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Abstract: This paper deals with the effects of partial differential equations on the development of
spatiotemporal patterns in reaction–diffusion systems. These systems describe how the concentration
of a certain substance is distributed in space or time under the effect of two phenomena: the
chemical reactions of different substances into some other product and the diffusion which results
in the dispersion of a certain substance over a surface in space. Mathematical representation of
these types of models are named the Gray–Scott model, which exhibits the formation of patterns
and morphogenesis in living organisms, e.g., the initial formation of patterns that occur in cell
development, etc. To explore the nonhomogeneous steady-state solutions of the model, we use a novel
high-order numerical approach based on the Chebyshev spectral method. It is shown that the system
is either in uniform stabilized steady states in the case of spatiotemporal chaos or lead to bistability
between a trivial steady state and a propagating traveling wave. When the diffusion constant of
each morphogen is different in any two species of the reaction–diffusion equation, diffusion-driven
instability will occur. For the confirmation of theoretical results, some numerical simulations of
pattern formation in the Gray–Scott model are performed using the proposed numerical scheme.

Keywords: spatiotemporal dynamics; reaction–diffusion system; stability analysis; Turing patterns;
Gray–Scott model; Chebyshev spectral method
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1. Introduction

Partial differential equations (PDEs) are used for mathematical formulation of many
real-world problems in many fields of science and engineering. Their most common
types are hyperbolic, parabolic and elliptic. These types of PDEs are used to model some
physical phenomena, such as flow, mass and heat transfer, free body falling, level of
microscopic motion of electron, finance and economics and many more. Many natural
situations, such as biological or human, mechanical, chemical or financial systems, may
be described by a system of PDEs. Most recently, researchers have investigated some
methods to discover the system of PDEs and describe their spatiotemporal dynamics [1–4].
According to Turing, the basis of morphogenesis lies in the chemical capabilities of forming
patterns that could be found in early embryos, which were later named morphogens.
Morphogens have chemical patterns present in the tissue which create a chemical and
physical interaction. These patterns of chemical reactions affect genes and their physical
diffusion and chemical reactions. Then, the pattern formation of these morphogens can
be modeled mathematically with the help of chemical and physical laws. Moreover, these
can be modeled in the form of partial differential equations, later named reaction–diffusion
equations [5]. Despite diffusion being a steady mechanism, Turing proposed that it can
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also behave as a competitor for some of the other chemical reactions that are auto catalytic.
Turing also observed that because of some fast chemical reactions that cannot be easily
observed, specific pattern types can be seen.

Structures and patterns that evolve in nature are studied in the branch of mathematics
known as mathematical biology in which pattern formations are focused [6]. Patterns that
appear in nature seem to have complex structures, such as the structure of snow flakes and
the patterns in animal skin coats. However, as these patterns appear in large quantities in
nature, scientists began to think that they might all follow the same formation principle
which could also be simple. After Turing patterns formation gained great interest from
biologists and mathematicians, D’Arcy published a book, On Growth and Form, in 1992 in
which he emphasized the place of laws and physical principles that activate the formation
of patterns [7]. The work of D’Arcy was interesting, but he was unable to provide the
experimental data for his work which was completely theoretical. Asai and Kondo studied
the patterns in Pomacanthus, a marine angel fish. Pomacanthus, unlike mammals, has a
unique characteristic of dynamic pattern change [8]. It was noted that whenever a new
strip was inserted, the pattern on the fish changed. So, it was considered a good example
in biological growth systems of a conserving mechanism of wavelength. This vigorous
regulation of pattern accounts for reaction–diffusion models. Later, Painter et al. in 1999
extended the work by Kondo and Asai by confirming that the pattern sequences reproduced
on the fish are the result of reaction–diffusion [9]. Many researchers have studied biological
patterns that are self-organizing in gelatinous solution and Petri dishes [10–15]. Turing
modeled the morphogenesis in a simple ring of cells and showed that a nonhomogeneous
solution existed for these reaction–diffusion equations. Since then, significant interest has
developed towards these types of reaction–diffusion equations.

To solve parabolic equations with curved surfaces, Calhoun and Helzel [16] introduced
a technique in which the Turing model on different surfaces was studied, and the formation
of patterns was observed. By avoiding the unstructured meshes or multi-blocked structures,
these patterns solve the reaction–diffusion equation on several grids by single Cartesian
grid mapping in computational space. Despite their strong scheme and the fact that they
have good results in hemispheres, their method fails for disks and spheres. A new type
of method for solving the reaction–diffusion model by obtaining an expression that is
analytical in time and that reduces the differential dimension in space was introduced by
Hongexiao Peng and Gendai Gu in 2015 [17]. This method was based on the homotopy
method. An irregular yet surprising variety of spatiotemporal patterns was exposed by
the numerical simulation of reaction–diffusion models. These patterns might consist of
growing spots, growing until division and, if they become overfilled, even decaying. Turing
patterns were formed by the loss of the stability of the system under certain conditions,
and so the patterns were evolved by the numerical simulations and mathematical analysis.
Hence, analysis was presented on controlling the pattern formation in the presence of
Turing instability, where the dominance of cancer cells occurs [18].

The mutual interaction in spatial patterns forms through development. These types of
systems are used widely in biology, chemistry, ecology, physics, geology and many more
branches of science. These reaction–diffusion equations not only model morphogens but
are also used in modeling of host and parasite model population densities, chemical waves
and electric reactions in the nerve cells [19,20]. Turing suggested that because of diffusion,
homogeneous regions could result in nonhomogeneous solutions. This theory gained the
interest of many biologists [21]. Because nonlinear terms in these systems are coupled with
diffusion terms, it is difficult to obtain the exact solution of reaction–diffusion models. So,
most scientists turn towards approximate solutions.

Spectral methods are well-known for their rapidly converging quality at a very high
accuracy for the approximate solution of partial differential equations. Given few colloca-
tion points, they provide an exponential convergence order if the data in the given equation
are smooth. The main objective of our work is to develop a very efficient and accurate
numerical scheme for a reaction–diffusion equation in the form of a Gray–Scott model.
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These models give rise to the solution, such as shockwave behavior, with very excitable
spatiotemporal dynamics of Turing pattern formation. For this reason, it is essential to use
a high-order scheme based on the Chebyshev spectral method for the nonhomogeneous
steady-state solutions of the Gray–Scott model which is used in the spatial aspect, while the
temporal aspect is discretized using RK-4. Spectral collocation methods were most recently
used for some real-world problems in [22–27].

The rest of this paper is structured as follows. We include a brief overview of a reaction–
diffusion equation in Section 2. Section 3 consists of the model equation and a detailed
methodology for its solution, followed by the stability analysis results in Section 4. The nu-
merical results are provided in Section 5, and Section 6 provides the concluding remarks.

2. Reaction–Diffusion System

A parabolic system of a partial differential equation that acquires the following forms
is generally known as a reaction–diffusion system.

∂u
∂t

= D1∆u + fu(u, v),

∂v
∂t

= D2∆v + gv(u, v)
(1)

where D1, D2 are matrices that are diagonal, having positive constants diffusion coefficients.
The functions f and g depend on the reactant concentrations, so they have great importance.
Reaction–diffusion systems, which Turing initiated, follow one of two types: continuous
or discrete. Reaction–diffusion systems that are discrete systems typically have cells and
lattice coupling through their membranes via mass transfer. Hence, when compared to the
continuous ones, they can be considered closer to biological systems [28]. Discrete systems
are less popular than the continuous systems. Turing noted that if one chemical is stronger
than the other and both work in opposition, then the homogeneous state of solution would
shift to the nonhomogeneous state. He suggested the name diffusion-driven instability
for that unstable state of solution as it was derived from diffusion, and so the pattern
concentration causes [29]. The general form of the Turing mathematical model is

∂U
∂t

= D∇2U + F(U), (2)

where D is a matrix that is typically diagonal of the form D =

[
µ 0
0 υ

]
, U is modeling the

chemical concentration in space at time t, and F(U) models chemical reactions. The diffu-
sion kinetics under the absence of a reaction do not display instability.

Common Turing Models

Diffusion-driven instability is known as the basis of morphogensis as it leads to the
pattern formation of stripes and spots, and scientists began to think that there could be
some link between the patterns formed. Therefore, several mathematical models were
introduced which are known as reaction–diffusion models. The Schnakenberg model was
one of the models that became widely popular for the development of patterns [30]. This
model has the following form

ut = ∇2u + γ(a− u + u2v),

vt = d∇2v + γ(b− u2v).
(3)

Barrio et al. introduced the model in 1999 that is well-known as the BVAM model [31,32]
and typically modeled as

ut = δD∇2u− uα(r1v2 − 1)− v(r2u− 1),

vt = δ∇2u + vβ

(
1 +

r1α

β
vu
)
+ u(γ + r2u).

(4)
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The Gray–Scott model is also one of the important models with the form

ut = Du∇2u− uv2 − F(u− 1),

vt = Dv∇2v− (K + F)v + uv2.
(5)

This is the model that we have taken into account in this paper. Many scientist have
numerically studied this model using different approaches.

3. Gray–Scott Model and Solution Methodology

The system that the Gray–Scott model represents is the autocatalytic Selkov model of
glycolysis variant due to Gray and Scott [33,34]. The model is of the form

ut = Du∇2u− uv2 − F(u− 1),

vt = Dv∇2v− (K + F)v + uv2,
(6)

where u and v represent the concentration of the chemicals U and V. The concentration rate
with respect to time is determined by chemical reaction rates depending on other chemical
concentrations and by diffusion which is a modeled Laplacian concentration with respect
to space. Du and Dv are coefficients of diffusion for concentration, F is the feed rate, and K
is the rate constant that is dimensionless.

To solve the Gray–Scott model, we first choose the basis function of the form:

ŭ =
∞

∑
m=−∞

∞

∑
n=−∞

am,n(t) φm,n(x, y),

v̆ =
∞

∑
m1=−∞

∞

∑
n1=−∞

bm1,n1(t) φm1,n1(x, y).
(7)

For the Chebyshev method, we have

φm,n(x, y) = cos(πnx)cos(πmy), (8)

which implies that
∇2φm,n = −(n2π2 + m2π2)φm,n(x, y), (9)

also

ŭt =
∞

∑
m=−∞

∞

∑
n=−∞

a′m,n(t) φm,n(x, y). (10)

Now, substitute the values in Equation (6), we get

L(u) = ut − Du∇2u + uv2 − F(1− u) = 0,

L(v) = vt − Dv∇2v + (K + F)v− uv2 = 0.
(11)

L(ŭ) =
∞
∑

m=−∞

∞
∑

n=−∞
a′m,n(t) φm,n(x, y) + Du

∞
∑

m=−∞

∞
∑

n=−∞
am,n(t)(n2π2 + m2π2)φm,n(x, y)

+
∞
∑

m=−∞

∞
∑

n=−∞
am,n(t) φm,n(x, y)(

∞
∑

m1=−∞

∞
∑

n1=−∞
bm1,n1(t) φm1,n1(x, y))2

−F(1−
∞
∑

m=−∞

∞
∑

n=−∞
am,n(t) φm,n(x, y)) = 0,

L(v̆) =
∞
∑

m=−∞

∞
∑

n=−∞
a′m,n(t) φm,n(x, y) + Dv

∞
∑

m1=−∞

∞
∑

n1=−∞
bm1,n1(t)(n2π2 + m2π2)φm1,n1(x, y)

+(K + F)(
∞
∑

m1=−∞

∞
∑

n1=−∞
bm1,n1(t) φm1,n1(x, y))

−
∞
∑

m=−∞

∞
∑

n=−∞
am,n(t) φm,n(x, y)(

∞
∑

m1=−∞

∞
∑

n1=−∞
bm1,n1(t) φm1,n1(x, y))2 = 0.

(12)

By the property of weak characterization. set the inner product with the basis function φp,q
as zero
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L(ŭ) =
∞
∑

m=−∞

∞
∑

n=−∞
a′m,n(t)(φm,n(x, y), φp,q(x, y))

+Du
∞
∑

m=−∞

∞
∑

n=−∞
am,n(t)(n2π2 + m2π2)(φm,n(x, y), φp,q(x, y))

+

(
∞
∑

m=−∞

∞
∑

n=−∞
am,n(t)φm,n(x, y)

(
∞
∑

m1=−∞

∞
∑

n1=−∞
bm1,n1(t) φm1,n1(x, y)

)2
, φp,q(x, y)

)
−(F, φp,q(x, y)) + F

∞
∑

m=−∞

∞
∑

n=−∞
am,n(t)(φm,n(x, y), φp,q(x, y)) = 0.

(13)

Simplifying the term (uv2, φp,q(x, y))

(uv2, φp,q(x, y)) = (
∞
∑

m=−∞

∞
∑

n=−∞
am,n(t) φm,n(x, y)

×(
∞
∑

m1=−∞

∞
∑

n1=−∞
bm1,n1(t) φm1,n1(x, y))2, φp,q(x, y)) =

∞
∑

m1=−∞

∞
∑

n1=−∞

∞
∑

m2=−∞

∞
∑

n2=−∞

∞
∑

m3=−∞

∞
∑

n3=−∞
am1,n1bm2,n2bm3,n3

×(φm1,n1φm2,n2φm3,n3, φp,q)

(14)

By keeping only N terms instead of infinite sums, we obtain only (2N + 1)2 unknowns
and equations.

N
∑

m=−N

N
∑

n=−N
a′m,n(t)(φm,n, φp,q) = Du

N
∑

m=−N

N
∑

n=−N
am,n(t)(n2π2 + m2π2)(φm,n, φp,q)

+
N
∑

m1=−N

N
∑

n1=−N

N
∑

m2=−N

N
∑

n2=−N

N
∑

m3=−N

N
∑

n3=−N
am1,n1bm2,n2bm3,n3

×
(
φm1,n1φm2,n2φm3,n3, φp,q

)
−(F, φp,q) + F ∑N

m=−N

N
∑

n=−N
am,n(t)(φm,n, φp,q).

(15)

For convenience, we rewrite the sums as
N

∑
m1=−N

N

∑
n1=−N

N

∑
m2=−N

N

∑
n2=−N

N

∑
m3=−N

N

∑
n3=−N

=
N

∑
M(N)

. (16)

Our final two equations will be
N
∑

m=−N

N
∑

n=−N
a′m,n(t)(φm,n(x, y), φp,q(x, y)) = Du

N
∑

m=−N

N
∑

n=−N
am,n(t)(n2π2 + m2π2)

×(φm,n(x, y), φp,q(x, y))

+
N
∑

M(N)
am1,n1bm2,n2bm3,n3

(
φm1,n1φm2,n2φm3,n3, φp,q

)
−(F, φp,q(x, y)) + F

N
∑

m=−N

N
∑

n=−N
am,n(t)

×(φm,n(x, y), φp,q(x, y)),

(17)

N
∑

m=−N

N
∑

n=−N
b′m,n(t)(φm,n(x, y), φp,q(x, y)) = Dv

N
∑

m=−N

N
∑

n=−N
am,n(t)(n2π2 + m2π2)

×(φm,n(x, y), φp,q(x, y))

+
N
∑

M(N)
am1,n1bm2,n2bm3,n3

(
φm1,n1φm2,n2φm3,n3, φp,q

)
−F

N
∑

m=−N

N
∑

n=−N
am,n(t)(φm,n(x, y), φp,q(x, y))

−K
N
∑

m=−N

N
∑

n=−N
am,n(t)

×(φm,n(x, y), φp,q(x, y))

(18)
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These two equations are then solved numerically in time derivative using the Runga–
Kutta method.

4. Stability Analysis
4.1. Equilibrium Points

To find the homogeneous equilibria of the the Gray–Scott equation, we have to take
the diffusion representing the Laplacian term as zero. This is because at the homogeneous
state, the concentration will remain constant, and so no diffusion takes place. Here, we use
the same procedure as described in [35].

∇2u = 0,∇2v = 0. (19)

We will have
ut = −uv2 − F(u− 1),

vt = −(K + F)v + uv2.
(20)

As for spectral methods, we will be approximating u as

ŭ =
N

∑
m=1

N

∑
n=1

am,n(t) φm,n(x, y),

v̆ =
N

∑
m1=1

N

∑
n1=1

bm,n(t) φm,n(x, y).

(21)

For N = 0, we will have

ŭ =
0

∑
m=1

0

∑
n=1

am,n(t) φm,n(x, y),

v̆ =
0

∑
m1=1

0

∑
n1=1

bm,n(t) φm,n(x, y).

(22)

ŭ = a0,0(t) φ0,0(x, y) = a0,0(t),

v̆ = b0,0(t) φ0,0(x, y) = b0,0(t).
(23)

Substitute Equation (23) in Equation (6)

a′0,0 = Du∇2a0,0 − a0,0b2
0,0 − F(a0,0 − 1),

b′0,0 = Dv∇2b0,0 − (K + F)b0,0 + a0,0b2
0,0.

(24)

As the Laplacian term is zero, therefore

a′0,0 = −a0,0b2
0,0 − F(a0,0 − 1),

b′0,0 = −(K + F)b0,0 + a0,0b2
0,0.

(25)

The coordinate functions in the above equation a0,0 and b0,0 are time-dependent only.
Subscripts can be removed as

a′ = −ab2 − F(a− 1),

b′ = −(K + F)b + ab2.
(26)

Equilibrium points have the property that they will not change over time; hence the
left-hand side of the above equation must be zero.

0 = −ab2 − F(a− 1),

0 = −(K + F)b + ab2.
(27)

From the first equation, we can have
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a =
F

b2 − F
, (28)

putting it in second gives

b(b2(F + K)− bF + F2 + FK) = 0; (29)

hence we are facing two conditions here, either b = 0 or b2(F + K)− bF + F2 + FK = 0. By
the first case, we have a = 1 and obtaining the equilibrium point as (a0, b0) = (1, 0). By the
second case, we obtain the equation quadratic in b as

b2(F + K)− bF + F2 + FK = 0. (30)

Applying the simple quadratic formula, we obtain

b =
F +

√
F2 − 4(F + K)(F2 + FK)

2(F + K)
, (31)

b =
F−

√
F2 − 4(F + K)(F2 + FK)

2(F + K)
. (32)

Hence, we have three equilibrium points at b = 0, (a0, b0) = (1, 0) and at Equation (31)
(a1, b1), as does Equation (32) (a2, b2). Let (a0, b0) be independent points of equilibrium and
the other two be dependent as they depending F and K. Dependent points of equilibrium
exist when K ≤

√
F

2 − F, and by simple calculations of calculus we can find the maxima
of K giving exactly two points of equilibrium. The critical point is at F = K = 0.0625 as
shown in Figure 1.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.05

0.1

0.15

0.2

0.25

F

K

Figure 1. Comparison of F and K with two equilibrium points.

F has the maximum value at which the existence of equilibrium points is possible for
K = 0 gives F =

√
F

2 , and we obtain the value F = 0 and 0.25. We can now say that the
region for the existence of equilibrium points is bounded as
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0 ≤ F ≤ 0.25, 0 ≤ K ≤ 0.0625. (33)

Values of (a1, b1) and (a2, b2) depend on the parameters F and K.
To show that there are exactly two equilibrium points, a = 0.5, consider

b =
F±

√
F2 − 4(F + K)(F2 + FK)

2(F + K)
. (34)

Dealing with exactly two equilibrium points results in the disappearance of the funda-
mental term of the above equation, resulting in b = F

2(F+K) only. From Equation (34) we

obtain, a = F+K
b , and so replacing the value of b into a gives

a =
2(F + K)2

F
. (35)

We also have K =
√

F
2 − F, so we obtain

a =
2(F/4)

F
= 0.5, (36)

which means that now it is not wrong to say that when we have exactly two equilibrium
points, then we obtain the value of a as 0.5. When we decrease K instead of increasing it,
we apply limit that have K → 0. Let us look at the limit on both a and b. First, since we

know that b =
F±
√

F2−4(F+K)(F2+FK)
2(F+K) , applying the limit gives

lim
K→0

b = lim
K→ 0

F±
√

F2 − 4(F + K)(F2 + FK)
2(F + K)

. (37)

b→ F±
√

F2 − 4F3

2F
= 0.5±

√
0.25− F. (38)

Similarly, in the case of a, we have a = (F + K)/b. Applying the limit, we obtain

lim
K→0

a = lim
K→ 0

(F + K)/b. (39)

a→ F
b
=

F
0.5±

√
0.25− F

. (40)

Rationalizing results into

lim
K→0

a = 1− 0.5±
√

0.25− F ⇒ limK→0a = 1− lim
K→0

b⇒ limK→0(a + b) = 1. (41)

The stability of a system that is nonlinear can be determined from the matrix of
eigenvalues obtained by linearizing the system about the point of equilibrium. Let u0 and
v0 be the equilibrium points and satisfying the condition for the steady state and uniformity,
that is,

f (u0, v0) = 0 = g(u0, v0). (42)

Consider small ε and δ and replace a = u0 + ε and b = v0 + δ.

at = f (a, b) = f (u0 + ε, v0 + δ),

bt = g(a, b) = g(u0 + ε, v0 + δ).
(43)

Linearizing the system by taking the Taylor expansion about u0 and v0

f (u0 + ε, v0 + δ) ≈ f (u0, v0) + ε fa(u0, v0) + δ fb(u0, v0),

g(u0 + ε, v0 + δ) ≈ g(u0, v0) + εga(u0, v0) + δgb(u0, v0).
(44)
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Replacing at = εt and bt = δt from Equation (43) in Equation (44) and ignoring the higher
order gives

εt = ε fa(u0, v0) + δ fb(u0, v0),

δt = εga(u0, v0) + δgb(u0, v0).
(45)

One can easily obtain the eigenvalue matrix known as the stability matrix as

Ju0,v0 =

([
fa fb
ga gb

])
u0,v0

(46)

The solution has the terms that have J’s eigenvalues in the exponent, so if any eigen-
value of J has a positive part, then the system will become unstable because of the gradual
increase in the perturb values of ε and δ. Hence, we must have negative real parts of
eigenvalues of J. For the system of Gray–Scott, we have the matrix of stability as

Ja0,b0 =

[
−b2 − F −2ab

b2 ab− (F + K)

]
(47)

The eigenvalues would depend on the values of F and K because the points of equilib-
rium also depend on F and K.

4.2. Stability of Independent Equilibrium Points

As at point (a0, b0), we have an equilibrium point at (1, 0),and by putting the values,
we obtain

Ja0,b0 =

[
−F 0
0 −(F + K)

]
(48)

We now have the diagonal matrix and eigenvalues equal to its diagonal entities. Hence,
−F and −(F + K) are the eigenvalues. As F and K will always be positive constants, the
eigenvalues will be negative, leaving the independent equilibrium point always stable.

4.3. Stability of Dependent Equilibrium Points

For the stability analysis of the equilibrium point (a1, b1), let the value of a be F+K
b in

the Jacobin matrix as

Ja1,b1 =

[
−b2 − F −2( F+K

b )b
b2 2( F+K

b )b− (F + K)

]
(49)

taking the determinant gives

Det(Ja1,b1) = (F + k)(b2 − F), (50)

as we have F + K always positive but what about second term (b2 − F), as we have the
value of b for b1 as

b1 =
F−

√
F2 − 4F(F + K)2

2(F + K)
. (51)

Since the term of the radical must be

0 ≤ F2 − 4F(F + K)2 ≤ 1. (52)

In addition, we know the condition that 0 ≤ F ≤ 0.25, 0 ≤ K ≤ 0.0625. Hence, we
have F2 ≤ F ≤ 0.25 < 1, which can rewritten as

F2 − 4(F + K)2 ≤ F2 − 4F(F + K)2 ≤
√

F2 − 4F(F + K)2. (53)
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Rearranging results in

F2 −
√

F2 − 4F(F + K)2 ≤ 4(F + K)2,

F2 −
√

F2 − 4F(F + K)2

2(F + K)
≤ 2(F + K).

(54)

We know that the left-hand side of the above equation is the value of b1; hence, we
can also write it as

bF
(F + K)

≤ 2F

Fb− F(F + K)
(F + K)

− F ≤ 0
(55)

In addition, from Equation (29), we find the value of b2, and putting it in here gives

b2 − F =
bF− F(F + K)

(F + K)
− F ≤ 0 (56)

which shows that Equation (50) is negative. Hence, both the eigenvalues of Ja1,b1 are real
where one is positive and the other is negative, giving the unstable equilibrium points
(a1, b1).

4.4. Stability with Diffusion

So far, we have been dealing with the system having zero diffusion. From now on, we
will be considering diffusion as well. We have the general reaction–diffusion system as

∂u
∂t

= Du∆u + f (u, v),

∂v
∂t

= Dv∆v + g(u, v).
(57)

First, we analyze the solution’s behavior in a neighborhood that is small (u0, v0), so
we need to make the substitution as

U = u0 + εu, V = v0 + εv. (58)

also
Ut = εut, Vt = εvt, (59)

and
∆U = ε∆u, ∆U = ε∆u, (60)

Substituting in Equation (57), we obtain

Ut = f (u, v),

Vt = g(u, v).
(61)

Following the same procedure as conducted before for applying the Taylor expansion
for the f and g function about (u0, v0)

f (U, V) ≈ ε( fu(u0, v0)u + fv(u0, v0v),

g(U, V) ≈ ε(gu(u0, v0)u + gv(u0, v0v)
(62)

= εJ
[

u
v

]
and obtaining the stability matrix Ju0,v0 as
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J =
[

a b
c d

]
=

[
fu(u0, v0) fv(u0, v0)
gu(u0, v0) gv(u0, v0)

]
(63)

using Equation (61) gives [
ut
vt

]
= Ju0,v0

[
u
v

]
(64)

As (u0, v0) are assumed to be stable, meaning the eigenvalues are negative, now let
λ1 and λ2 as eigenvalues of J give us

λ1 + λ2 < 0, λ1λ2 > 0. (65)

Let ψij(x, y) be the eigenfunction and δij be the scalar depending on the basis function
partially used. The solution we are seeking should be of the form

u(x, y, t) = Aeλtψij,

v(x, y, t) = Beλtψij.
(66)

Substituting in Equation (57) and dividing by eλtψi,j results in

λ

[
A
B

]
=

[
a + δijDu b

c d + δijDv

]
=

[
A
B

]
(67)

Let Dij be the matrix on which the eigenvalues are depending for stability, so by using
trace and determinant, we have

a + d + δijDu + δijDv < 0,

(δijDu)(δijDv) + (δijDu)(d) + (a)(δijDv) + (ad− bc) > 0.
(68)

which are the sufficient and necessary conditions for stability.

4.5. Diffusion Instability

First, let the diffusion constants be equal to one another s.t Du = Dv = D, so the
conditions for stability become

a + d + δij(2D),

(δijD)2 + (δijD)(d + a) + (ad− bc).
(69)

As in the first equation, δij is a negative number and (a + d) is also, so the inequality in
negative term holds. Similarly, in the second condition, it can be seen that the first term
will always be positive, as are the second and third, hence holding the inequality. Thus,
since the system satisfies the conditions of stability by equal diffusion constants, it can be
said that instability occurs with the unequal diffusion constants.

4.6. Stability of Equilibrium Point for Feasible Constants

We have the eigenvalue matrix as

Di,j =

[
a + δijDu b

c d + δijDv

]
. (70)

We also know the values of a, b, c and d from Equation (63) as[
a b
c d

]
=

[
−v2 − F −2uv

v2 −2uv− (F + K)

]
(71)

Putting those values results as
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Di,j =

[
−v2 − F + δijDu −2uv

v2 −2uv− (F + K) + δijDv

]
(72)

Now, it is also known that (u0, v0) = (1, 0) is a homogeneous solution for our equa-
tion; hence

Dij =

[
−F + δijDu 0

0 −(F + K) + δijDv

]
(73)

Again analyzing the stability conditions, we have

−(2F + K) + δijDu + δijDv < 0,

(δijDu)(δijDv) + (δijDu)(F) + (F + K)(δijDv) + F(F + K) > 0.
(74)

Both conditions for stability are satisfied, showing that the point (a0, b0) is stable for
parametric values that are diffusion and reactions. Turing suggests that the patterns were
formed because of diffusion terms and not reaction. Murray, Ouyang and others searched
for Turing models and examined the diffusion-driven instabilities [36,37]. For more details
about these models, we refer the reader to [38,39].

5. Results and Discussions

Numerical simulations were performed to obtain different pattern formations from
simulating a reaction–diffusion system based on the Gray–Scott model. We adopted
a Chebyshev spectral method having the exponential rate of convergence to discretize
the Gray–Scott model in spatial coordinates. The resulting system of ordinary equations
was then solved using the RK-4 method, which is one of the most stable methods for
time stepping. For our numerical simulations, we kept the diffusion as Du = 0.00002
and Dv = 0.00001, while the parameters of reaction were set as K = 0.04 and F = 0.0154.
The contour maps of simulations are shown in the figures below at different levels of
time. Red shows the most concentration and blue the least. First, it can be seen that the
concentration is high at the center as shown in Figure 2. As the simulations continue,
it seems that the output shows the four regions of chemical concentration splitting into
increased concentration towards the boundaries which can be observed in Figures 3 and 4.
The wave-like propagation can be observed having approximately a constant velocity with
a perturbed leading edge as shown in Figures 2–4. After the initial spread of perturbation,
the asymptotic state which is subject to some values of parameters involved in the system,
which may depend on time, was obtained. We then observed that with the increasing
of time, the circular waves produced and took the motion of a transverse wave. For the
development of surface plot we obtained the results until time reached 1000. Keeping
the perturbation at the center, one can observe that the perturbation spread towards the
boundaries as shown in Figures 2–4. The contour plots shown in Figures 5–8 shows that
after the initial perturbation in the presence of a gradient, the spots will exist and get
larger in size having blue regions. These regions then convert to red ones, and the number
increases till the system is filled. These spots grows radially when they divide into two
or more spots. It can be observed that the patterns oscillate periodically, showing the
instability driven by diffusion. When we change the diffusion constant from Du = 0.00002
and Dv = 0.00001 to Du = 0.0001 and Dv = 0.00001, while keeping the perturbation at
the center, we can observe that the concentration of u is initially more in the middle as
shown in Figure 3, and some sort of wave originates in Figure 6 (left). Then, by splitting
into regions, the concentration moves, towards the boundaries as shown in Figure 6 (right).
This process keeps on repeating until the fine pattern of a checkerboard is obtained. It can
be observed that the pattern has high and low concentrations of chemical u alternating, as
shown in Figures 7 and 8.
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Figure 2. Surface plots at time t = 75 (left) and at time t = 100 (right).

Figure 3. Surface plots at time t = 250 (left) and at time t = 500 (right).

Figure 4. Surface plots at time t = 700 (left) and at time t = 1000 (right).
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Figure 5. Contour plots at time t = 100 (left) and at time t = 250 (right).
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Figure 6. Contour plots at time t = 500 (left) and at time t = 750 (right).
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Figure 7. Contour plots at time t = 800 (left) and at time t = 900 (right).
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Figure 8. Contour plots at time t = 1000 (left) and at time t = 1500 (right).

6. Conclusions

A novel numerical scheme based on spectral method is used to solve the Gray–Scott
model, which is a special case of a reaction–diffusion equation. First, the reaction–diffusion
system is transformed into an algebraic system with the help of a numerical scheme in both
space and time coordinates. The matrix form of the resultant equation after discretization
contains some non-zero elements in every row, which are then solved by a standard
numerical technique available for the algebraic system. It was observed numerically that
spatial patterns are formed by the trajectories of the dependent variables. Turing instability
is caused by nonlinear reaction cross-diffusion, which also caused the pattern formation.
The theoretical justification was confirmed by a number of simulation results. It is shown
that our algorithm is stable and convergent even for a large time step opposite other
numerical schemes in which the time step is kept at a minimum to keep the algorithm
stable and convergent.
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