving and adjusting
waves. In wave I, waves (a), (b), and (c) are driving waves, while waves (b) and (d) are the
adjusting waves of waves (a) and (c), respectively. In wave II, waves (A) and (C) are driving
waves, and wave (B) is an adjusting wave. By analogy, waves (a)–(e) and (A)–(C) are composed
of smaller driving and adjusting waves. That is, they both consist of the driving wave of
a five-wave structure and the adjusting wave of a three-wave structure. Waves I and II in
Figure 2 are defined as “cyclical waves”, and waves (a)–(e) and (A)–(C) are defined as “large
waves” (Frost and Prechter, 1998). Importantly, the fractal level of a “cyclic wave” is one level
smaller than that of a “large wave”. Waves (1)–(5) and (A)–(C) in Figure 2 are called “medium
waves”, and their fractal level is one level smaller than that of “large waves”. As long as the
trading behavior of the financial markets does not stop, the fractal level of waves will continue
to increase over time; this development is in line with the law of logarithmic spiral change.
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Figure 2. The basic model of the Elliott wave.

A complete cyclic wave consists of a driving wave and an adjustment wave. The driving
wave consists of five waves, and the adjusting wave consists of three waves or their variants.
The “adjustment” is a partial retracement of the “driving” price, and the relationship of this
partial retracement satisfies the golden mean. The Fibonacci series is the linear recursive series
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . ., and the series is defined by the following equation:

F(n) =


0 n = 0
1 n = 1
F(n− 1) + F(n− 2) n > 1

(4)

Elliott’s wave theory embodies the characteristics of the Fibonacci series in many ways,
most notably in the relationship between the number of waves and the price ratio. The
number of Elliott’s waves belongs to the Fibonacci series, and the price of the adjustment
wave is usually 0.618 or 0.382 in relation to the previous driving wave.

When applying wave theory to forecast the future trend of financial markets, correctly
determining the current Elliott wave model in which the market is located is a key point in
solving the problem. For example, when the market completes a complete upward five-wave
structure, it will face a three-wave downward adjustment; when the market ends a three-wave
structure adjustment, it will face a five-wave bull market. The main purpose of the forecasting
model is to accurately identify the model of Elliott waves from the financial time series.

3. Constructing a Model Integrating Deep Learning and Elliott Wave Theory

Elliott’s wave theory reveals the fundamental laws of financial market fluctuations
and is an important tool for financial analysis. If an effective method can be found to
extract Elliott wave models from financial data, it will be a big breakthrough for financial
forecasting. Inspired by this, this study sought to model Elliott waves using the deep
learning model of a DBN network, with each RBM layer extracting features from input
data by energy function and finally classifying the model of waves using the BP network
layer. The basic trading data of financial market include the opening price, volume, closing
price, etc. The Elliott wave is a price sequence consisting of the highest or lowest price.

The advantage of deep learning lies in the ability to achieve feature information
extraction of data layer by layer using a multilayer network structure, and deep learning
is successfully applied in many fields, but no published research on using deep learning
techniques for Elliott wave pattern modeling was found in the research phase, and this
paper innovatively proposes a DBN-based EWP deep learning model (PLR_VIP + DBN),
which consists of two main parts. The first part is a segmented linear representation based
on significant points (PLR_VIP algorithm), which achieves the role of normalizing the
step size of financial time series while preserving the significant feature points of the
original financial time series; the second part is a deep confidence network, and the DBN
network finally obtains the Elliott wave pattern corresponding to the series through feature
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extraction and the classification of the financial time series, so as to predict the future
financial market. The effectiveness of the EWP model is verified through experiments.

Our DL-EWP model consists of three main components: the segmented linear represen-
tation algorithm based on significant points, a min-max normalization, and the DBN network.
Using this model, we can identify Elliott wave models in financial time series. The training
and testing of the DBN network are two important steps in the construction of the DL-EWP
model. The training phase results in a suitable configuration of the network parameters so
that the trained network can be used to predict the Elliott wave models of the financial time
series. Both the training and test sample sets are obtained from the original financial time
series using a segmented linear representation algorithm based on significant points and a
min-max normalization method. Figure 3 shows the basic framework of the DL-EWP model.

Figure 3. The basic framework of the DL-EWP model.

On the one hand, the time to complete an Elliott wave at different stages of the financial
market is often not deterministic, i.e., the step size of the original financial time series is
nonstandard. On the other hand, the number of input neurons of the DBN network needs to
be specified. The segmented linear representation algorithm based on significant points can
standardize the step length of financial time series while preserving the significant points of
the original series. The range of price fluctuations varies widely among different financial
time series, and the accuracy and convergence speed of the network are affected when
the DBN network is trained directly using these data. Then, the min-max normalization
method can standardize the range of the variation of the original financial time series,
eliminate the influence of multiple orders of magnitude on the network, and improve the
network’s accuracy and convergence speed [19]. This process is illustrated in Figure 4.

Figure 4. DL-EWP model.

The parameters of the DBN network are directly related to the prediction results of the
Elliott wave model recognition. Therefore, training the DBN network with a preprocessed



Mathematics 2023, 11, 1466 7 of 18

sample dataset is a key step in building the DL-EWP model. Hence, the RBM is trained
bottom-up using the training sample set, and the sigmoid function is used to calculate
the activation probability of each neuron in each layer. Then, the Gibbs sampling of the
visual layer neurons is performed using the activation probability and the parameters
are finally updated using the gradient descent method. The RBM is trained iteratively
until it reaches a preset number of iterations. Then, the label set of training samples is
input, and the weights and offsets of the DBN network are iteratively adjusted using a
supervised backpropagation learning algorithm to finally obtain a DBN network capable
of successfully predicting the Elliott wave models of financial time series. The specific
algorithmic flow of training the DBN network in the DL-EWP model is shown in Figure 5.

Figure 5. The DBN training algorithm.
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4. Empirical Validity of the DL-EWP Model
4.1. Data Selection

Trading price data were selected from the following three sources: global stock index,
foreign exchange market, and commodities. The financial market is the place where
commodity exchange is realized: commodities contain the basic materials for production
and life; foreign exchange is the medium and contract for commodity exchange; and
stock indices represent the overall economic situation of a country. Therefore, the trading
data of these three major markets can comprehensively reflect the overall situation of
financial markets. Elliott’s wave theory studies the inherent characteristics of the financial
market and describes the basic trading data of the financial market, with each Elliott wave
comprising the highest and lowest prices. Therefore, the data used here were the opening,
closing, highest, and lowest prices of global stock, foreign exchange, and commodities
markets. The details are shown in Table 1.

Table 1. Study data.

Foreign Exchange Market Global Stock Indices Commodities (Futures)

US Dollar Index Dow Jones Industrial Average (U.S.) (“Dow”) COMEX Copper
Euro Index Standard & Poor’s 500 Index (U.S.) (“S&P”) COMEX Gold
EUR/USD FTSE 100 (UK) (“FTSE 1000”) WTI Crude Oil
EUR/GBP DAX (Germany) (“DAX”) CBOT Soybeans
GBP/USD SSE (China) (“SSE”) CBOT Wheat
USD/CNY Hang Seng Index (Hong Kong, China) (“Hang Seng”) ICE Cocoa

The DBN network consisted of multiple RBMs and a BP classifier. The parameter
configuration of the DBN network was directly related to the prediction results of the
Elliott wave pattern recognition; therefore, training the DBN network using the sample
dataset obtained after preprocessing was a key step in building the EWP deep learning
model. The DBN network parameters w, b, and c were initialized to zero, and the DBN
network was trained layer by layer from the bottom up using the training sample set. The
RBM was trained bottom-up using the training sample set, and the sigmoid function was
used for each layer to calculate the activation probability of the neuron. The activation
probability calculated by the sigmoid function was used to Gibbs sample the neurons
in the visual layer, and finally the parameters were updated using the gradient descent
method, while choosing the mean square error to measure the reconstruction error. The
RBM was trained iteratively until a preset number of iterations was reached. Then, the
label set of training samples was input, the weights and offsets of the DBN network were
iteratively adjusted using a supervised backpropagation learning algorithm, and finally,
a DBN network capable of successfully predicting Elliott wave patterns of financial time
series was obtained. The specific algorithmic flow of training the DBN network in the EWP
deep learning model is shown in Figure 5.

A total of 6092 Elliott wave samples were drawn from the historical price data of
18 traded instruments in the three types of markets. The sample of global stock indices,
foreign exchange market, and commodities accounted for 26.7%, 30.7%, and 42.6% of the
total sample, respectively. The basic information about the extracted data is listed in Table 2.

Table 2. Basic information about the data.

Market
Category

Trading Varieties Samples Size Time Range of Data Data Cycle

Data Summaries 6092

Foreign
exchange
market

Euro Index 509 4 January 1971–9 November 2018 Season/month/week/day
EUR/USD 337 4 January 1971–9 November 2018 Season/month/week/day
EUR/GBP 373 4 January 1971–9 November 2018 Season/month/week/day

US Dollar Index 201 19 March 1975–7 November 2018 Season/month/week/day
GBP/USD 391 1 March 1900–9 November 2018 Season/month/week/day
USD/CNY 64 9 April 1991–9 November 2018 Week/day
Forex Total 1875
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Table 2. Cont.

Market
Category

Trading Varieties Samples Size Time Range of Data Data Cycle

Commodities

CMX Copper 421 1 July 1959–7 November 2018 Year/season/month/week/day
CBOT Wheat 504 1 April 1959–9 November 2018 Year/season/month/week/day

ICE Cocoa 491 1 July 1959–21 November 2018 Year/season/month/week/day
CMX Gold 510 2 June 1969–9 November 2018 Season/month/week/day

WTI Crude Oil 317 1 January 1982–7 November 2018 Season/month/week/day
CBOT Soybeans 329 1 July 1959–9 November 2018 Season/month/week/day

Commodity
Summaries 2572

Global
stock

indices

S&P 356 1 November 1928–8 November 2018 Year/season/month/week/day
FTSE 100 578 13 November 1935–7 November 2018 Year/season/month/week/day

Dow 284 1 October 1928–2 November 2018 Year/season/month/week/day
DAX 164 28 July 1959–8 November 2018 Year/season/month/week/day
SSE 149 19 December 1990–7 November 2018 Season/month/week/day

Hang Seng 114 19 December 1990–7 November 2018 Season/month/week/day
Total Stock Index 1645

4.2. Data Preprocessing

The preprocessing stage consisted of two steps: the segmented linear representation
algorithm and the min-max normalization process. The aim of preprocessing was to
normalize the time series’ step size and data range.

4.2.1. Segmented Linear Representation Algorithm

The time required to complete an Elliott wave structure in financial markets is usually
uncertain, and the lengths of financial time series constituting the same wave model may
vary. Therefore, we needed to fix the step length of the original time series beforehand
and thus determine the number of neurons in the input layer of the deep learning model.
The purpose and method of this operation were equivalent to those of the time series
representation in time series mining. This operation also enabled data compression and
feature extraction. To ensure that the time series obtained after preprocessing contained the
important inflection points that made up the Elliott wave, we preprocessed the original
financial time series using a segmented linear representation algorithm based on important
points. This algorithm was referred to as PLR_VIP, where PLR stands for piecewise linear
representation, V stands for vertical distance, and IP stands for important point [20].

The basic idea of the PLR_VIP algorithm was as follows: First, the two endpoints
VIP1 and VIP2 defaulted to important points. Then, the point p with the farthest vertical
distance from the endpoint was found in the region and marked as the next important point
VIP3. Subsequently, the points with the farthest vertical distance were found in the region
with VIP1 and VIP3, and VIP3 and VIP2 as endpoints, and marked as important points,
respectively. The above process was iterated until the set number of significant points was
reached. Figure 6 shows the basic idea of the PLR_VIP algorithm, while Algorithm 1 shows
the specific operation of the PLR_VIP algorithm [21].

Figure 6. The basic idea of the PLR_VIP algorithm.
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Algorithm 1: Basic operation of the PLR_VIP algorithm.
Function: VIP_Identification (X)
Input: Time series X[1, 2, . . . , n]
Output: Sequence of important points VIP[1, 2, . . . , m]

1 begin
2 Set VIP [1] = X[1], VIP[2] = X[n]
3 Repeat until VIP[1, 2, . . . , m] All assignments
4 begin
5 Select the point VIP[J] with the largest vertical distance from the adjacent

two points in VIP (initial values are VIP[1] and VIP[2]) and add VIP[J]
to the important point sequence VIP

6 end
7 Return VIP
8 end

4.2.2. Min-Max Normalization

The price data of financial transactions have a large range of variation. For example, the
data on the S&P500’s price fluctuations used here were distributed in the range [0.4, 3000],
while those for the Dow Jones Industrial Index were in the range [20, 27,000]. Moreover,
there were large fluctuations in price changes within a single sample in the sample set of
the Elliott wave model. During the training process of the network, data of larger order of
magnitude could mask the effect of data of smaller order of magnitude on the network; in
turn, this could affect the network’s accuracy. In addition, the data range was not uniform
between samples, and the base and mean values varied widely. This increased the difficulty
of network training and could lead to slow convergence. Therefore, we needed to normalize
the sample data by using the min-max normalization method to map the sample data to
the interval [0, 1]. The min-max normalization of the ith data xi of sample yielded x′i [22]:

x′i =
xi −min(x)

max(x)−min(x)
(5)

4.2.3. Example of Data Preprocessing

The results of the step normalization using the PLR_VIP algorithm for a wave sample
of the S&P 500 Index are shown in Figure 7b. Notably, the PLR_VIP algorithm achieved
the effect of normalizing the step size while preserving the main features (i.e., significant
points) of the original time series.

(a) (b)

Figure 7. Example of data preprocessing. (a) An example of the weekly K-chart of the S&P 500 Index.
(b) Unified step size result of PLR_VIP algorithm.

4.3. Design of the Elliott Wave Model

The key to using Elliott’s wave theory to forecast financial markets is to accurately
identify the current Elliott wave model in which the market is operating. When the current
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wave model is known, the future trend and structure of the market can be accurately
predicted [23].

After studying and summarizing the Elliott wave theory, this study designed eight
types of Elliott wave models consisting of eight subwaves, as shown in Figure 8.

Figure 8. Elliott wave basic model.

A basic, complete Elliott wave is composed of eight subwaves. For regular driving and
adjusting waves (i.e., except in the case of triangles), the most straightforward design idea
is to aim at identifying the complete eight-wave structure, and thus target the beginning of
bullish (models 1 and 2) and bearish (models 3 and 4) markets. Since regular adjustment
waves are differentiated between saw-tooth (models 1 and 3) and platform (models 2
and 4), there is a distinction between two models for bull and bear markets. The structure
of a correction wave is more complex than a driving wave and is typically longer as well.
For example, the US Dollar Index has been in a corrective wave since 1985. This makes
it difficult and necessary to accurately analyze the structure of a correction wave. In an
adjustment wave, targeting the C wave and its third subwave (i.e., the main dip) is a key
task. This study devised models 5 and 6 for predicting the main dip in a flat and saw-tooth
adjustment wave, respectively. For unconventional driving and adjusting waves, such as
triangle waves, our main objective was to predict the trend up (model 7) or down (model
8) without having to specifically distinguish between driving or adjusting. According to
Elliott’s wave theory, the end of a triangle structure often means that the market will enter
a “sprint” phase. Although triangles are less frequent, the identification of this structure is
still highly relevant [24].

4.4. Design of DBN Network Parameters

Setting network parameters is crucial for the effectiveness of the prediction model.
This process mainly includes the following aspects: the number of neurons in the output
and input layers, the number of layers in the hidden layer and the number of neurons in
each layer, the learning rate in the pretraining and fine-tuning stages, and the number of
iterations of pretraining and fine-tuning. The PLR_VIP algorithm processing indicated
that the length of the financial time series of each sample was 15. Thus, the number of
neurons in the input layer of the DBN network was set to 15. As noted, there were eight
types of Elliott wave models. Therefore, the output layer was set to eight neurons. The
number of layers and neurons in the hidden layer affect the accuracy of the DBN network.
Meanwhile, the learning rate, momentum factor, and the number of iterations are related to
the convergence speed, error, and stability of the network. After several trial experiments,
we settled on a DBN network with a two-layer RBM structure, and its specific parameters
are listed in Table 3.
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Table 3. DBN network parameters.

Number of
Hidden Layers

Number of
Hidden Layer Units

Learning
Rate

Number of
Iterations

Momentum
Factor

2 10/10 0.1/0.12 1000/9000 0.51/0.8

In the training process of the network, the momentum factor term α was added to the
weight update process to weaken the oscillation phenomenon when the error changed.

4.5. Empirical Results of the DL-EWP Model

The original financial time series were normalized by the PLR_VIP algorithm and
min-max normalization in the preprocessing stage to obtain the sample data for training
and testing the DBN network. The DBN network was then trained iteratively using the
training samples in two parts: pretraining and fine-tuning. After the pretraining, the
reconstruction error of the two-layer RBM network was 2.626. In the fine-tuning phase, the
mean square error (MSE) of the samples with the BP classifier for the classification task
changed as the number of iterations increased, as shown in Figure 9.

Figure 9. The training error variation curve of the DBN network.

The training tuned the DBN network parameters on the training sample set, and thus
gave us a DL-EWP model capable of predicting the Elliott wave models of financial time
series. The model was then used to classify 1164 financial time series for Elliott wave model
prediction. The results showed that a total of 793 test samples were correctly classified.
The accuracy of the DL-EWP prediction model was 68.13%, while its MSE was 0.4066. The
experiments demonstrated that the proposed DL-EWP could effectively recognize Elliott
wave models in financial time series.

Next, we present the forecasting results of the DL-EWP model for financial time series.
Selected data for three major types of financial markets were drawn from the test sample,
corresponding to the S&P 500 Index (global stock index), the Euro Index (foreign exchange
market), and WTI crude oil (commodity). In the monthly S&P 500 price data in Figure 10a,
the DL-EWP model accurately identified the financial time series between July 1933 and
March 1937 as Elliott wave model 4, between March 1937 and October 1939 as model 6, and
between April 1942 and June 1949 as model 1. In the quarterly Euro Index price data in
Figure 10b, the DL-EWP model successfully identified the financial time series between
June 1985 and December 2000 as model 2, and between December 2006 and June 2015
as model 7. In the monthly WTI crude oil price data in Figure 10b, the DL-EWP model
successfully identified the financial time series between June 1985 and December 2000 as
model 3, and between December 2006 and June 2015 as model 4. Finally, in the monthly
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WTI crude oil price data in Figure 10c, the DL-EWP model identified the financial time
series between October 1990 and October 1997 as model 5, and between February 1999 and
November 2001 as model 1.

(a) (b) (c)

Figure 10. Example of prediction results of the DL-EWP model.

5. Comparison of Models

In addition to DBN networks, five related neural network models were used to
compare the performance of DL-EWP model: SAE (AEs + BP), MLP (BPs), BP network,
PCA-BP, and SVD-BP models. The first two are deep learning models, while the last three
are shallow network models with single-layer networks. We then empirically validated the
effectiveness and superiority/inferiority of the DL-EWP model.

5.1. Selecting Evaluation Criteria

To evaluate the prediction performance of the deep learning models, four performance
indicators were used: MSE, root-mean-square error (RMSE), mean absolute error (MAE),
and error rate (ER). The calculation formulae for each are listed in Table 4.

Table 4. Model evaluation methods.

Evaluation Criteria Formula of Calculation

MSE MSE = 1
n

n
∑

i=1
(Ti − Pi)

2

RMSE RMSE =

√
1
n

n
∑

i=1
(Ti − pi)2

MAE MAE = 1
n

n
∑

i=1
|Ti − Pi |

ER ER =
∑(1|Modelp 6=Modelr)
∑(1|Modelp≡Modelr)

× 100%

Note: Ti denotes the predicted true value, Pi denotes the predicted value of the model,
Modelp denotes the Elliott wave model predicted by the model, Modelr denotes the true
Elliott wave model, and n denotes the sample size.

Lower values of these metrics indicate that the prediction results of the prediction
model are closer to the true results. The notable metric is the ER, which is calculated as
the ratio of the number of samples with wrongly predicted wave models to the number
of all tested samples. We were most concerned about the ER because it is directly related
to the accuracy of users’ trading decisions. Meanwhile, the ER also indirectly reflects the
prediction model’s ability to extract features from the sample data.

5.2. Parameter Design of the Reference Model

The SAE model had two self-encoders, the MLP model had two hidden layers, and
the BP network, PCA-BP, and SVD-BP models were shallow network models with a
single hidden layer. Similar to the DL-EWP model, the reference models also included
a preprocessing step to normalize the time series step and data range. The network
parameters of the above five reference models are shown in Tables 5–7.
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Table 5. Network parameters of the SAE model.

Number of
Hidden Layers

Number of
Hidden Layer Units

Learning
Rate

Number of
Iterations

Momentum
Factor

2 10/10 0.1/0.12 950/9000 0.51/0.5

Table 6. Network parameters of the MLP model.

Number of
Hidden Layers

Number of
Hidden Layer Units

Learning
Rate

Number of
Iterations

Momentum
Factor

2 10/10 0.015 9000 0.6

Table 7. Network parameters of BP network, PCA-BP, and SVD-BP models.

Number of Hidden Layers Learning Rate Number of Iterations Momentum Factor

2 0.015 9000 0.6

In the PCA-BP model, the PCA algorithm reduced the step size of the financial time
series from 15 to 10. Therefore, the network input layer of the PCA-BP model had a total of
10 neurons.

5.3. Comparison of the DL-EWP Model’s Performance

We empirically checked the effectiveness of the six forecasting models: DL-EWP, SAE,
MPL, BP network, PCA-BP, and SVD-BP models. Table 8 lists the performance of all models
on the four evaluation metrics. Interestingly, all six forecasting models could successfully
predict the Elliott wave model for the financial time series. However, the effectiveness of
each model’s prediction performance differed. The DL-EWP model outperformed the other
models, while the SVD-BP model showed a relatively poor prediction performance.

Table 8. Comparison of the prediction performance of the models.

Prediction Model
Evaluation Criteria

MSE RMSE MAE ER

Deep network model
DL-EWP 0.4366 0.6577 0.9128 31.06%

SAE 0.4306 0.6538 0.9392 34.74%
MLP 0.6349 0.8407 1.4562 43.62%

Shallow network model
BP 0.7721 0.8715 1.482 51.34%

PCA-BP 0.7001 0.8207 1.3092 55.55%
SVD-BP 0.8745 0.9198 1.6135 79.97%

The prediction performance of the deep and shallow networks also differed. Among
the shallow network models, the PCA-BP model had the lowest values of MSE, RMSE, and
MAE, and the lowest ER value. By contrast, among the deep network models, the DL-EWP
model had the lowest values of MSE, RMSE, MAE, and ER, and the best performance; it
had 41.08%, 23.23%, and 38.67% lower MSE, RMSE, and MAE values, respectively, than
those of the PCA-BP model. Furthermore, the ER value of the DL-EWP model was 36.69%
lower compared to that of the BP network model. Together, the mean MSE, RMSE, MAE,
and ER values for the three deep network models were 0.4974, 0.7107, 1.1161, and 37.74%,
respectively, while those for the three shallow network models were 0.7656, 0.8740, 1.4582,
and 61.65%, respectively. That is, the deep network model had 35.03%, 18.68%, 23.46%, and
38.78% lower values, respectively, than the shallow network models. This demonstrated
the superiority of the deep learning model. This also indicated that deep networks could
improve the problem of the weak characterization ability of shallow networks.

Next, the DL-EWP model was compared with each reference model. Among the three
deep network models, the error rate of the DL-EWP model was 10.83% and 30.14% lower, and
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the accuracy was 6.02% and 25.29% higher than that of the SAE and MLP models, respectively.
Among the three shallow network models, the BP network had the lowest error rate; however,
the DL-EWP model had a 36.69% lower error rate and a 37.19% higher accuracy than the BP
network. Thus, the DL-EWP model had the lowest prediction error rate, which indirectly
demonstrated that the feature extraction ability of the DL-EWP model was higher than that of
the reference models. The performance of the SAE model was second only to the DL-EWP
model on all four evaluation criteria. Meanwhile, the performance of the SVD-BP model was
worse than the other five models on all four evaluation criteria. In comparison, the DL-EWP
model reported 52.97%, 31.42%, 43.70%, and 60.20% lower MSE, RMSE, MAE, and ER values,
respectively. Thus, the DL-EWP model outperformed the SVD-BP shallow network model
and was slightly better than the SAE deep learning model. Among the shallow network
models, the training error of the PCA-BP model was smaller than that of the BP network, but
its error rate was higher. Thus, the introduction of the PCA algorithm into the BP network
resulted in overfitting, which was reflected by a weaker generalization ability of the traditional
BP network for samples with larger quantities of data.

Together, these results showed that the prediction performance and feature extraction
ability of the DL-EWP model were better than those of the reference models. Moreover, the
prediction performance and feature extraction ability of the deep network models were
higher than those of the shallow network models based on the BP network.

The partial forecasting results of the DL-EWP model shown in Figure 10 demonstrated
the superiority of the DL-EWP model. The classification test results showed that all
five reference models made a wrong classification of the Elliott wave model 7 of the Euro
Index between December 2006 and June 2015 (as shown in Figure 10b). The SAE, MLP, BP
network, and PCA-BP models judged it as model 5, while the SVD-BP model judged it as
model 6. The training error variation curve (computed as the MSE) of the deep confidence
network in the DL-EWP model with the reference models at the stage of completing the
classification task is shown in Figure 11.

Figure 11a shows the training error variation curves of the three deep network models
in the classification stage. The error curve of the DBN network was smoother than that of
the SAE network in the fine-tuning stage, which indicated the superiority of the former’s
stability against the latter. The training error variation curve of the MLP network also reflected
that the network had a higher stability and convergence speed. However, its final training
error was higher than that of the DBN network, which may be caused by the network falling
into a local optimum. This demonstrated that the DBN network was more reliable than the
MLP network and could effectively improve the local optimum problem caused by using BP
algorithms in batch. Figure 11b shows the training error variation curves of the DBN network
in the fine-tuning stage and the three shallow network models. The DBN network had a faster
convergence speed and a higher accuracy than the three shallow network models. Together,
this shows that the DBN network converged faster, had a lower final training error, and had a
better smoothness than the reference models during the iterative training for classification.

(a) (b)

Figure 11. Training error of the DL-EWP model compared with the reference models in the classifica-
tion stage. (a) Comparison of the training errors of three deep network models. (b) Comparison of
the training errors between the DBN network and three shallow network models.
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6. Conclusions and Discussion

Based on our results, we can draw the following conclusions: First, our proposed DBN-
based DL-EWP model had a high reliability and could successfully and efficiently identify
the corresponding Elliott wave models from financial time series. Second, compared with
the five reference models, including deep and shallow network models, the DBN network
used in the DL-EWP model had a better performance in terms of stability, convergence
speed, accuracy, and feature extraction capability. Third, the DL-EWP model improved the
prediction performance of traditional BP network models and multilevel classifiers. Fourth,
the DL-EWP financial forecasting model incorporating Elliott’s wave theory reduced the
error of the deep network model with stock returns as the decision criterion and improved
the accuracy of the deep network model with high-frequency buying and selling as the
decision criterion.

The research results of this paper can improve the system of financial risk prevention,
early warning, disposal and accountability, and build a long-term mechanism for prevent-
ing and resolving financial risks. First, we suggest optimizing the monitoring and analysis
mechanism, promoting rule-based expert experience, the automation of monitoring and
analysis carried out manually, and focusing the responsibilities of monitoring and analysis
positions on the analysis and interpretation of monitoring results; second, we suggest
establishing a closed-loop monitoring and analysis process of the preanalysis of regulation
rules, policy formulation, policy deconstruction and process coupling, and the continuous
monitoring of risk characteristics with the key risk characteristics of business portfolios as
the core; third, we suggest sorting out the monitoring data requirements and making full
use of the results of the labeling system to provide a data basis for refined monitoring and
analysis. Before the regulation rules are formulated, a preanalysis needs to be conducted for
the business combinations to be regulated by the relevant regulation policies, and the trial
analysis results should be used as the basis for subsequent regulation rule formulation; after
the regulation rules are completed, the monitoring and analysis results should be regularly
summarized in the form of reports to support risk feature identification and the iterative
optimization of monitoring rules. We suggest paying close attention to the risks in key
areas, improving the foresight, timeliness, and effectiveness of risk identification, continu-
ing to follow the policy of “stabilizing the overall situation, coordinating, classifying, and
precisely dismantling” to prevent and resolve financial risks, suppress the stock of risks,
and strictly control the incremental risks. Further deepening the function of early correction
and risk disposal of deposit insurance can play the role of an incentive and restraint of the
risk difference rate and improves the effect of early correction. The main responsibilities
of financial institutions and their shareholders, including the local responsibility and the
supervisory responsibility of financial management departments, should be merged to
form a joint force for risk disposal and ensure the effective implementation of disposal
measures. A sound financial risk accountability mechanism, serious accountability for
major financial risks, and effective prevention of moral hazard can also resolutely guard
the bottom line against systemic financial risks.

Finally, the DL-EWP model itself still has room for improvement. Research on com-
bining deep learning technology and Elliott’s wave theory can be further strengthened.
We hope that better deep learning models (such as residual and fractal networks) can be
introduced and examined. In addition, due to the limitation of time, this study could
not realize the concept of “fractal level” of Elliott’s wave theory, as Elliott said that cyclic
motion is a natural and universal phenomenon. In the future, if neural networks can be
effectively integrated with fractal theory and the network structure can reflect the concept
of “fractal level”, then it will trigger another leap in neural network technology.
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SAE Stacked autoencoder
MLP Multilayer perceptron
BP Backpropagation
PCA Principal component analysis
SVD Singular value decomposition
PCA-BP Principal component analysis backpropagation
SVD-BP Singular value decomposition backpropagation
DL Deep learning
DL-EWP Deep learning + Elliott wave principle
DNNs Deep neural networks
LSTM Long short-term memory
WASP Wave analysis stock prediction
RBM Restricted Boltzmann machine
DBN Deep belief network
MSE Mean square error
RMSE Root-mean-square error
MAE Mean absolute error
ER Error rate
PLR_VIP Piecewise linear representation
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