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Abstract: Seaport network efficiency is very crucial for global maritime economic trades and growth.
In this work, data of three years (2018–2020) with input variables (time in port, age of vessels, size of
vessels, cargo carrying capacity of vessels) and output variables (Liner Shipping Connectivity Index
(LSCI) and Gross Domestic Product (GDP)) are collected. Few screening tests are performed to ensure
the data are fit for further analyses. Since none of the existing studies has ever considered LSCI as
an output variable, the main purpose of this study is to measure seaport network efficiency based
on LSCI using data envelopment analysis (DEA), both classical and fuzzy. In fuzzy DEA, triangular
fuzzy number (TrFN) and trapezoidal fuzzy number (TpFN) are used to construct the fuzzy sets of
efficiency scores with DEA. The comparison between DEA and triangular fuzzy data envelopment
analysis (TrFDEA) shows the range of differences in the results ranges from −0.0274 to 0.0105, while
the comparison between DEA and trapezoidal fuzzy data envelopment analysis (TpFDEA) yields
the differences within the range of −0.0307 to 0.0106. Using DEA as the relative reference, it is
further revealed that the TpFDEA has smaller standard deviations and variances than the TrFDEA in
2018 and 2019, whereas the opposites hold true during the pandemic year of 2020. With the use of
fuzzy numbers, the uncertainty levels in the seaport network efficiency measurement can further
be investigated as the minimum, mean, median and maximum values are taken into consideration.
Moreover, the proposed TrFDEA and TpFDEA lead new insights on the boundedness concept of
the efficiency scores, which were never reported before by any researcher, especially in the maritime
industry research. Fuzzy regression modelling based on the Possibilistic Linear Regression Least
Squares (PLRLS) method was also performed to determine the interval of minimum and maximum
connectivity efficiencies, which gave a better estimation than the regular regression model.

Keywords: DEA; triangular fuzzy DEA; trapezoidal fuzzy DEA; seaport network efficiency; fuzzy regression

MSC: 03E75; 62C86

1. Introduction

The nine challenges in the field of maritime transportation are port infrastructure,
global trade, production capacity, finances, regulation compliance, safety and security,
sustainability, digitalization and community support [1]. Port congestion, which is a result
of stagnated port infrastructure and growing global economy, is another issue that hinders
the effectiveness of the seaport network. This can be minimized by smart ports’ use of
technology to forecast estimated times of arrivals (ETA). Automation allows containers to
be handled faster, enabling the port to accommodate a greater number of vessels and cargo,
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though with incurred costs. One of the main obstacles that has a negative financial impact
is the ports’ inability to seize all production and opportunities as they simply cannot keep
up with the ongoing demands. Another challenge concerning the environment and water
is in the monitoring of environmental quality indicators to ensure regulatory compliance
and to avoid fines. The port employees’ duties can be hazardous as they need to operate
large machineries and work near the place of sulfuric plants that may emit harmful fumes,
exaggerating security and safety problems. Adapting the 2030 Agenda for Sustainable
Development, the ports are being compelled to minimize carbon consumption for better
environmental care [1]. Environmental concerns, digital systems and sustainability are
becoming increasingly important affairs in maritime transportation since they can improve
port productivity, autonomy and energy savings. With pollution, environmental disruption,
stress on hinterlands and coastal land usage, imminent supports from the community
especially from the government are greatly required.

Maritime transportation connectivity is a fundamental determinant of bilateral exports
that concerned under two maritime transportation challenges of port infrastructure and
global trade. Since the 2000s, greater number of the world’s freights have been conveyed in
mega container ships with container capacities of more than 10,000 twenty-foot equivalent
units (TEU). In fact, between 2011 and 2021, the extent of conveying capacity has risen
from just 6% to about 40%. Over the same period, there have been 97 new ships within the
container capacity range of 15,000 TEU and 19,990 TEU, and 74 new ships of 20,000 TEU
and above starting around 2018 [2]. Cargo carrying capacity is a possible cargo load that
can occupy a ship. This capacity to hold large containers influences the ships’ size and age.
A large container ship separates each container from each other to make things easier for
loading of the containers. Raji et al. [3] claimed that the largest container ships can load
around 15,000–16,000 TEU at one time.

The maritime connectivity structure and its service supply are tracked by different
indicators. Large numbers of potential determinants in the liner shipping rates resembling
availability and port framework have been intently corresponded to one another. The
pairwise correlation coefficients for Liner Shipping Bilateral Connectivity (LSBC) compo-
nents indicate a positive relationship between all components, except for the number of
transhipments and exports [4]. The Liner Shipping Connectivity Index (LSCI) targets to
catch the degree of integration into the current liner shipping network by estimating the
liner ship transporting connectivity. It is very well determined at the nation and at the port
level in view of five parts: the number of ships, their container-carrying capacity, maximum
vessel size, number of services and the number of companies deployed to the country’s
ports according to United Nations Conference on Trade and Development (UNCTAD) [5].
The distribution of the port’s LSCI uncovers a high concentration level among the highly
connected ports, and it contributes the biggest impact towards the global trade. It is well
perceived that the countries are effectively associated with worldwide trade when there is
a high connectivity with respect to the LSCI value.

The economic impacts based on import and export activities in the maritime industry
frequently engage with input and output models. A study has shown that port features
and variables connecting to outputs demonstrate strong positive correlations between port
connectivity and port efficiency [6]. According to Sleeper [7], the effectiveness of trans-
portation in ports significantly increases the economic growth of the subjected countries.
Continuous port development for bigger vessels, cargo-carrying capacity (CCC), size of
vessels (SV), age of vessels (AV) and time in port (TP) improve costs and port efficiencies
through economies of scale, which can enhance the financial status of a country, although
their viability can still prompt either critical monetary benefits or failures. Gross Domestic
Product (GDP) is altogether impacted by the capacity of organizations to universally trade
their labour and products. Hence, by considering related factors, port efficiency can be
anticipated by measuring how productive are the inputs (TP, AV, SV and CCC) to produce
the outputs (GDP and LSCI) in the present study.
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The maritime transportation industry is enriched with real data that can be exploited
for continuous monitoring and performance advancement efforts. Unfortunately, not all
data are complete and can be accessed publicly since many of them contain missing, limited,
private and confidential information with respect to certain seaports. Moreover, since the
real-world data in maritime transportation keeps changing in nature, the outcomes would
be uncertain. Hence, a new strategy of Data Envelopment Analysis (DEA) is needed to
handle the data scarcity and prospect. Eventually, the most suitable strategy would be
a modified tolerance approach that complements the model’s objective and constrained
design. By considering the data of 133 global seaports with 5 years of output variables,
the constraint violation of the traditional DEA tolerance approach can be overcome. Addi-
tionally, by exploring two fuzzy sets of triangular fuzzy numbers (TrFN) and trapezoidal
fuzzy numbers (TpFN), the best method to deal with uncertainties in the DEA model can
be determined. At the same time, this fuzzy DEA approach can empower the improvement
of the state of the art in the classical fuzzy DEA model, as the weakness in the tolerance ap-
proach can be improved. Moreover, intuitionistic fuzzy units, suitable tolerance graphs and
bounded tolerance graphs can be developed to produce a variety of fascinating outcomes.
All of these comprise the motivation of this study.

The presently proposed fuzzy DEA and efficiency boundedness can be excellent
evaluation tools for assessing future port performance and for making effective decision in
maritime industry while addressing environmental aspects, sustainable development and
eco-designs of seaports and vessels. These measurements with minimum, maximum, mean
or/and median scores that promote better efficiency predictions can be used to upgrade
state-of-the-art technologies and promote smart shipments that benefit the maritime sector,
while taking into account the worldwide economic interests. Shipping will become safer,
more effective, reliable and strongly connected to the global supply chains as a consequence
of consistent real-time monitoring systems that improve the maritime technology while
generating higher revenue and return with the advantage of cost saving [1]. The findings
of this work can be useful to maritime industry authorities, investors and practitioners in
their operational decision and policy making.

The present study highlights the use of LSCI as one of the outputs for seaport network
efficiency measurement, which was never performed in the past by other researchers. Trian-
gular fuzzy data envelopment analysis (TrFDEA) and trapezoidal fuzzy data envelopment
analysis (TpFDEA) have been proposed for comparison and as extended studies of the
classical DEA tolerance approach. New insights on the boundedness of the efficiency scores
have been introduced as well as the exploration of the Possibilistic Linear Regression Least
Squares (PLRLS) method on the fuzzy regression technique to deal with interval regression
of random variables that are not suitable to be treated with the basic regression method.

The outline of this work is divided into parts. Section 1 introduces the maritime trans-
portation challenges that insist on seaport development and performance, the connection
of seaport network efficiency with economic impact, and the motivations and highlights of
the present study. Section 2 provides some literature reviews on seaport network efficiency
using the DEA technique. The data sources and variables are described in Section 3. In
Section 4, the mathematical details of DEA, fuzzy DEA based on TrFN and TpFN as well as
the overall employed methodology are presented. Section 5 contains the empirical study’s
results and discussion. Finally, the study’s general findings, contributions, limitations and
recommendations for future research are concluded in Section 6.

2. Literature Review

A port’s structure has a vital association in general exchanging chains and, therefore,
port efficiency is a significant contributor of a country’s worldwide strength [8,9]. Port
efficiency has turned into a fundamental piece of microeconomic change in many countries
since it is the most significant highlight in transportation expense planning to increase
the imports and exports of a country [10]. The efficiency measurement can be performed
using DEA based on 133 countries in the world that all have similar inputs and outputs.
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DEA is an analytic tool that has been used for many years in many different studies to
compare efficiencies. The specialty of DEA is that it can handle many inputs and outputs
at the same time, which can then be used to measure the relative efficiency of DMUs
(Decision Making Units). DEA is a non-parametric method firstly proposed and pioneered
by Charnes et al. [11] for evaluating DMU performance. DMU’s special characteristic is
that it provides a venue to solve the association of multiple inputs and outputs evaluated
based on relative efficiency [12].

There are 116 publications released in scholarly journals between 1993 and October
2021 that proved DEA to be a well-established tool for forecasting future port perfor-
mance [13]. Among the studies relevant to this subject, few studies stand out. Sun et al. [14]
assessed the port performance of 16 Chinese port enterprises using three output variables:
container throughput, cargo throughput and net profit. Wang et al. [15] emphasized green
ports’ efficiency that takes into account both competition and collaboration factors. De
Oliveira et al. [16] used 200 container ports with annual traffics to estimate the extent of
competitiveness at various regional and global levels. Another study has gained interest
due to its sustainability assessment that created an evaluation framework for nine ports
in China using GDP as one of the outputs [17]. The feasibility of the suggested technique
was demonstrated by the case of the supplier evaluation of a collaborative manufacturing
firm with certain sensitivities in an article by Feng et al. [18] with Tian and Fathollahi-Fard
as co-authors. This article contains some suggestions for future research, proposing on
different sorts of fuzzy numbers and correlation coefficients, as well as redefining them.

Fuzzy set theory has been generally used to formalize and address the impreciseness of
uncertainty in human decision-making. The importance of fuzzy characteristics in DEA is
that they can permit flexible and quite accurate results. A general effectiveness examination
was performed with a relative efficiency analysis of a set of DMUs. A fuzzy number is
necessary for the study since the efficiency is calculated based on a real set of data, while the
classical way of measuring efficiency is often inconsistent with reality. A study conducted
on port efficiency based on Taiwan’s international ports by Wang et al. [19] that utilized
fuzzy DEA to measure DMUs based on fuzzy number features gave more information
than the standard DEA with crisp values. Additionally, fuzzy DEA calculation can indeed
avoid input or output orientation during execution. Another study conducted by Wanke
et al. [20] highlighting factors (operator type, cargo type, accessibility, berth usage, port
service quality etc.) and port efficiency predicted by using fuzzy regression, shows the
association between them in the case of a Nigerian port. In standard linear regression,
the coefficient of determination (R2) indicates the variance in the output variable that can
be explained by the independent variable’s variation, whereas in fuzzy regression the
goodness of fit measure is the mean squared distance between the fuzzy responses and
the model predictor [21]. Skrabanek and Martinkova [22] reported that the low value of
mean square error indicates that the model is close to observation. To adapt fuzzy linear
regression techniques, the probabilistic and statistical approaches can be combined with
least squares, which is known as the Possibilistic Linear Regression Least Squares (PLRLS)
technique. This technique, firstly proposed by Lee and Tanaka [23] to manage fresh data
sources and fuzzy outputs, fits the model’s central tendency prediction and the spreads
(lower and upper bounds) via the possibilistic approach.

According to Hatami et al. [24], there are four different approaches of fuzzy set theory
than can be applied with DEA: tolerance, α-level based, fuzzy ranking and possibility
approaches. In the first approach, the tolerance levels are instilled into the DEA model to
create fuzzy uncertainty with input–output flexibility, although the fuzzy objective function
and fuzzy constraints may not be fully satisfied due to the model’s limited tolerance
design. The famous α-level based approach converts the fuzzy DEA model into two
parametric mathematic programs to create interval fuzziness efficiency values that fluctuate
between the impossible lower boundary and the risk-free upper boundary using the α-level
membership of the efficiency scores. In the fuzzy ranking approach, the interval efficiency is
enhanced by imposing the α-level fuzziness and ranking onto the constraints. According to
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Soleimani-Damaneh et al. [25], the possibility method that involves more difficult numerical
calculations is applied on models that might not be applicable for solutions by other DEA
methods. In order to evaluate each DMU using this method, one must solve the provided
model for different possibility levels, which requires solving multiple linear programming
models. In solving the primal and dual models, the upper and lower bounds for each DMU
for a specific possibility level are provided by the efficiency values that are then changed
to fuzzy variables in the credibility method to account for the uncertainty in both fuzzy
objective and fuzzy constraints [25].

Studies on data envelopment analysis (DEA) for efficiency measurements are abundant
in many fields, but they are, especially, still quite limited in the maritime transportation field.
The present research identifies gaps where the DEA approach was not used for evaluation
and analysis in some regions such as in African ports and in some Asian and European
ports. Even worse, nothing was applied to study the seaports in the least developed
countries [13]. In fact, to our best knowledge, none of the existing studies have measured
the global seaport network efficiency using the pair of Liner Shipping Connectivity Index
(LSCI) and Gross Domestic Product (GDP) as the output variables for DEA. The previous
closest work was performed on the connection between China and countries along the 21st
century Maritime Silk Road [26], where LSCI was not employed as an output variable but,
rather, as an input variable.

The port efficiency input variables have a greater impact on LSCI, which was con-
structed based on the intention to quantify maritime trade facilitation. Although prior
studies focused on rivalry among hub ports from the same region, competitiveness may
still be developed as a cross-regional issue, as is the case with Colombo and the Southeast
Asian hub ports. A study by Kavirathna et al. [27] on transhipment market shares looking
at a variety of real-world scenarios reported that it is possible to determine the advan-
tages that the port of Colombo would have over Singapore, Klang and Tanjung Pelepas as
a network-reliant hub. Additionally, new carriers are needed to increase network connec-
tivity with numerous foreign ports and their economic scale. Preventing too many carriers
from shifting operations to other ports is now Singapore’s biggest issue [28]. According to
Pasha et al. [29], one of the key determinants in the overall profit that a certain shipping
line may be able to generate is the average freight rates for different liner shipping routes.
The average freight rate was shown to often enhance average ship sailing speed, average
ship carrying capacity and average port handling productivity. Port competitiveness in
West Africa was measured by Van Dyck and Ismael [30] who explored LSCI with multiple
shipping lines that operated in the area (port location) in an effort to take advantage of
economies of scale. This study, however, did not measure the LSCI for port efficiency
and productivity assessments. The quantity of throughput in twenty-foot-equivalent units
(TEU) as an additional variable in the normalised comparisons was considered [31] since
the volume handled by ports might affect LSCI and quality of the port infrastructure.
This transition has increased freight transportation capacity while improving security and
efficiency. China (127.8), Hong Kong (106.2) and Germany (88.9) had the highest levels of
connectivity in 2007, according to the statistics [16]. With a score of 143.6 in 2010, China
topped the list, followed by Hong Kong (113.6) and Singapore (103.8) [16]. Mohamad
et al. [32] ranked each LSCI component’s influence on the shipping connectivity enhance-
ment in the six Southeast Asian maritime nations of Indonesia, Malaysia, the Philippines,
Singapore, Thailand and Vietnam from the greatest to the least ranks. This article discovers
that the nation port’s capacity to take larger ship sizes has the greatest influence on improv-
ing the regional connection. These studies uncover a gap that needs to be filled by taking
LSCI as the output variable in calculating the port efficiency.

Traditional factors such as GDP, the number of berths and the number of cranes
per berth have been used to predict cargo throughput. The port container throughput
was used as a dependent variable [33]. A study conducted in China by Deng et al. [34]
revealed a significant connection between economic growth and real-world maritime
transport. According to a study conducted on 10 west European countries by Bottasso
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et al. [35], port efficiency as measured by the port throughput increased job opportunities
and local and international growth. Another study was performed to explore the influence
of supply chain connectivity between port performance and the economic growth of the
country. Regression analysis and other statistical tests are used to measure economic
growth, and it has been demonstrated that GDP and LSCI have significant impacts on
the development of supply chain connectivity and logistics. Ayesu et al. [36] examined
panel data from 28 African nations with major transportation hubs between 2010 and 2018
to analyse the relationship between the seaport efficiency, the economic growth and the
port throughput. The work reported that the shipping company was generally motivated
by the economic factors that maximized the overall turnaround profit rather than the
environmental aspects [29].

The literature reviews on LSCI and GDP show that there was no seaport network
efficiency study conducted for LSCI and GDP as the output variables. Another gap that
can be highlighted here is that there is no such study that considers 133 countries in the
world. This loophole permits the present research to extend the DEA approach on the
seaport network efficiency measurement by considering the addition of other aspects. In
this work, we have extended the applications of both triangular and trapezoidal fuzzy
number theories to construct the fuzzy sets with the DEA approach. Moreover, despite
much interest in DEA and fuzzy DEA, none of the past works have explored PLRLS using
fuzzy efficiency values obtained from LSCI and GDP that contribute towards the seaport
network efficiency boundedness domain. In summary, our present contributions that can
fill the existing literature gaps can be highlighted as follows:

• Investigation on seaport network efficiency using LSCI as an output variable in the
DEA and fuzzy DEA which was not attempted by other researchers before.

• DEA and fuzzy DEA were performed based on the data of 133 global seaport countries, the
highest number of countries considered in similar studies on seaport network efficiency.

• Utilization of triangular and trapezoidal fuzzy number theories to create fuzzy datasets
from DEAs towards fuzzy DEA applications.

• The seaport network efficiency boundedness concept and the domain using fuzzy
numbers through PLRLS were introduced for the first time in this study.

• The significance and how the findings of the present work can be appreciated by the
maritime stakeholders were also briefed in the conclusion.

3. Data Sources and Variables

This study employs a three-year dataset (2018, 2019 and 2020) that belongs to 133 coun-
tries or DMUs, while the remaining countries with incomplete data had to be removed.
The list of DMUs is provided in Table 1. The analysis was initiated using real data of four
independent variables, which are median time in port (TP), average age of vessels (AV),
maximum size of vessels (SV) based on gross tonnage (GT) and maximum cargo carrying
capacity (CCC) of vessels based on deadweight tonnage (DWT). Data for these variables
are collected from the maritime transport report published by UNCTADstat [2]. These
input variables are crisp data that are pre-fixed or can be controlled by each DMU.

The output variables are fuzzy numbers derived from Gross Domestic Product (GDP)
and the Liner Shipping Connectivity Index (LSCI). The GDP at buyer’s cost is the amount
of gross worth added by all citizen producers in the economy in addition to any assessment
items and subtracting any subsidies excluded from the worth of the items. The data was
collected from the World Development Indicator (WDI) resource, which is known as the
World Bank national accounts data collection of development indicators, compiled from
officially recognized international sources [37]. On the other hand, the LSCI catches how
well countries are associated with global shipping networks. It is provided by UNCTADstat
based on the five parts of maritime transportation components: number of ships, the vessel
container-carrying capacity, maximum vessel size, number of services and number of
companies that deploy container ships in a country’s ports. Table 2 shows the input and
output variables that are used in this study for seaport network efficiency measurements.



Mathematics 2023, 11, 1454 7 of 27

Table 1. List of DMUs applied in DEA and fuzzy DEA (TrFDEA and TpFDEA).

DMU Country DMU Country DMU Country DMU Country

DMU 1 Albania DMU 37 Dominican
Republic DMU 73 Liberia DMU 109 Senegal

DMU 2 Algeria DMU 38 Ecuador DMU 74 Libya DMU 110 Seychelles

DMU 3 American
Samoa DMU 39 Egypt DMU 75 Lithuania DMU 111 Sierra Leone

DMU 4 Angola DMU 40 El Salvador DMU 76 Madagascar DMU 112 Singapore

DMU 5 Antigua and
Barbuda DMU 41 Estonia DMU 77 Malaysia DMU 113 Solomon

Islands
DMU 6 Argentina DMU 42 Fiji DMU 78 Maldives DMU 114 Somalia
DMU 7 Australia DMU 43 Finland DMU 79 Malta DMU 115 Spain
DMU 8 Bahamas DMU 44 Gabon DMU 80 Mauritania DMU 116 Sri Lanka
DMU 9 Bahrain DMU 45 Gambia DMU 81 Mauritius DMU 117 Sudan

DMU 10 Bangladesh DMU 46 Georgia DMU 82 Mexico DMU 118 Suriname

DMU 11 Barbados DMU 47 Germany DMU 83
Micronesia
(Federated
States of)

DMU 119 Sweden

DMU 12 Belgium DMU 48 Greece DMU 84 Moldova,
Republic of DMU 120 Tanzania

DMU 13 Belize DMU 49 Grenada DMU 85 Montenegro DMU 121 Thailand
DMU 14 Benin DMU 50 Guam DMU 86 Morocco DMU 122 Timor-Leste
DMU 15 Brazil DMU 51 Guatemala DMU 87 Mozambique DMU 123 Togo

DMU 16 Brunei
Darussalam DMU 52 Guinea DMU 88 Myanmar DMU 124 Tonga

DMU 17 Bulgaria DMU 53 Guinea-
Bissau DMU 89 Namibia DMU 125 Trinidad and

Tobago
DMU 18 Cambodia DMU 54 Guyana DMU 90 Netherlands DMU 126 Tunisia
DMU 19 Cameroon DMU 55 Haiti DMU 91 New Zealand DMU 127 Turkey
DMU 20 Canada DMU 56 Honduras DMU 92 Nicaragua DMU 128 Ukraine

DMU 21 Cayman
Islands DMU 57 Iceland DMU 93 Nigeria DMU 129 United Arab

Emirates

DMU 22 Chile DMU 58 India DMU 94 Norway DMU 130 United
Kingdom

DMU 23 China DMU 59 Indonesia DMU 95 Oman DMU 131 United States
of America

DMU 24
China,

Hong Kong
SAR

DMU 60 Iran DMU 96 Pakistan DMU 132 Uruguay

DMU 25 Colombia DMU 61 Iraq DMU 97 Panama DMU 133 Viet Nam

DMU 26 Comoros DMU 62 Ireland DMU 98 Papua New
Guinea

DMU 27 Congo DMU 63 Israel DMU 99 Paraguay

DMU 28 Congo, Dem.
Rep. of the DMU 64 Italy DMU 100 Peru

DMU 29 Costa Rica DMU 65 Jamaica DMU 101 Philippines
DMU 30 Côte d’Ivoire DMU 66 Japan DMU 102 Poland
DMU 31 Croatia DMU 67 Jordan DMU 103 Portugal
DMU 32 Cuba DMU 68 Kenya DMU 104 Qatar

DMU 33 Cyprus DMU 69 Republic of
Korea DMU 105 Romania

DMU 34 Denmark DMU 70 Kuwait DMU 106 Russian
Federation

DMU 35 Djibouti DMU 71 Latvia DMU 107 Samoa
DMU 36 Dominica DMU 72 Lebanon DMU 108 Saudi Arabia
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Table 2. Input and output variables of the study.

Input Variables Output Variables

Median time in port (days), (TP) Growth Domestic Product (GDP in USD)
Average age of vessels, (AV) Liner Shipping Connectivity Index (LSCI)

Maximum size (GT) of vessels, (SV)
Average cargo carrying capacity (dwt) per vessel, (CCC)

4. Mathematical Modelling

This work utilizes the techniques of DEA, fuzzy DEA based on triangular fuzzy
number (TrFN), trapezoidal fuzzy number (TpFN) theories as well as fuzzy linear regression
to assess the collected data for seaport network efficiency measurements. This section
elaborates on the mathematical modelling for the classical DEA and fuzzy DEA methods,
as described in Equations (1)–(6) [38].

The objective function is denoted by the formula that indicates the objective function
and the constraints are fuzzy for classical DEA with L (minimum), M (mean) and H
(maximum). Equation (1) represents the (FH) maximum value, Equation (6) represents the
(FM) mean value and Equation (10) represents the (FL) minimum value of the objective
function to estimate the DMU’s efficiency, respectively. We assume v1, v2, v3 and v4 to be
the input variables, while u1 and u2 are the output variables of DMUj, with j = 1, . . . , 133.

We can write the objective function of the maximum value (FH) in Equations (1)–(5) to
represent the constraints of maximum efficiency score shown in Case 1 (DEA). In classical
DEA, the constraint in Equation (2) is always equal to unity. Equation (3) represents the
summation difference between the output and input variables with zero as the upper
limit, while the values of the input and output values must always be positive. The same
constraints apply to the mean and minimum objective functions in Equations (5) and (9),
respectively.

Case 1 (DEA):

max FH
2

∑
b=1

ubybj (1)

subject to
4

∑
d=1

vH
d xdj = 1, (2)

2

∑
b=1

uH
b ybj −

4

∑
d=1

vH
d xdj ≤ 0, (3)

uH
b , vH

d ≥ 0, b = 1, 2, d = 1, . . . , 4. (4)

The mean value objective function can be written as in Equation (5), while the con-
straints for the objective function (FM) can be represented by Equations (6)–(8), as shown
in Case 2 (DEA).

Case 2 (DEA):

max FM
2

∑
b=1

ubybj (5)

subject to
4

∑
d=1

vM
d xdj = 1, (6)

2

∑
b=1

uM
b ybj −

4

∑
d=1

vM
d xdj ≤ 0, (7)

uM
b , vM

d ≥ 0,b = 1, 2,d = 1, . . . , 4. (8)



Mathematics 2023, 11, 1454 9 of 27

Equations (10)–(12) indicate the constraints for minimum efficiency score where
Equation (1) can be written as the objective function of the minimum value of (FL) in
Case 3 as Equation (9)

Case 3 (DEA):

max FL
2

∑
b=1

ubybj (9)

subject to
4

∑
d=1

vL
d xdj = 1, (10)

2

∑
b=1

uL
b ybj −

4

∑
d=1

vL
d xdj ≤ 0, (11)

uL
b , vL

d ≥ 0, b = 1, 2,d = 1, . . . , 4. (12)

The classical DEA model in Equations (1)–(12) can be modified to a fuzzy DEA
model using triangular fuzzy numbers (L-minimum, M-mean, H-maximum), as shown
in Equation (13) (Case A) [12]. The objective function for fuzzy DEA is taken by maximizing
the division of the output variable fuzzy number and input variable fuzzy number. The
constraints for the maximum objective function Equation (13) are given in Equation (14),
which show that the ratio of the fuzzy output number summation to the fuzzy input
number summation must not exceed zero. The constraints in Equation (15) represent that
the input’s lowest value is zero, whereas the highest values are bigger than the mean values.
The conditions are similar for the output variables.

Case A (FDEA):

max
∑2

b=1

(
uL

b yL
bj + uM

b yM
bj + uH

b yH
bj

)
∑4

d=1

(
vL

d xL
dj + vM

d yM
dj + vH

d yH
dj

) (13)

subject to

∑2
b=1

(
uL

b yL
bj + uM

b yM
bj + uH

b yH
bj

)
∑4

d=1

(
vL

d xL
dj + vM

d yM
dj + vH

d yH
dj

) ≤ 0, (14)

vL
d ≥ 0, vM

d ≤ vH
d , 1 ≤ d ≤ 4, (15)

uL
b ≥ 0, uM

b ≤ uH
b , 1 ≤ b ≤ 2. (16)

The fuzzy DEA model can be reformulated by maximizing the output subject to
the input, which is equal to 1, hence, the power index can be enhanced by removing
some limitations in the model as written in Equation (17) as the objective function. We
transformed it to a linear model, as provided in Equations (17) and (23), based on prior
research because this non-linear model increases complexity and is difficult to be solved on
extremely big data [39]. The constraint Equation (18) has been linearized by making the
maximization equal to 1, as shown in Case B.

Case B (FDEA):

max
2

∑
b=1

(
uL

b yL
bj + uM

b yM
bj + uH

b yH
bj

)
(17)

subject to

∑4
d=1

(
vL

d xL
dj + vM

d yM
dj + vH

d yH
dj

)
= 1, (18)

2

∑
b=1

(
uL

b yL
bj + uM

b yM
bj + uH

b yH
bj

)
−

4

∑
d=1

(
vL

d xL
dj + vM

d yM
dj + vH

d yH
dj

)
≤ 0, (19)

vL
d − vM

d ≤ 0, vH
d − vM

d ≤ 0, vL
d vM

d vH
d ≥ 0 if 1 ≤ d ≤ 4, (20)
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uL
b − uM

b ≤ 0, uH
b − uM

b ≤ 0, uL
b uM

b uH
b ≥ 0 if 1 ≤ b ≤ 2. (21)

The difference between the summation of fuzzy output and input is less than zero. Next,
Equations (20) and (21) are transformed to Case C by adding ε to Equations (20) and (21).

Case C (FDEA):

max
2

∑
b=1

(
uL

b yL
bj + uM

b yM
bj + uH

b yH
bj

)
subject to

∑4
d=1

(
vL

d xL
dj + vM

d yM
dj + vH

d yH
dj

)
= 1,

2

∑
b=1

(
uL

b yL
bj + uM

b yM
bj + uH

b yH
bj

)
−

4

∑
d=1

(
vL

d xL
dj + vM

d yM
dj + vH

d yH
dj

)
≤ 0,

vL
d − vM

d ≤ −ε, vH
d − vM

d ≤ −ε, vL
d vM

d vH
d ≥ 0 if 1 ≤ d ≤ 4, (22)

uL
b − uM

b ≤ −ε, uH
b − uM

b ≤ −ε, uL
b uM

b uH
b ≥ 0 if 1 ≤ b ≤ 2. (23)

Finally, the constraint is modified with ε > 0 where ε is a small positive number that
weights the midpoint to a larger value than the end point as in Equations (22) and (23) [40].

Note that Case 1, Case 2 and Case 3 in Equations (1)–(12) represent three different DEA
models, whereas Case A, Case B and Case C are continuous transformations of a fuzzy
DEA model based on TrFN theory. It is crucial to add data fuzzification to DEA in order to
correctly reflect the real-world data scenario. TrFN is the most frequently used method [41]
to construct fuzzy sets with DEA in various studies. Similar approaches can also be built
with trapezoidal fuzzy numbers (TpFN) [42]. Using TrFN and TpFN, the seaport network
efficiency scores can further be evaluated and compared in this study.

4.1. Triangular Fuzzy Number (TrFN)

Fuzzy numbers are created based on triangular fuzzy decision-theoretic rough sets
to satisfy a fuzzy environment. The enrolment capacity of a fuzzy number needs to fulfil
the states of convexity and normality that adhere to the basic terms of triangular fuzzy
number and arithmetic operations [43]. A triangular fuzzy number sums up an idea of
a real number, hence, it fits the membership function FN(x) defined in Equation (24) based
on minimum (p), mean (µ) and maximum (q) values e.g., p < µ < q:

FN(x) = (min, mean, max) =


x−min

mean−min
, min ≤ x ≤ mean;

max− x
max−mean

, mean ≤ x ≤ max;

0 , otherwise.

(24)

Consider GDP = (p1, µ1, q1) and LSCI =(p2, µ2, q2) as two TrFNs where p1 is the
minimum value for GDP, µ1 is the mean value of GDP, q1 is the maximum value of GDP, p2
is the minimum value for LSCI, µ2 is the mean value of LSCI and q2 is the maximum value
of LSCI. These triangular fuzzy numbers can operate on four basic arithmetic operations,
as follows [44]:

Addition:
GDP + LSCI = (p1 + p2, µ1 + µ2, q1 + q2) (25)

Subtraction:
GDP− LSCI = (p1 − p2, µ1 − µ2, q1 − q2) (26)

Product:
GDP× LSCI = (p1 × p2, µ1 × µ2, q1 × q2) (27)

Quotient:
GDP÷ LSCI = (p1 ÷ p2, µ1 ÷ µ2, q1 ÷ q2) (28)
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Equation (25) represents the addition of minimum GDP and LSCI, similarly for mean
and maximum values. Equation (26) is the subtraction, whereas Equations (27) and (28) are
the product and quotient rules for the minimum, mean and maximum values, respectively.

Proposition 1. The α-cut, Fα of a TrFN, given F = (p, µ, q) and α ∈ [0, 1], is calculated by
Equation (29):

Fα =
[

Fα
p , Fα

q ] = [p + α(µ− p), q− α(q− µ)
]
. (29)

The α-cut is used in TrFN to best describe the fuzzy number calculation [45]. The α-cut point
for the left and right bounds in Equation (29) are elaborated as α = q−x

q−µ and α = x−p
µ−p , respectively.

Proposition 2. The coordinates (x, y) of a triangle (p, µ, q) forming the graph of the TrFN are
calculated by using the formula in Equation (30):

x =
p + µ + q

3
, y =

1
3

. (30)

The x-coordinate in Equation (30) takes the average of minimum (p), mean (µ) and maximum
(q) values along the bottom side of the triangle, whereas the y-coordinate is taken as the one third of
the height of the triangle, as depicted in Figure 1. The graph of the TrFN, (p, µ, q) is the triangle
ABC with A(p, 0), B(µ, 1) and C(q, 0) as the edge points. The intersection point of ABC is the
median [45].
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4.2. Trapezoidal Fuzzy Number (TpFN)

The fuzzy set A = (a, b, c, d) is known as a set of trapezoidal fuzzy numbers if its
membership function FNT(x) is defined by the minimum (p), median (m), mean (µ) and
maximum (q) values where p ≤ m ≤ µ ≤ q in Equation (31):

FNT(x) = (min, median, mean, max) =



0, x < min;
x−min

median−min
, min ≤ x ≤ median;

1, median ≤ x ≤ mean;
max− x

max−mean
, mean ≤ x ≤ max;

0, otherwise.

(31)
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In TpFN theory, it includes four values to acquire an accurate result [46]. Equation (31)
shows a slight difference at the core that holds the value 1 for the range of x between the
median and the mean values, in comparison to TrFN. The graph of the TpFN, (p, m, µ, q)
is the trapezium ABCD with A(p, 0), B(m, 1), C(µ, 1) and D(q, 0) as the edge points in
Figure 2.
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4.3. Methodology

There are three main methodology outcomes from this research, which are divided into
DEA, fuzzy DEA and fuzzy linear regression. The step-by-step procedures as supported by
Figure 3 are listed as follows:

Step 1: Data collection of input and output variables was performed.
Step 2: Data screenings for normality, multicollinearity and outlier identifications

were conducted.
Step 3: DEA scores were computed.
Step 4: The output data were fuzzified. TrFN rule was applied to produce minimum

(p), mean (µ) and maximum (q) values of the output data. TpFN rule was applied to
produce minimum (p), median (m), mean (µ) and maximum (q) values of the output data.

Step 5: Fuzzy DEA scores were computed using the TrFN and TpFN obtained in
Step 4.

Step 6: Defuzzification was performed to obtain crisp output data for the TrFDEA
scores and the TpFDEA scores.

Step 7: Using the data in Step 4, fuzzy linear regression was performed.



Mathematics 2023, 11, 1454 13 of 27

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 27 
 

 

4.3. Methodology 
There are three main methodology outcomes from this research, which are divided 

into DEA, fuzzy DEA and fuzzy linear regression. The step-by-step procedures as sup-
ported by Figure 3 are listed as follows: 

Step 1: Data collection of input and output variables was performed. 
Step 2: Data screenings for normality, multicollinearity and outlier identifications 

were conducted. 
Step 3: DEA scores were computed. 
Step 4: The output data were fuzzified. TrFN rule was applied to produce minimum 

(p), mean (𝜇) and maximum (q) values of the output data. TpFN rule was applied to pro-
duce minimum (p), median (m), mean (𝜇) and maximum (q) values of the output data. 

Step 5: Fuzzy DEA scores were computed using the TrFN and TpFN obtained in Step 
4. 

Step 6: Defuzzification was performed to obtain crisp output data for the TrFDEA 
scores and the TpFDEA scores. 

Step 7: Using the data in Step 4, fuzzy linear regression was performed. 

 
Figure 3. Flow chart of the methodology. Figure 3. Flow chart of the methodology.

5. Results and Empirical Analysis
5.1. Data Screening

Data screening was performed to fit some statistical assumptions on data normality,
outlier identification and multicollinearity, prior to deep analysis. Fuzzy regression follows
basic regression assumptions, and the model must be measured with a normality that
shows a bell shape distribution in normal kernel density [47]. Outlier identification was
conducted to determine which outliers are typical of reliable data points (and should be
maintained) and which outliers are probably errors and have to be eliminated from the
data collection [48]. The effect of outliers is common and can have a huge impact on data
distribution. An outlier test needs to be performed for the outlier removal before the
clean data can be used. Figure 4 and Table 3 demonstrate all the three assumptions of
multiple regression.
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Table 3. Multicollinearity.

Variable VIF 1/VIF

SV 2.81 0.356304
CCC 2.57 0.388585
TP 1.23 0.815793
AV 1.03 0.969714

Mean VIF 1.91

The data were normally distributed after two countries were removed from the dataset
by using the STATA software. Box plot was performed to check the outlier, and it was
identified that three countries (Cabo Verde, Slovenia and Curacao) had extreme values
compared to other countries, as shown in Figure 4. The three countries were then removed
from the study, making only 133 countries left for further analysis. The output from STATA
showed that the data for LSCI and GDP were normally distributed. Kernel density estima-
tion showed that the probability density function contributed towards the improvement of
the distribution in comparison to the traditional histogram. Normal density in the study
showed a symmetric, single-peaked bell-shaped density curve, therefore, the dependent
variables were normally distributed.
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In addition to normality and outlier identification, multicollinearity was another basic
requirement in the study that needed to be treated before further analysis. Multicollinearity
is a term that describes the correlation of numerous independent variables in a model.
The analysis should be without multicollinearity to produce accurate models [49]. Hair
et al. [50] recommended that variance inflation factor (VIF) values should not be more than
10 in order to clear the collinearity. They claimed that multicollinearity of all variables
below 7 of the VIF is not a main problem. Yet, there was another study by Garson [51] who
claimed that the VIF value must be less than 4 according to the rule of thumb to avoid the
multicollinearity problem. Although there are other studies that claimed a VIF of less than
5 is acceptable, in this study a threshold value for VIF was taken as 4. Based on the Table 3,
all the VIF values were less than 4 and it proved that the level of correlation between the
variables was stable and multicollinearity does not exist in this study.

5.2. DEA and TrFDEA Results

Figure 5 shows the minimum, mean and maximum values of TrFN for 3 years. The
radar charts depict that the efficiency scores were moving up and down with involvement
of the fuzzy numbers in the variables. Some examples (denoted by star and triangle) clearly
show the differences in the 3-year radar charts observed from the results of DMU 17, DMU
40 and DMU 41 where their fuzzy efficiency scores were very high in 2018 in comparison to
2019 and 2020. In addition, the fuzzy efficiency scores were very low for DMU 8 and DMU
21 in 2018, in comparison to 2019 and 2020, across the minimum, mean and maximum
scores spread. The fuzzy triangular efficiency scores showed the average and standard
deviation values for three years. The mean and the standard deviation for 2018 were
0.8808 and 0.057504, for 2019 were 0.8825 and 0.05385995 and for 2020 were 0.8823 and
0.05699, respectively.

Figure 6 shows the difference between DEA and TrFDEA approaches in determining
the efficiency scores. The TrFDEA method gives better predictions for the seaport network
efficiency as it introduces more measurable and specific terms through the utilization of
TrFN. The TrFN theory reflects that efficiency scores in 2020 had the highest impact in
comparison to the scores in 2018 and 2019. The TrFDEA and classical DEA give perfect
efficiency scores of DMUs 22, 23, 66, 99 and 112 for all 3 years. There were new additions of
perfect efficiency scores in 2018 (DMU 15 and DMU 41), 2019 (DMU 52) and 2020 (DMU 52
and DMU 10). The section’s major goal is to discuss the utilization of TrFNs as a substitute
tool to improve the seaport network efficiency measurement between DEA and TrFDEA.
The procedure used to achieve the aforementioned efficacy was pretty evident. Specifically,
the mean value of the seaport network efficiency was equal to the average value of each
TrFNs.

Comparison of DEA and triangular fuzzy DEA (TrFDEA) can be performed based
on the perfect (100%) efficiency score. Initially, DEA is performed with the input and
output variables to measure the seaport network efficiency. Then, the DEA scores are
short-listed by taking only perfect efficiencies with a value of 1 where it reflects that the
inputs and outputs contribute to 100% efficiency score. From 133 countries considered,
only five countries in 2018 and seven countries in 2019 and 2020, respectively, have perfect
seaport network efficiency scores. The seaport networks in China, Chile, Japan, Paraguay
and Singapore have perfect efficiency throughout the three observed years by using both
the DEA and TrFDEA approaches. Estonia, Brazil (2018), Guinea (2019 and 2020) and
Bangladesh (2020) also show perfect scores in the individual years by using DEA and
TrFDEA in their seaport network efficiency measurements.
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The absolute differences in Figure 6 show that there is a huge impact on the efficiency
where TrFDEA contributes towards higher efficiency scores in comparison to the standard
DEA in the year 2020. Based on the results for 2018 and 2019, the changes are not much
(up to ±1.1%), however there are ±3% differences in the efficiency scores in 2020. The 3%
changes show that TrFDEA has a wider score range (−3% to 3%) than the standard DEA
where triangular fuzzy numbers are used to determine the efficiency. Another factor that
affects the results in 2020 might be the influence of the COVID-19 pandemic, which make
maximum and minimum scores differ a lot in comparison to other years. Since TrFDEA is
influenced by triangular fuzzy numbers (maximum, mean and minimum) in this study, the
method is suitable to be employed during the economic crisis since it can conduct efficiency
estimations based on three different levels with fluctuating characteristics, hence, TrFDEA
can give more information on the efficiency results in comparison to DEA. This unique
characteristics of TrFDEA obtained by computing the maximum and minimum efficiency
values is promising as a credible relative efficiency tool for the DMUj.
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5.3. TrFDEA and TpFDEA Results

Trapezoidal fuzzy fixed points provide precise values, which may be utilized to
determine how much each attribute is worth. The average weight of the stable vector
acquired from the inference process is used to evaluate and rank the ideas depending on
their degree of effect. The TrFN and TpFN are used in this study to investigate the effect
of seaport network efficiency scores in the maritime transportation industry. The DEA
results have been improved in both efficiency and sensitivity with the introduction of the
TrFN and TpFN to express the uncertainty dataset. Fuzzy numbers have evolved through
time to support increasingly complicated fuzzy values. Comparison between the TrFDEA
and TpFDEA scores in Figure 7 shows that there is a small difference among them with
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±0.0015 units. Only one efficiency score of DMU 24 has the value difference in the range of
−0.0035 to 0.002. The outcomes from the TrFDEA and TpFDEA have shown the efficiency
estimations in different ways. Despite both the TrFDEA and TpFDEA seem to produce
similar results for the perfect efficiency scores, there is a slight difference between the
two methods where the outcomes of TrFDEA range between −0.0274 to 0.0105 while the
TpFDEA’s outcomes range between −0.0307 to 0.0106. Figure 7 shows as if the efficiency
scores are approximately the same. The differences between TrFDEA and TpFDEA could
not be captured clearly from the graph. As the values are quite near, standard deviation and
variance are calculated and presented in Figure 8 to clarify the definite differences between
the TrFDEA and TpFDEA. These standard deviations and variances serve as statistical
validation tools to conclude which approach is more superior than the other by using DEA
results as the relative reference.

Based on Figure 8, the standard deviations of differences between the DEA and
TrFDEA are approximately 0.002216 (2018), 0.002195 (2019) and 0.004511 (2020), respectively,
while the standard deviations between the DEA and TpFDEA are 0.002040 (2018), 0.002111
(2019) and 0.004713 (2020), respectively. These findings demonstrate that the utilization
of the TpFDEA results in reduced inaccuracy in the data since the standard deviation
values for the TpFDEA are smaller than the TrFDEA in 2018 and 2019. However, during
the pandemic year of 2020, Figure 8 shows the highest standard deviation and variance
values between the differences of the DEA–TpFDEA and DEA–TrFDEA. From the smaller
standard deviation and variance values, it can be concluded that the TpFDEA is a better
fuzzy approach than the TrFDEA in the first two years, while the TrFDEA is a better fuzzy
approach than the TpFDEA during the COVID-19 pandemic year of 2020.

5.4. Fuzzy Linear Regression

Fuzzy linear models manage dubious and loose peculiarities to address better models
in comparison to linear regression models. These sorts of models are particularly appro-
priate for modelling and measuring the seaport network efficiency. The purpose of this
method is to explain the dependent variable u as an interval output y in terms of the variant
of independent variables. Table 4 shows the approximated linear regression equations
combined with the boundedness property of the PLRLS function with minimal MSE for
all the years considered. The boundedness is shown in the fuzzy linear regression model
since there are lower and upper boundaries of the model that support the interval and
the central tendency of the fuzzy regression model. Based on the equations, they showed
that the model boundary had an increasing trend in 2018 and 2019, but in 2020 the trend
decreases because of the COVID-19 pandemic. Based on the function produced in Table 4,
it shows that the central tendency is decreased by 0.0026 (2018), 0.003 (2019) and 0.0177
(2020), respectively. The lower boundary also shows the negative relationship for all three
years as they decrease by 0.0304 (2018), 0.0153 (2019) and 0.0191 (2020). In addition, the
upper boundary is quite special since, in 2018 and 2019, the function is increased by 0.00221
and 0.0046, respectively. Yet in 2020, the function is decreased by 0.0177 because of the
pandemic. The mean squared error (MSE) shows that 2019’s efficiency score has the lowest
error of 0.05 in comparison to 2018 (0.06) and 2020 (0.07). This describes that the function is
fit to be used for further analysis.

Table 4. Fuzzy linear regression functions with boundedness.

Central Tendency Lower Boundary Upper Boundary MSE

2018 y = 0.8956− 0.0026x y = 0.8956− 0.0304x y = 0.8997 + 0.0221x 0.06
2019 y = 0.9202− 0.003x y = 0.9192− 0.0153x y = 0.9809 + 0.0046x 0.05
2020 y = 1.1968− 0.0177x y = 1.0751− 0.0191x y = 1.38− 0.0177x 0.07

Combination
Boundedness y = 0.6633 + 0.0092x y = 0.663 + 0.0015x y = 0.6633 + 0.0159x 0.07
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A combination is made by taking the minimum of the minimum, the average of the
medium and the maximum of the maximum efficiencies of all the 3-year fuzzy values to
make the perfect boundedness model for future predictions. The model shows that the
boundaries are increased by 0.0159 unit (upper boundary) and decreased by about 0.0015
unit in the lower boundary where the boundaries are in a concave pattern. The equations
displayed in Table 4 illustrate that the central tendency and the lower limit are declining
since the slope is negative for all the three years, while the upper bound increases in 2018
and 2019 but drops in 2020. The interval-based PLRLS fuzzy prediction method generates
boundedness range by taking the minimum of the minimum values, the maximum of the
maximum values, and the average of the mean values. The central tendency is increased
by 0.0092 unit throughout the analysis with an MSE of 0.07. The results have proven that
the seaport network efficiency scores have a wider range where the values are between
0.7435 to 1, and that the boundedness model seems to have a concave relationship. All the
functions, including the boundedness function, are graphed in Figure 9.

The x-coordinates in Figure 9 show the lower boundary (left), the central tendency
(mid) and the upper boundary whereas the y-coordinates represent the range of seaport
network efficiency scores of 133 countries (denoted by circle markers) used to form the fuzzy
linear regression functions listed in Table 4. This figure displays the negative prediction
when the dotted line is going down, whereas the boundedness aspect gives the minimum
range of the minimum value (lower boundary), the average range of the average value
(central limit) and the maximum range of the maximum value (upper boundary).
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6. Conclusions

The Liner Shipping Connectivity Index (LSCI) is one of the basic maritime indicators
that explains how well the seaport network of a country is connected to other seaports
on the globe. Unfortunately, similar to any other research involving real data, the present
maritime study is limited and dependent on the availability of additional real data provided
by UNCTADstat. The majority of countries’ LSCI and GDP statistics were not given before
2018 and after 2020. Moreover, it is worth mentioning that none of the existing studies
have ever investigated LSCI as an output variable in maritime transportation research. The
present work started with real public maritime data collection and data screening based
on the principles of normality, zero multicollinearity and unwanted outliers. Initially, data
envelopment analysis (DEA) was applied to measure seaport network efficiency through-
out the three-year considered period (2018–2020). Next, the triangular and trapezoidal
fuzzy numbers in the DEA approach (TrFDEA and TpFDEA) have been proposed as better
alternative tools to improve perfect efficiency scores and to investigate uncertainty levels in
the seaport network efficiency measurement, in comparison to the standard DEA. It was
observed that the TrFDEA approach produced differences in the range between −0.0274
and 0.0105, whereas the TpFDEA approach yielded −0.0307 to 0.0046 differences in the
efficiency score, in comparison to the DEA approach. Here, the smaller bounds of differ-
ences by the TrFDEA in comparison to the TpFDEA suggested that the TrFDEA offered
the best outcome in the seaport network efficiency measurement. Moreover, the two fuzzy
approaches are discussed and compared using their computed standard deviations and
variances where the DEA results were fixed as their relative or control reference. It was
found that the TpFDEA approach produced smaller standard deviations and variances
of differences than the TrFDEA approach in the early two years before the COVID-19
pandemic. Despite the standard deviations and variances for both methods being the high-
est during the pandemic year of 2020, the TrFDEA approach produced smaller standard
deviation and variance than the TpFDEA approach in that year alone.

As part of the present work’s other original contribution, Possibilistic Linear Regres-
sion Least Squares (PLRLS) has been proposed in the fuzzy regression modelling of the
seaport network efficiency scores that gives more perspectives regarding the minimum
and maximum efficiency bounds than the regular linear regression method. With the new
fuzzy numbers utilization of TrFDEA, TpFDEA and fuzzy regression through this research,
it provides new tools for researchers, practitioners and policy makers in the maritime
industry to investigate and predict further uncertainties in the seaport network efficiency
measurement, especially with the fuzzy value boundedness concept firstly introduced in
this work and was never proposed before by other researchers worldwide. The findings
from this work show that these fuzzy approaches are suitable for real world data, even
for those with fluctuation surprises. This work fills the gaps in the studies of seaport
network efficiency measurements as well as it motivates further efficiency improvements
in port administration and handling, warehouse logistics and inventory planning, ves-
sel cargo loading/unloading scheduling and better decision/policy making by maritime
practitioners, navigators and managers.

Some future studies that can be undertaken from this present study include the imple-
mentation of machine learning algorithms for the seaport network efficiency classification
and clustering. The adaptability of various fuzzy number schemes can also be explored to
see how this can improve the performance metrics of the seaport network. With collabora-
tion between the seaport administrators and government agencies, private data can also be
exploited to be analysed so that more studies on maritime transportation can be extended.
With respect to the local case of Malaysia, the Ministry of Higher Education, the Ministry
of Transport and the Ministry of Foreign Affairs can team up for better governance, policy
and economic strategies to upgrade the operations, facilities and services of Westport so
that the biggest seaport in Malaysia can become more efficient and improve the country’s
maritime economy and technology leading to enhancement of wealth and prosperity for
the nation.
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Abbreviations
The following abbreviations are used in this manuscript:
AV Age of vessels
CCC Cargo carrying capacity
DEA Data Envelopment Analysis
DMUs Decision Making Units
DWT Deadweight tonnage
GDP Gross Domestic Product
GT Gross Tonnage
LSCI Liner Shipping Connectivity Index
PLRLS Possibilistic Linear Regression Least Squares
SV Size (GT) of vessels
TEU Twenty-Foot Equivalent Unit
TrFN Triangular fuzzy number
TrFDEA Triangular fuzzy Data Envelopment Analysis
TpFN Trapezoidal fuzzy number
TpFDEA Trapezoidal fuzzy Data Envelopment Analysis
TP Time in port
UNCTAD United Nations Conference on Trade and Development
UNCTADstat United Nations Conference on Trade and Development Statistics
VIF Variance inflation factor
WDI World Development Indicators

Nomenclature

Fα α-cut of point for triangular fuzzy number
H Maximum
j Number of container ports in the system
L Minimum
M Mean
p1 The minimum value for GDP
p2 The minimum value for LSCI
q1 The maximum value of GDP
q2 The maximum value of LSCI
u No. of output
ub The weight given to the bth output
uH

b The weight given to the bth output for maximum value
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uM
b The weight given to the bth output for mean value

uL
b The weight given to the bth output for minimum value

v No. of input
vd The weight given to the dth input
vH

d The weight given to the dth input for maximum value
vM

d The weight given to the dth input for mean value
vL

d The weight given to the dth input for minimum value
xdj The amount of the dth input used by the jth port
ybj The amount of the bth output used by the jth port
µ1 The mean value of GDP
µ2 The mean value of LSCI
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