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Abstract: In order to propose a deeper analysis of the general quartic equation with real coefficients,
the analytical solutions for all cubic and quartic equations were reviewed here; then, it was found
that there can only be one form of the resolvent cubic that satisfies the following two conditions at
the same time: (1) Its discriminant is identical to the discriminant of the general quartic equation.
(2) It has at least one positive real root whenever the general quartic equation is non-biquadratic. This
unique special form of the resolvent cubic is defined here as the “Standard Form of the Resolvent
Cubic”, which becomes relevant since it allows us to reveal the relationship between the nature of
the roots of the general quartic equation and the nature of the roots of all the forms of the resolvent
cubic. Finally, this new analysis is the basis for designing and programming efficient algorithms that
analytically solve all algebraic equations of the fourth and lower degree with real coefficients, always
avoiding the application of complex arithmetic operations, even when these equations have non-real
complex roots.

Keywords: quadratic formula; Tartaglia–Cardano Formulae; Ferrari method; the Standard Form of
the Resolvent Cubic; polynomials

MSC: 01-01; 01A40; 12D10; 26-08; 26C05; 26C10

1. Introduction

For many centuries, the fundamental purpose of algebra was the resolution of algebraic
equations; so, before the 16th Century, the most powerful known results of algebra were the
analytical solutions given to the Second-Degree Equation (SDE) with real coefficients and
real roots; meanwhile, the cases of this equation with non-real roots used to be discarded
because they did not make any practical sense at that time.

Afterward, during the first half of the 16th Century, the analytical solutions by radicals
for the third- and fourth-degree equations were finally revealed by the legendary renais-
sance mathematicians Scipione del Ferro, Niccolò Fontana (A.K.A., “Tartaglia”), Girolamo
Cardano and his disciple Ludovico Ferrari [1] (p. 403); then, these new results became
fundamental for the development of modern mathematics because these motivated, for the
first time, the definition and study of non-real complex numbers, which would later give
rise to complex analysis, so the cases of the SDE with non-real roots were finally accepted
and understood in theoretical terms.
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Thus, between the middle of the 16th Century and the late 18th Century, the most
important problem in algebra was the search for a general analytical solution for the
fifth-degree equations; nevertheless, the nonexistence of general solutions by radicals for
algebraic equations of the fifth and higher degree was verified by the proof of the Abel–
Ruffini Theorem [2] (p. 51); so, this fact and the appearance of the Galois Theory in the
early 19th Century ushered in a new era in the history of algebra.

Therefore, the main purpose of algebra during the last two centuries has been focused
on the general study of algebraic structures (groups, fields, rings, etc.), which is generally
labeled with names like “Modern Algebra”, “Abstract Algebra” or “Higher Algebra”;
conversely, the algebra developed before the Abel–Ruffini Theorem is usually labeled as
“Basic Algebra” or “Classical Algebra”, the analytical solutions of third and fourth-degree
equations being the key topics that connect both kinds of algebra, since these topics were
the most powerful results given by classical algebra, while solving algebraic equations is
not even a goal of modern algebra, which offers a new and more abstract perspective on
polynomials and their solvability by radicals.

On the other hand, the appearance and development of calculus and its practical
applications gave rise to the modern numerical methods, which have been evolved even
faster since the beginning of the computational era; hence, the development achieved
by technology today allows numerical methods to approximate with great precision the
solutions of almost any kind of equations. It does not matter if they are algebraic or non-
algebraic, which is very useful for solving many practical problems; thus, the numerical
methods are now the most used tools to “solve” equations in general.

So nowadays, the great art of solving algebraic equations analytically is unappreciated
and almost lost, and it has been reduced to high-school basic algebra courses, in which
the quadratic formula for solving all the cases of the SDE with real coefficients is typically
one of the most advanced topics [3]; meanwhile, the results given by del Ferro, Tartaglia,
Cardano and Ferrari are only studied in some college courses for math students and are
usually treated superficially, and only as a brief preamble to advanced algebra courses
dedicated to Galois Theory and other modern algebra topics.

Additionally, the most well-known and used literature in the mentioned college
courses incredibly overlooks or ignores some important facts about the solutions by radicals
of third and fourth-degree equations and also tends to expose them as very impractical tools
to solve these equations; therefore, it is not surprising that some mathematicians around
the world regard them as “absolutely useless old-fashioned stuff” whose only value is
historical [4], since at first sight they seem to depend heavily on complex arithmetic, which
apparently complicates their application in practical terms. So, in this general scenario, this
article has the following four main objectives:

1. Revalue the general analytical solutions of the third and fourth-degree algebraic
equations with real coefficients in practical terms for the 21st Century.

2. Present a new analysis of these solutions for these equations to show how these
methods can always solve these equations without complex arithmetic operations.

3. Define the “Standard Form of the Resolvent Cubic” (SFRC) in order to expose all the
relationships between the nature of the roots of any fourth-degree equation and the
nature of the roots of all the forms of the corresponding resolvent cubic.

4. The design of an efficient computing program that solves all these equations, always
avoiding the application of numerical methods and complex arithmetic.



Mathematics 2023, 11, 1447 3 of 34

In order to achieve these fundamental objectives, in this paper the General Cubic
Equation (GCE) will be considered as any equation of the form ax3 + bx2 + cx + d = 0, with
a, b, c, d ∈ R and a 6= 0; so, according to [5] (pp. 95–98), the Tartaglia–Cardano Formulae
allows us to obtain the three roots of the GCE in theoretical terms as follows:
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where

p =
3ac− b2

3a2 and q =
2b3 − 9abc + 27a2d

27a3 . (3)

So, it is clear that the parameters p and q given by Equation (3) are also real num-
bers; additionally, it is important to say that they are also the coefficients of the equation
y3 + py + q = 0, which is known as the Depressed Cubic Equation (DCE), whose relation-
ship with the GCE is determined by the change of variable x = y− b

3a .
On the other hand, in this paper, the General Quartic Equation (GQE) will be consid-

ered as any equation of the form ax4 + bx3 + cx2 + dx + e = 0, with a, b, c, d, e ∈ R and
a 6= 0; in addition, the corresponding Depressed Quartic Equation (DQE) will be consid-
ered as the equation y4 + py2 + qy + r = 0, with p, q, r ∈ R; meanwhile, the relationship
between the GQE and the DQE is determined by the change of variable x = y− b

4a , so the
coefficients of both equations are related as follows:

p =
8ac− 3b2

8a2 , (4)

q =
b3 − 4abc + 8a2d

8a3 , (5)

r =
16ab2c− 64a2bd− 3b4 + 256a3e

256a4 ; (6)

therefore, as stated in [6], Equation (5) allows us to classify the GQE in the following two
complementary cases:

1. Biquadratic Case: If Equation (5) implies q = 0, then the DQE is reduced to a bi-
quadratic equation; ergo, the GQE corresponds to this case whenever b3 = 4abc− 8a2d,
and its four roots are given by the following general formulae:

x1,2 = ±

√
−p +

√
p2 − 4r

2
− b

4a
and x3,4 = ±

√
−p−

√
p2 − 4r

2
− b

4a
. (7)

2. Ferrari Case: It corresponds to all the non-biquadratic quartic equations. In other
words, when Equation (5) implies q 6= 0; thus, these equations cannot be solved by
the formulae given by Equation (7). So, according to [5] (p. 107), the Ferrari Method
was the first known method that could solve this kind of quartic equations; however,
this method cannot solve the biquadratic case, because it is undefined when q = 0 in
the DQE [7] (pp. 23–24).

Since Equations (7) and the Ferrari Method are not complete general solutions of the
GQE, a generalized variation of this method was developed in [6], which is a complete
general analytical solution for both cases of the GQE; so, this general solution of the GQE de-
pends on the roots of the SFRC, which is the third-degree equation
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s3 + 2ps2 +
(

p2 − 4r
)
s − q2 = 0. Then, consider the set of all the non-zero roots of the

SFRC; that is, S := {s1, s2, s3} − {0} ⊂ C− {0}, and the parameter αs defined as follows:

αs :=

{
0, if S = ∅
− 2q√

s , for s ∈ S 6= ∅ ; (8)

thus, the actual complete general analytical solution for the GQE is given by the following
general formula:

x =
ξ
√

s±
√

ξαs − 2p− s
2

− b
4a

; (9)

where s = 0 whenever p = q = r = 0 (in other words, when S = ∅); otherwise, s ∈ S 6= ∅;
and ξ := ±1. Hence, the definitions of S and αs guarantee that Equation (9) never goes
undefined, unlike the original Ferrari Method, which becomes undefined for the biquadratic
case; on the other hand, as also stated in [6], the respective discriminants of the GQE, the DQE
and the SFRC are all identical to each other, so the most simplified form of the discriminant of
these three equations is given in terms of the coefficients of the DQE as follows:

∆4 =
4
(

p2 + 12r
)3 −

[
2p
(

p2 − 36r
)
+ 27q2]2

27
. (10)

In addition, another well-known result that will also be very important in this docu-
ment is the Viète Theorem, as stated in [8]; because this one reveals how all the roots and
all the coefficients of any n-th-degree polynomial equation are related among them.

Likewise, it is also important to point out that the solutions of these equations are
relevant because they have several applications in real life problems; for example, some
engineering problems can be solved by applying differential equations whose solutions are
related to the resolution of third- or fourth-degree polynomial equations; any nonlinear
optimization problem with a fourth- or fifth-degree polynomial function as an objective
function is solved by finding the roots of the derivative of the objective function, which is a
third- or fourth-degree polynomial function in these cases.

Additionally, the solution of quartic equations is related to the solution of some geo-
metric problems, such as the crossed ladders problem, the intersection of two conic sections
in R2, the intersection of a torus and a line, etc. Then, the solutions to these problems are
used for the development of software focused on different kinds of applications related to
multiple arts and disciplines, such as architecture, astronomy, industrial manufacturing,
design, visual effects in modern cinema, computer animation, video game development,
etc., among many other practical applications of these algebraic equations in physics and
applied sciences.

So, the analysis presented here will begin in Section 2.1, reviewing some important
facts about the analytical solutions of the third-degree polynomial equations with real
coefficients that are generally overlooked or ignored by the most well-known literature on
these topics; these facts will be important to efficiently solve the GCE without numerical
methods and while avoiding complex arithmetic, so they will also be fundamental to
analyze and solve the SFRC and the GQE without numerical methods and while avoiding
complex arithmetic as well.

Afterward, the definition of the SFRC and its importance over the other known forms
of the resolvent cubic will be exposed in Section 2.2; also, the SFRC will be fundamental in
Section 2.3 to expose all the relationships between the nature of the roots of the GQE and
the nature of the roots of all the forms of the resolvent cubic. Meanwhile, Section 2.4 shows
how the novelties of the SFRC exposed in the previous subsections are also linked with the
criteria to identify a priori the nature of the roots of the GQE. Then, Section 3.1 is dedicated
to exposing how the SFRC also helps to analytically solve the GQE, always avoiding the
application of complex arithmetic operations in practical terms.
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Finally, Section 3 focuses mainly on the development of a computing program that was
made using the Wolfram Mathematica programming language to analytically solve and plot
all the polynomial equations of the second, third and fourth degree with real coefficients,
based on algorithms designed according to all the results exposed in Section 2 and also by
applying the formulae that instantly solve the non-biquadratic quartic equations with real
coefficients and multiple roots that were also stated in [6].

2. Research Methods
2.1. On the Third-Degree Polynomial Equations with Real Coefficients
2.1.1. The Big Problems with the Analytical Solutions for the General Cubic Equation

In practical terms, the big problem with Equations (1) and (2) to solve the GCE is
that these imply some difficulties provoked by the necessity of some annoying complex
arithmetic calculations, especially when

( q
2
)2

+
( p

3
)3

< 0, which is known as the “Casus
Irreducibilis” [7] (p. 19); likewise, in historical terms, this special case motivated the
definition and study of the complex number set C. Nevertheless, according to [9], there
exists an alternative trigonometric general formula, based also on the parameters given by
Equation (3), to solve the Casus Irreducibilis of the GCE; this is given as follows:

xk = 2
√
− p

3
cos

1
3

arccos

− q
2

√(
− 3

p

)3
+

2(k− 1)π
3

− b
3a

, where k = 1, 2, 3. (11)

Remark 1. Note that the inequality
( q

2
)2

+
( p

3
)3

< 0 holds whenever the following three inequalities
also hold:

(i) p < − 3
√

27
4 q2 ≤ 0 ,

(ii) −1 < − q
2

√(
− 3

p

)3
< 1 ,

(iii) 0 < arccos

{
− q

2

√(
− 3

p

)3
}

< π ;

meanwhile, the inequality
( q

2
)2

+
( p

3
)3

> 0 implies only one of the following three possibilities:

(iv) − q
2

√(
− 3

p

)3
∈ C−R whether p > 0 ,

(v) the expression− q
2

√(
− 3

p

)3
is undefined whether p = 0 ,

(vi)

∣∣∣∣∣− q
2

√(
− 3

p

)3
∣∣∣∣∣ > 1 whether − 3

√
27
4 q2 < p < 0 ;

hence, the expression arccos

{
− q

2

√(
− 3

p

)3
}

is not defined within set R for possibilities (iv)–(vi).

Therefore, the problem with Equation (11) is that it is almost always impractical for
solving the GCE when this one does not correspond to the Casus Irreducibilis. To illustrate
all the previously exposed difficulties in analytically solving cubic equations, consider the
equation x3 − 21x + 20 = 0, in which a = 1, b = 0, c = p = −21 and d = q = 20; it is clear
that the three roots of this equation are x1 = 4, x2 = −5 and x3 = 1, since this equation can
also be expressed as (x− 4)[x− (−5)](x− 1) = 0.

However, if Equation (1) is applied to this equation, then x1 =
3

√
− 20

2 +

√( 20
2
)2

+
(
−21

3

)3

+
3

√
− 20

2 −
√( 20

2
)2

+
(
−21

3

)3
− 0

3(1) =
3
√
−10 +

√
−243 +

3
√
−10−

√
−243; so, although
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the relation 3
√
−10 +

√
−243 +

3
√
−10−

√
−243 = 4 is true, its validity is not obvious, and

proving such numerical relations was an almost incomprehensible problem for the renaissance
mathematicians because these relations involved square roots of negative real numbers, which
were considered absurd at that time.

Nowadays, the resolution of this equation by applying Equations (1) and (2) implies
the application of some non-trivial tools of complex arithmetic, such as the De Moivre’s
Formulae [5] (p. 27), which can greatly complicate the resolution of this equation in
practical terms; fortunately, the resolution of this equation by applying Equation (11) just
requires verification (with the help of a modern calculator) of the following three relations:

x1 = 2
√
− (−21)

3 cos
[

1
3 arccos

{
− 20

2

√(
− 3
−21
)3
}
+ 2(1−1)π

3

]
− 0

3(1) = 2
√

7 cos[
1
3 arccos

(
− 10

7
√

7

)]
= 4, x2 = 2

√
− (−21)

3 cos
[

1
3 arccos

{
− 20

2

√(
− 3
−21
)3
}
+ 2(2−1)π

3

]
− 0

3(1)

= 2
√

7 cos
[

1
3 arccos

(
− 10

7
√

7

)
+ 2π

3

]
= −5 and x3 = 2

√
− (−21)

3 cos[
1
3 arccos

{
− 20

2

√(
− 3
−21
)3
}
+ 2(3−1)π

3

]
− 0

3(1) = 2
√

7 cos
[

1
3 arccos

(
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7
√

7

)
+ 4π

3

]
= 1.

On the other hand, consider the equation x3 − 9x + 28 = 0, in which a = 1, b = 0,
c = p = −9 and d = q = 28; so, if Equations (1) and (2) are applied to this equation, then

x1 =
3

√
− 28

2 +
√( 28

2
)2

+
(−9

3
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)
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(
− 1

2 ∓
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3
2 i
)
(−3) = 2±

√
3i; thus, it is clear that this equation

can be easily solved by Equations (1) and (2).

However, if Equation (11) is applied to this new equation, then xk = 2
√
− (−9)

3 cos[
1
3 arccos

{
− 28

2

√(
− 3
−9
)3
}
+ 2(k−1)π

3

]
− 0

3(1) = 2
√

3 cos
[

1
3 arccos

(
− 14√

3

)
+ 2(k−1)π

3

]
, for

k = 1, 2, 3; now, note that
∣∣∣− 14√

3

∣∣∣ > 1, so arccos
(
− 14√

3

)
is not defined in R; in fact, the

study of complex analysis allows us to know that arccos
(
− 14√

3

)
∈ C−R. Therefore, the

application of Equation (11) in this case requires the use of trigonometric functions with
non-real complex arguments, which too extensively complicates in practical terms the
resolution of the equation in question.

Additionally, since the analytical solutions of some quartic equations imply the res-
olution of cubic equations, the problems exposed above extend to those equations as
well—this being the main motivation of this research. Finally, a new proof restricted to R
of Equation (11) is included in Appendix A.

2.1.2. The Discriminant and the Nature of the Roots of the General Cubic Equation

According to the theory of polynomial equations [7] (pp. 101–102), the discriminant of
any third-degree equation is defined as follows:

∆3 := [(u1 − u2)(u1 − u3)(u2 − u3)]
2, (12)

where u1, u2 and u3 are the three roots of the equation in question; so, if x1, x2 and x3
are the three roots of the GCE and y1, y2 and y3 are the three roots of the DCE, then all
these roots are related as follows: xk = yk − b

3a for each k ∈ {1, 2, 3}; thus, it is clear
that xi − xj = yi − yj for all i, j ∈ {1, 2, 3}. Hence, Equation (12) guarantees that the
discriminant of the GCE is identical to the discriminant of the DCE. On the other hand,
according to [2] (p. 49), the discriminant of the DCE is given as follows:

∆3 = −4p3 − 27q2 , (13)
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where p and q are determined by Equation (3); so, Equation (13) also gives the discriminant
of the GCE.

Remark 2. According to [7] (p. 103), Equation (12) also guarantees that the relation between the
discriminant and the nature of the roots of the GCE is given as follows:

(i) The GCE has three real roots whenever ∆3 ≥ 0;
(ii) The GCE has only one real root and a couple of non-real complex conjugate roots whenever

∆3 < 0.

additionally, ∆3 = 0 whenever the GCE has multiple roots; thus, ∆3 > 0 whenever the GCE has three
non-multiple real roots, and the GCE never has multiple non-real complex roots.

In addition, the following proposition states when the GCE has a couple of purely
imaginary roots.

Proposition 1. The GCE has one real root and a couple of purely imaginary conjugate roots if,
and only if, ad = bc and c

a > 0; also, these roots are given as follows: x1 = − b
a = − d

c and

x2,3 = ±
√

c
a i.

Proof. Suppose that the three roots of the GCE are given as follows: x1 = k
and x2,3 = ±mi, where k ∈ R and m ∈ R− {0}; then, this equation can be expressed as
follows: a(x− k)(x−mi)(x + mi) = ax3 − akx2 + am2x− akm2 = 0, so b = −ak, c = am2

and d = −akm2; thus, ad = a
(
−akm2) = (−ak)

(
am2) = bc and c

a = am2

a = m2 > 0
due to a 6= 0 6= m. Now, in order to prove the reciprocal, suppose that ad = bc and
c
a > 0; then, c 6= 0, b = ad

c and d = bc
a , so the GCE has the following two forms, si-

multaneously: ax3 + bx2 + cx + bc
a = ax2

(
x + b

a

)
+ c
(

x + b
a

)
= a

(
x + b

a

)(
x2 + c

a
)
= 0

and ax3 + ad
c x2 + cx + d = ax2

(
x + d

c

)
+ c
(

x + d
c

)
= a

(
x + d

c

)(
x2 + c

a
)

= 0; hence,

the roots of the GCE are given as follows: x1 = − b
a = − d

c and x2,3 = ±
√
− c

a ; there-
fore, the roots x2 and x3 are a pair of purely imaginary numbers because − c

a < 0,

thus x2 =
√

c
a i 6= x3 = −

√
c
a i. �

Example 1. Suppose that 5x3 − 3x2 + 15x − 9 = 0. Then a = 5, b = −3, c = 15 and
d = −9; so, it is clear that ad = bc = −45 and c

a = 3 > 0; therefore, Proposition 1 guarantees

x1 = − (−3)
5 = − (−9)

15 = 3
5 and x2,3 = ±

√
15
5 i = ±

√
3i. In fact, the given equation can also be

expressed as 5
(

x− 3
5
)(

x−
√

3i
)[

x−
(
−
√

3i
)]

= 0.

Finally, consider the following lemma that will also be very important in Section 3.1 in
order to avoid complex arithmetic during the resolution of quartic equations.

Lemma 1. If the GCE has three non-multiple real roots x1, x2 and x3; then

(i) x1 = max{x1, x2, x3}
(ii) x2 = min{x1, x2, x3}

Proof. Consider the following definition: θk := arccos

[
− q

2

√(
− 3

p

)3
]
+ 2(k− 1)π, then

Equation (11) can be rewritten as follows: xk = 2
√
− p

3 cos
(

θk
3

)
− b

3a , for k ∈ {1, 2, 3};
meanwhile, if the GCE has three non-multiple real roots, then Remark 2 guarantees
∆3 > 0, so Equation (13) implies

( q
2
)2

+
( p

3
)3

= − ∆3
108 < 0; hence, (iii) of Remark 1

guarantees 0 < θ1 < π, which implies these other two inequalities: 2π < θ1 + 2π =

θ2 < 3π and 4π < θ1 + 4π = θ3 < 5π; thus, 0 < θ1
3 < π

3 , 2π
3 < θ2

3 < π and
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4π
3 < θ3

3 < 5π
3 ; ergo, the three previous inequalities imply these other ones, respectively:

1
2 < cos

(
θ1
3

)
< 1, −1 < cos

(
θ2
3

)
< − 1

2 and − 1
2 < cos

(
θ3
3

)
< 1

2 , which guarantee the
following relation:

cos
(

θ2

3

)
< cos

(
θ3

3

)
< cos

(
θ1

3

)
. (14)

On the other hand, (i) of Remark 1 guarantees p < 0, which implies
√
− p

3 ∈ R

and
√
− p

3 > 0; hence, this inequality and Equation (14) implies 2
√
− p

3 cos
(

θ2
3

)
<

2
√
− p

3 cos
(

θ3
3

)
< 2

√
− p

3 cos
(

θ1
3

)
, which also implies 2

√
− p

3 cos
(

θ2
3

)
− b

3a <

2
√
− p

3 cos
(

θ3
3

)
− b

3a < 2
√
− p

3 cos
(

θ1
3

)
− b

3a ; therefore, the previous relation and Equation
(11) guarantee x2 < x3 < x1, so x1 = max{x1, x2, x3} and x2 = min{x1, x2, x3}. �

2.1.3. The Cases of the General Cubic Equation with Multiple Roots

Since Remark 2 allows us to know if the GCE has multiple roots, the following
proposition allows us to know how many multiple roots it has and how to obtain them.

Proposition 2. If ∆3 = 0, then the three roots of the GCE are given as follows:

(i) If Equation (3) imply p 6= 0 6= q, then x1 = − 3
√

4q− b
3a 6= x2 = x3 = 3

√
q
2 −

b
3a .

(ii) If Equation (3) imply p = q = 0, then x1 = x2 = x3 = − b
3a .

Proof. First of all, note that Equation (13) can be rewritten as ∆3 = −108
[( q

2
)2

+
( p

3
)3
]
;

thus, ∆3 = 0 whenever
( q

2
)2

+
( p

3
)3

= 0; therefore,

(i) If p 6= ∆3 = 0 6= q, then 3

√
− q

2 ±
√( q

2
)2

+
( p

3
)3

= 3
√
− q

2 6= 0; so, Equations (1) and (2)

imply x1 = 3
√
− q

2 +
3
√
− q

2 −
b

3a = 2 3
√
− q

2 −
b

3a = − 3
√

4q− b
3a and x2,3 =

(
− 1

2 ±
√

3
2 i
)

3
√
− q

2 +
(
− 1

2 ∓
√

3
2 i
)

3
√
− q

2 −
b

3a = − 3
√
− q

2 −
b

3a = 3
√

q
2 −

b
3a ; in addition, note that

q 6= 0 implies − 3
√

4q 6= 3
√

q
2 , which finally guarantees x1 6= x2 = x3.

(ii) If ∆3 = p = q = 0, then 3

√
− q

2 ±
√( q

2
)2

+
( p

3
)3

= 0; so, Equations (1) and (2) imply

x1 = 0 + 0− b
3a = − b

3a and x2,3 =
(
− 1

2 ±
√

3
2 i
)
(0) +

(
− 1

2 ∓
√

3
2 i
)
(0)− b

3a = − b
3a . �

Example 2. Suppose that 2x3 − 9x2 + 12x − 4 = 0, then a = 2, b = −9, c = 12 and
d = −4; so, Equations (3) and (13) imply p = − 3

4 6= 0, q = 1
4 6= 0 and ∆3 = −4

(
− 3

4
)3 −

27
(
− 1

4

)2
= 0; therefore, (i) of Proposition 2 implies x1 = − 3

√
4
(

1
4

)
− (−9)

3(2) = −1 + 3
2 = 1

2 and

x2 = x3 =
3
√

(1/4)
2 − (−9)

3(2) = 1
2 + 3

2 = 2. In fact, the given equation can also be expressed as

2
(

x− 1
2

)
(x− 2)2 = 0.

Example 3. Suppose that x3 + 12x2 + 48x + 64 = 0, then a = 1, b = 12, c = 48 and d = 64; so,
Equations (3) and (13) imply p = q = ∆3 = 0; therefore, Proposition 2 implies x1 = x2 = x3 =

− 12
3(1) = −4. In fact, the given equation can also be expressed as [x− (−4)]3 = 0.

Finally, an alternative version of (i) of Proposition 2 is also exposed in Appendix A.
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2.1.4. A General Analytical Solution for the Third-Degree Equations in Practical Terms

Now, in order to establish a general and actually practical analytical solution of the
GCE, consider the following lemma:

Lemma 2. (Theorem of Interdependence between the Roots of the GCE) Suppose that xr is one of
the three roots of the GCE, then its other two roots are given as follows:

x =
−(axr + b)±

√
b2 − 4ac− (3a2x2

r + 2abxr)

2a
. (15)

Proof. If xr is a root of the GCE, then ax3
r + bx2

r + cxr + d = 0, so d = −ax3
r − bx2

r − cxr;
ergo, the GCE can be expressed as follows:

ax3 + bx2 + cx + d = ax3 + bx2 + cx− ax3
r − bx2

r − cxr = a
(
x3 − x3

r
)
+ b
(

x2 − x2
r
)
+ c(x− xr) =

(x− xr)
[
a
(

x2 + xrx + x2
r
)
+ b(x + xr) + c

]
= (x− xr)

[
ax2 + (axr + b)x +

(
ax2

r + bxr + c
)]

= 0 .
(16)

So, Equation (16) guarantees that the other two roots of the GCE are the two roots of
the SDE given as follows: ax2 + (axr + b)x +

(
ax2

r + bxr + c
)
= 0; therefore, Equation (15)

is obtained after applying the quadratic Formula to this SDE. �

Since Equation (2) inevitably implies the application of complex arithmetic operations
to solve the GCE, Lemma 2 will be very useful for avoiding those operations during the
resolution of any third-degree equation; in addition, note that if xr = 0 in Equation (15),
then this one is reduced to the quadratic formula because this happens whenever d = 0; so,
in this case, the GCE is reduced to ax3 + bx2 + cx = x

(
ax2 + bx + c

)
= 0.

Theorem 1. If p and q are the coefficients of the DCE, then the three roots of the corresponding
GCE can be analytically obtained without complex arithmetic operations as follows:

(i) If ∆3 ≤ 0, then x1 =
3

√
− q

2 +
√
− ∆3

108 +
3

√
− q

2 −
√
− ∆3

108 −
b

3a .

(ii) If ∆3 > 0, then x1 = 2
√
− p

3 cos

[
1
3 arccos

{
− q

2

√(
− 3

p

)3
}]
− b

3a .

(iii) x2,3 =
−(ax1+b)±

√
b2−4ac−(3a2x2

1+2abx1)
2a , for any ∆3 ∈ R.

Proof. (i) If Equations (3) and (13) imply ∆3 ≤ 0, then
( q

2
)2

+
( p

3
)3

= − ∆3
108 ≥ 0 and√

− ∆3
108 ∈ R; so, in this case, Equation (1) allows us to obtain x1 without complex arithmetic

operations as follows: x1 =
3

√
− q

2 +
√
− ∆3

108 +
3

√
− q

2 −
√
− ∆3

108 −
b

3a .

(ii) If Equations (3) and (13) imply ∆3 > 0, then, according to (ii) and (iii) of Remark 1,

the relation
( q

2
)2

+
( p

3
)3

= − ∆3
108 < 0 guarantees −1 < − q

2

√(
− 3

p

)3
< 1 and

0 < arccos

{
− q

2

√(
− 3

p

)3
}

< π; so, if k = 1 in Equation (11), then this one allows us

to obtain x1 for this case, without complex arithmetic operations.
(iii) Note that (i) and (ii) guarantee x1 ∈ R for any case of the GCEs, so if xr = x1

in Equation (15), then this one will always allow us to obtain x2 and x3 without complex
arithmetic, even when the GCE has a couple of non-real complex conjugate roots. �

Remark 3. Although Remark 1 guarantees that Equation (11) also allows us to obtain x2 and x3
without complex arithmetic operations whenever ∆3 > 0, (iii) of Theorem 1 will always be easier to
apply in practical terms because it works only with real basic arithmetic operations.
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Example 4. Suppose that 20x3 − 76x2 + 53x − 15 = 0, then a = 20, b = −79,
c = 53 and d = −15; so, Equations (3) and (13) imply p = − 649

300 , q = − 9841
6750 and

∆3 = −4
(
− 649

300

)3
− 27

(
− 9841

6750

)2
= − 168921

10000 < 0; therefore, (i) and (iii) of Theorem 1 imply x1 =

3

√
− (− 9841

6750 )
2 +

√
− (− 168921

10000 )
108 +

3

√
− (− 9841

6750 )
2 −

√
− (− 168921

10000 )
108 − (−76)

3(20) = 3
√

9841
13500 + 137

200
√

3
+

3
√

9841
13500 −

137
200
√

3
+ 19

15 = 26
15 + 19

15 = 3 and

x2,3 =
−[20(3)+(−76)]±

√
(−76)2−4(20)(53)−[3(20)2(3)2+2(20)(−76)(3)]

2(20) = 16±
√
−144

40 = 2
5 ±

3
10 i. In

fact, the given equation can also be expressed as 20(x− 3)
[
x−

( 2
5 + 3

10 i
)][

x−
( 2

5 −
3

10 i
)]

= 0.

Example 5. Suppose that 15x3 + 94x2 − 75x + 14 = 0, then a = 15, b = 94,
c = −75 and d = 14; so, Equations (3) and (13) imply p = − 12211

675 , q = 2697968
91125 and

∆3 = −4
(
− 12211

675

)3
− 27

( 2697968
91125

)2
= 662596

50625 > 0; therefore, (ii) and (iii) of Theorem 1 imply

x1 = 2

√
− (− 12211

675 )
3 cos

 1
3 arccos

− ( 2697968
91125 )

2

√(
− 3
{− 12211

675 }

)3

− 94

3(15) = 2
(√

12211
45

)
cos[

1
3 arccos

(
− 1348984

12211
√

12211

)]
− 94

45 = 2
√

12211
45

(
56√

12211

)
− 94

45 = 112
45 −

94
45 = 2

5 and

x2,3 =
−[15( 2

5 )+94]±
√

942−4(15)(−75)−
[
3(15)2( 2

5 )
2
+2(15)(94)( 2

5 )
]

2(15) = −100±110
30 ; thus, according to

Lemma 1, x2 = −100−110
30 = −7 and x3 = −100+110

30 = 1
3 . In fact, the given equation can also be

expressed as 15
(

x− 2
5
)
[x− (−7)]

(
x− 1

3

)
= 0.

Finally, note that (i) of Theorem 1 coincides with Proposition 1 whenever ∆3 = 0;
however, the equivalence between (iii) of Theorem 1 and Proposition 1 when ∆3 = 0 is not
so obvious; therefore, this equivalence is proven in Appendix B.

2.2. The Definition and Relevance of the Standard Form of the Resolvent Cubic
2.2.1. The Difference between “Resolvent Cubic” and “SFRC”

First of all, here, it is important to say that one of the main purposes of this work is to
expose the need to establish the SFRC as the most relevant form of the resolvent cubic over
any other known form of this third-degree equation; so, in this paper, “SFRC” is always
referred to this specific form of the resolvent cubic, which is given as follows:

RC(s) = 0, where RC(s) := s3 + 2ps2 +
(

p2 − 4r
)

s− q2 , (17)

being p, q and r the coefficients of the DQE; meanwhile, “Resolvent Cubic” is here referred
to any form of this equation, which can be expressed in general as follows:

a2RC(a1t + a0) = 0, for some a0 ∈ R and a1, a2 ∈ R− {0}; (18)

so, it is clear that the roots of the resolvent cubic and the roots of the SFRC are related in
general as follows:

tk =
sk − a0

a1
, for each k ∈ {1, 2, 3}. (19)

Likewise, according to [6], the forms of the resolvent cubic with a0 6= 0 in Equation (18)
are considered as “the translated forms of the Resolven Cubic”, whereas the forms with
a0 = 0 are considered as “the non-translated forms of the Resolvent Cubic”; at first
sight, all these considerations might seem superfluous, but they become relevant since
the SFRC always has at least one positive real root for any Ferrari Case, as also stated
in [6]; so, according to Equation (19), this fact also holds for the non-translated forms of the
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resolvent cubic whenever a1 > 0; however, Equation (19) also implies that this fact does
not necessarily hold for the translated forms of this equation.

On the other hand, note that the coefficients p and q of the DCE given by Equation (3)
are different from the coefficients of the DQE given by Equations (4) and (5); hence, to
avoid confusions and ambiguities related to the SFRC, from now on, the relations stated in
Equation (3) will be laid out again according to the coefficients of the SFRC as follows:

p∗ := − p2 + 12r
3

and q∗ := −2p3 − 72pr + 27q2

27
, (20)

where p, q and r are given by Equations (4)–(6).
So, Equations (13) and (20) imply Equation (10), when p and q are respectively sub-

stituted by p∗ and q∗ in Equation (13); in addition, Propositions 1 and 2, Lemmas 1 and 2,
Theorem 1 and Remarks 1 and 2 also hold for the SFRC according to these changes.

2.2.2. The Discriminant of the GQE vs. the Discriminant of the Resolvent Cubic

In order to expose the general relationship between the discriminant of the GQE and
the discriminant of the resolvent cubic, consider the following theorem.

Theorem 2. If ∆RC is the discriminant of the resolvent cubic, then this quantity and the discrimi-
nant of the GQE are related in general as follows: ∆RC = ∆4

a6
1

, for some a1 ∈ R− {0}.

Proof. Since Equation (10) guarantees that the discriminant of the SFRC is identical to the
discriminant of the GQE, Equation (12) implies that the discriminant of the GQE and the dis-
criminant of the resolvent cubic are respectively given as follows:
∆4 = [(s1 − s2)(s1 − s3)(s2 − s3)]

2 and ∆RC = [(t1 − t2)(t1 − t3)(t2 − t3)]
2; additionally,

note that Equation (19) guarantees
si−sj

a1
= ti − tj, for all i, j ∈ {1, 2, 3} and some a1 ∈ R−

{0}; which finally implies ∆RC = [(t1 − t2)(t1 − t3)(t2 − t3)]
2 =

[(
s1−s2

a1

)(
s1−s3

a1

)(
s2−s3

a1

)]2

= [(s1−s2)(s1−s3)(s2−s3)]
2

(a3
1)

2 = ∆4
a6

1
. �

Note that Theorem 2 guarantees that the discriminant of the Resolvent Cubic and the
discriminant of the GQE coincide only when at least one of the two following possibilities
occurs: ∆RC = ∆4 = 0 or a1 = ±1; thus, it is clear that the first possibility happens for
any form of the resolvent cubic whenever this one and the GQE have multiple roots, as
previously known [6]; on the other hand, the second possibility occurs in general only for
some specific forms of the Resolvent Cubic.

2.2.3. Defining the Standard Form of the Resolvent Cubic

According to [6,10,11], all the known forms of the resolvent cubic are listed as follows:

(i) The SFRC given by Equation (17), where a0 = a1 = 1, a2 = 0 and ∆RC ≡ ∆4.
(ii) RC(t− p) = t3 − pt2 − 4rt +

(
4pr− q2) = 0, so a0 = −p and a1 = a2 = 1; thus,

Theorem 2 also guarantees ∆RC ≡ ∆4, whereas Equation (19) implies that its roots
and the roots of the SFRC are related as follows: tk = sk + p, for each k ∈ {1, 2, 3}.

(iii) RC(2t) = 8t3 + 8pt2 +
(
2p2 − 8r

)
t − q2 = 0, so a0 = 0, a1 = 2 and a2 = 1; thus,

Theorem 2 and Equation (10) imply ∆RC = ∆4
26 =

4(p2+12r)
3−[2p(p2−36r)+27q2]

2

1728 6≡ ∆4,
whereas Equation (19) implies that its roots and the roots of the SFRC are related as
follows: tk =

sk
2 , for each k ∈ {1, 2, 3}.

(iv) RC(2t− p) = 8t3 − 4pt2 − 8rt +
(
4pr− q2) = 0, so a0 = −p, a1 = 2 and a2 = 1; thus,

Theorem 2 and Equation (10) also imply ∆RC = ∆4
26 =

4(p2+12r)
3−[2p(p2−36r)+27q2]

2

1728 6≡
∆4, whereas Equation (19) implies that its roots and the roots of the SFRC are related
as follows: tk =

sk+p
2 , for each k ∈ {1, 2, 3}
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(v) 1
64 RC(4t) = t3 + p

2 t2 +
(

p2

16 −
r
4

)
t − q2

64 = 0, so a0 = 0, a1 = 4 and a2 = 1
64 ; thus,

Theorem 2 and Equation (10) imply ∆RC = ∆4
46 =

4(p2+12r)
3−[2p(p2−36r)+27q2]

2

110592 6≡ ∆4,
whereas Equation (19) implies that its roots and the roots of the SFRC are related as
follows: tk =

sk
4 , for each k ∈ {1, 2, 3}.

(vi) −RC(−t) = t3 − 2pt2 +
(

p2 − 4r
)
t + q2 = 0, so a0 = 0 and a1 = a2 = −1 ; thus,

Theorem 2 also implies ∆RC ≡ ∆4, whereas Equation (19) implies that its roots and
the roots of the SFRC are related as follows: tk = −sk, for each k ∈ {1, 2, 3}.
Hence, Theorem 2 guarantees that the forms (i), (ii) and (vi) of the resolvent cubic are

the only ones in which ∆RC ≡ ∆4; therefore, the SFRC can be defined as the only form of
the resolvent cubic that has the following two properties at the same time:

• Property I. Its discriminant is identical to the discriminant of the GQE.
• Property II. It always has at least one positive real root when the GQE corresponds to

the Ferrari Case.

Although the forms (ii) and (vi) also have Property I, Property II does not necessarily
hold for form (ii) because Equation (19) guarantees tk > p whenever sk > 0, and p can
be any real number; on the other hand, for form (vi), Equation (19) guarantees tk < 0
whenever sk > 0; in other words, if the SFRC has Property II, then form (vi) always has at
least one negative real root whenever the GQE corresponds to the Ferrari Case, whereas
the Viète Theorem guarantees the relation q2 = −s1s2s3 > 0 in form (vi); hence, the law of
signs and the properties of non-real complex numbers guarantee that the other two roots
of this form of the resolvent cubic can be real with the same signs (both positive or both
negative) or a couple of non-real complex conjugate numbers, because the product of this
kind of couples are always a positive real number [12] (p. 99), so form (vi) cannot have
Property II either.

So, Equation (17) is the only one that has Properties I and II simultaneously, and
this simultaneity guarantees the unicity of the SFRC; finally, the strongest justifications to
consider the SFRC as the most relevant form of the resolvent cubic are listed as follows:

• All the known forms of the resolvent cubic can be expressed in terms of the function RC.

• As stated in [6], Property II guarantees that the GQE can always be analytically solved
without complex arithmetic, even when this equation has non-real roots.

• As it will be exposed in the next subsection, the SFRC is fundamental to determine
all the relationships between the nature of the roots of the GQE and the nature of the
roots of all the forms of the resolvent cubic.

2.3. The Relationship between the Nature of the Roots of the Resolvent Cubic and the Nature of the
Roots of the General Quartic Equation
2.3.1. The Configuration of the GQE According to the Nature of its Roots

According to [13], there are only three possibilities in general for the nature of the
roots of the GQE in terms of real and non-real complex roots, which are listed as follows:

1. The four roots of the GQE are all real.
2. Only two of the four roots of the GQE are real, and the other two are a couple of

non-real complex conjugate numbers.
3. The four roots of the GQE conform a pair of couples of non-real complex conjugate

numbers.

However, the resolvent cubic is not even mentioned in [13] because the analysis stated
in that document is purely geometrical, unlike the analysis exposed here, which is mainly
algebraic, and it will reveal that some of the relationships between the nature of the roots
of the GQE and the nature of the roots of its resolvent cubic are determined by the signs
of the roots of the SFRC, when this one has three real roots. Now consider the following
lemma that will be very useful for the subsequent subsubsections.
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Lemma 3. If the GQE corresponds to the Ferrari Case and s1 > 0 is one of the three roots of its
SFRC, then the roots of this third-degree equation are related as follows:

s2,3 =
−(2p + s1)±

√
(2p + s1)

2 − α2
s

2
, with αs = −

2q√
s1

. (21)

Proof. If the GQE corresponds to the Ferrari Case and s1 > 0 is a root of the corresponding
SFRC with αs = − 2q√

s1
in agreement with Equation (8), then s3

1 + 2ps2
1 +

(
p2 − 4r

)
s1 = q2 6=

0 and αs ∈ R− {0}; thus, these facts imply α2
s =

(
− 2q√

s1

)2
= 4q2

s1
=

4[s3
1+2ps2

1+(p2−4r)s1]
s1

=

4
(
s2

1 + 2ps1 + p2 − 4r
)
> 0; therefore,

(2p + s1)
2 − α2

s = (2p + s1)
2 − 4

(
s2

1 + 2ps1 + p2 − 4r
)
= 16r− 4ps1 − 3s2

1 . (22)

On the other hand, if Lemma 2 is applied to the SFRC with a = 1, b = 2p, c = p2 − 4r
and xr = s1, then:

s2,3 =
−[(1)s1 + 2p]±

√
(2p)2 − 4(1)(p2 − 4r)−

[
3(1)2s2

1 + 2(1)(2p)s1

]
2(1)

=
−(2p + s1)±

√
16r− 4ps1 − 3s2

1

2
; (23)

hence, Equations (22) and (23) imply Equation (21). �

Since Property II guarantees that Lemma 3 holds for all the non-biquadratic quartic
equations, this lemma will be very useful to determine the relationships between the nature
of the roots of the GQE and the nature of the roots of the resolvent cubic.

2.3.2. How Do the Roots of the Resolvent Cubic Determine Whether All the Roots of the
GQE Are of the Same Nature?

Lemma 4. If the GQE does not have multiple roots, then it has four real roots or four non-real
complex roots if, and only if, its resolvent cubic has three non-multiple real roots.

Proof. Let k, l, m and n be real numbers such that the GQE can be expressed as follows:

a
(

x2 − kx + l
)(

x2 −mx + n
)
= ax4 − a(k + m)x3 + a(km + l + n)x2 − a(kn + lm)x + aln = 0; (24)

thus, Equation (24) and the quadratic formula imply that the four roots of the GQE are
given as follows:

x1,2 =
k±
√

k2 − 4l
2

and x3,4 =
m±
√

m2 − 4n
2

. (25)

Meanwhile, the coefficients of Equation (24) imply the following relations:
b = −a(k + m), c = a(km + l + n), d = −a(kn + lm) and e = aln; hence, these relations
and Equations (4)–(6) imply these other relations:

p =
8a[a(km + l + n)]− 3[−a(k + m)]2

8a2 = −1
4

[
(k−m)2

2
+
(

k2 − 4l
)
+
(

m2 − 4n
)]

, (26)
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q =
[−a(k + m)]3 − 4a[−a(k + m)][a(km + l + n)] + 8a2[−a(kn + lm)]

8a3 = −
(k−m)

[(
k2 − 4l

)
−
(
m2 − 4n

)]
8

, (27)

r = 16a[−a(k+m)]2[a(km+l+n)]−64a2[−a(k+m)][−a(kn+lm)]−3[−a(k+m)]4+256a3(aln)
256a4 =

[(k−m)2−4(k2−4l)][(k−m)2−4(m2−4n)]
256 . (28)

Now, consider the following three definitions:

δ1 := k−m, δ2 := k2 − 4l and δ3 := m2 − 4n; (29)

therefore, Equations (26)–(29) imply the following relations:

p = −1
4

(
δ2

1
2
+ δ2 + δ3

)
, q = − δ1(δ2 − δ3)

8
and r =

(
δ2

1 − 4δ2
)(

δ2
1 − 4δ3

)
256

(30)

so, Equations (10) and (30) imply that the discriminant of the GQE and of the SFRC is given
as follows:

∆4 =
4(p2+12r)

3−[2p(p2−36r)+27q2]
2

27 = 1
27

(
4

[{
− 1

4

(
δ2

1
2 + δ2 + δ3

)}2
+ 12

{
(δ2

1−4δ2)(δ2
1−4δ3)

256

}3
−[

2
{
− 1

4

(
δ2

1
2 + δ2 + δ3

)}({
− 1

4

(
δ2

1
2 + δ2 + δ3

)}2
− 36

{
(δ2

1−4δ2)(δ2
1−4δ3)

256

})
+ 27

{
− δ1(δ2−δ3)

8

}2
]2
 =

δ8
1 δ2δ3−4δ6

1 δ2
2 δ3+6δ4

1 δ3
2 δ3−4δ2

1 δ4
2 δ3+δ5

2 δ3−4δ6
1 δ2δ2

3+4δ4
1 δ2

2 δ2
3+4δ2

1 δ3
2 δ2

3−4δ4
2 δ2

3+6δ4
1 δ2δ3

3+4δ2
1 δ2

2 δ3
3+6δ3

2 δ3
3−4δ2

1 δ2δ4
3−4δ2

2 δ4
3+δ2δ5

3
256 =

δ2δ3

[
{δ2

1−(δ2+δ3)}2−4δ2δ3

]2

256 .

(31)

Now, note that Theorem 2 and Remark 2 guarantee that the resolvent cubic has three non-
multiple real roots whenever ∆4 > 0; on the other hand, it is clear that the three definitions

given by Equation (29) guarantee δ1, δ2, δ3 ∈ R; additionally,
[{

δ2
1 − (δ2 + δ3)

}2 − 4δ2δ3

]2
>

0 and δ2δ3 6= 0 in Equation (31) whenever ∆4 6= 0. Therefore, ∆4 > 0 whenever δ2δ3 > 0, that
is, when k2− 4l > 0 and m2− 4n > 0 or when k2− 4l < 0 and m2− 4n < 0; so, Equation (25)
guarantee that this happens whenever x1, x2, x3, x4 ∈ R or x1, x2, x3, x4 ∈ C−R. �

Theorem 3. If the GQE has four real roots or four non-real complex roots, then its resolvent cubic
has three real roots.

Proof. Lemma 4 guarantees this for the cases without multiple roots; in addition, this fact
was proven for the cases with multiple roots in [6]. �

Remark 4. According to [6], the reciprocal of Theorem 3 does not hold in general because for all the
quartic equations of the form a(x− l)2(x−m)(x− n) = 0, with l ∈ R and m, n ∈ C−R, such
that m = n, the SFRC has the form (s− v)(s− w)2 = 0, with v, w ∈ R, such that v ≥ 0 and
w < 0, being that this is the only case of the GQE with multiple roots that has this characteristic.
So, Equation (19) guarantees that this is the only case of the GQE where its resolvent cubic has three
real roots, but not all the roots of the GQE are of the same nature.

Corollary 1. If the SFRC has three real roots and these ones are not negative multiple roots, then
the corresponding GQE has four real roots or four non-real complex roots.

Proof. This is an immediate consequence of Lemma 4 and Remark 4. �



Mathematics 2023, 11, 1447 15 of 34

Theorem 4. If ∆4 > 0, then:

(i) The GQE has four non-multiple real roots if, and only if, the SFRC has three different non-
negative real roots.

(ii) The four roots of the GQE are two different couples of non-real complex conjugate numbers if,
and only if, the SFRC has three different real roots and at least one of them is negative.

Proof. Biquadratic Case. If q = 0, then the SFRC is reduced to the equation s3 + 2ps2 +(
p2 − 4r

)
s = s

[
s2 + 2ps +

(
p2 − 4r

)]
= 0, so the quadratic formula implies that the three

roots of the SFRC are s1 = 0 and s2,3 = −p± 2
√

r; thus, Remark 2 guarantees that ∆4 > 0
implies s2, s3 ∈ R− {0} and r > 0 because s2 6= s3; in addition, the GQE does not have
multiple roots. Therefore, Equations (8) and (9) imply that the four roots of the GQE are
given as follows:

x1,3 =

√
−p + 2

√
r±

√
−p− 2

√
r

2
− b

4a
=

√
s2 ±
√

s3

2
− b

4a
and x2,4 =

−
√
−p + 2

√
r±

√
−p− 2

√
r

2
− b

4a
=
−√s2 ±

√
s3

2
− b

4a
; (32)

now consider the following three subcases:

• The SFRC has three non-negative real roots whenever s2 > 0 and s3 > 0; thus,
Equation (32) guarantees that this occurs if, and only if, the four roots of the GQE are
all real.

• The SFRC has only one negative real root whenever s2 = −p + 2
√

r > 0 > −p −
2
√

r = s3; so, according to Equation (32), this happens whenever the four roots of the
GQE are two different couples of non-real complex conjugate numbers with the same
imaginary parts.

• If the SFRC has two different negative real roots, then 0 > s2 = −p + 2
√

r > −p−
2
√

r = s3, thus 0 6=
√
|s2| −

√
|s3| 6=

√
|s2|+

√
|s3| > 0; hence, Equation (32) implies

x1,4 = − b
4a ±

√
|s2|+
√
|s3|

2 i and x2,3 = − b
4a ±

√
|s2|−
√
|s3|

2 i, so x1, x2, x3, x4 ∈ C− R.
Therefore, the SFRC has two different negative real roots whenever the four roots of
the GQE are two different couples of non-real complex conjugate numbers with the
same real parts.

Ferrari Case. According to Property II, the SFRC has at least one positive real root
s1; thus,

√
s1 ∈ R, and the other two roots of the SFRC are given by Equation (21); now

consider the following two definitions: β1 := αs − 2p− s1 and β2 := −αs − 2p− s1. Hence,
β1β2 = [−(2p + s1) + αs][−(2p + s1)− αs] = (2p + s1)

2 − α2
s , so Equation (21) can be

rewritten as follows:

s2,3 =
−(2p + s1)±

√
β1β2

2
; (33)

in addition, Equation (9) implies that the four roots of the GQE are given as follows:

x1,3 =

√
s1 ±

√
β1

2
− b

4a
and x2,4 =

−√s1 ±
√

β2

2
− b

4a
. (34)

So, if ∆4 > 0, then Property I and Remark 2 guarantee that the SFRC has three non-
multiple real roots, thus β1β2 > 0 in Equation (33); hence, this happens whenever only one
of the following two possibilities occurs:

(i) β1 > 0 and β2 > 0, simultaneously.
(ii) β1 < 0 and β2 < 0, simultaneously.
Therefore, Equation (34) guarantees x1, x2, x3, x4 ∈ R for possibility (i), and x1, x2, x3,

x4 ∈ C−R for possibility (ii); now, the Viète Theorem guarantees q2 = s1s2s3 > 0; ergo,
s1 > 0 and the law of signs implies these other two possibilities:

(iii) s2 > 0 and s3 > 0, simultaneously.
(iv) s2 < 0 and s3 < 0, simultaneously.
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So, possibility (i) implies 0 < β1+β2
2 = (αs−2p−s1)+(−αs−2p−s1)

2 = −(2p + s1); hence,
this inequality and β1β2 > 0 guarantee −(2p + s1) +

√
β1β2 > 0, so Equation (33) implies

s2 > 0, whereas possibility (iii) guarantees s3 > 0 as well. On the other hand, possibil-
ity (ii) implies 0 > β1+β2

2 = −(2p + s1); hence, this inequality and β1β2 > 0 guarantee
−(2p + s1)−

√
β1β2 < 0, so Equation (33) implies s3 < 0, whereas possibility (iv) guar-

antees s2 > 0 as well. Therefore, ∆4 6= 0, and Equation (34) with possibilities (i) and
(iii) guarantees x1, x2, x3, x4 ∈ R all different from each other whenever s2 > 0 and s3 > 0;
whereas ∆4 6= 0 and Equation (34) with possibilities (ii) and (iv) guarantee that x1, x2, x3,
x4 are two different couples of non-real complex conjugate numbers whenever s2 < 0 and
s3 < 0. �

Corollary 2. The GQE has four real roots if, and only if, the SFRC has three non-negative real roots.

Proof. Theorem 4 guarantees this fact for the cases without multiple roots; in addition, this
fact was also proven for all the cases with multiple roots in [6]. �

2.3.3. How Do the Roots of the Resolvent Cubic Determine Whether the GQE Has Only
Two Real Roots?

Remark 4 gave a partial answer to this question, so in order to state a complete answer,
the following theorem is exposed.

Theorem 5. The GQE has two different real roots and two non-real complex conjugate roots if, and
only if, its resolvent cubic has one real root and two non-real complex conjugate roots.

Proof. If the GQE has two different real roots and two non-real complex conjugate roots,
then it does not have multiple roots; that is, ∆4 6= 0. On the other hand, Theorem 2 and
Remark 2 guarantee that ∆4 < 0 whenever the resolvent cubic has one real root and two
non-real complex conjugate roots, whereas δ2δ3 < 0 in Equation (31); in other words, when
only one of the following two possibilities occurs in Equation (25),

(i) k2 − 4l > 0 and m2 − 4n < 0, simultaneously.
(ii) k2 − 4l < 0 and m2 − 4n > 0, simultaneously.

So, possibility (i) occurs when x1, x2 ∈ R and x3, x4 ∈ C−R, such that x1 6= x2 and
x3 = x4; and possibility (ii) occurs when x1, x2 ∈ C−R and x3, x4 ∈ R, such that x1 = x2
and x3 6= x4. �

Note that Remark 4 also guarantees that Theorem 5 never holds for the case where
the two real roots of the GQE are multiple; however, the following corollary finally gives a
complete answer to the question of the title of this subsubsection.

Corollary 3. The GQE has two real roots and two non-real complex conjugate roots if, and only if,
only one of the following two possibilities occurs:

(i) The resolvent cubic has one real root and two non-real complex conjugate roots.
(ii) The SFRC has two multiple negative real roots.

Proof. This is an immediate consequence of Theorem 5 and Remark 4. �

2.4. How Does One Identify a Priori the Nature of the Roots of the GQE?

This question has been answered for all the cases of the GQE with multiple roots in [6].
However, the following results will help to give a complete answer to this question for any
case of the GQE.
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Theorem 6. If the GQE does not have multiple roots, then

(i) It has four real roots if, and only if, the following three inequalities hold simultaneously:(
p2 + 12r

)3
>
[
p
(

p2 − 36r
)
+ 27

2 q2]2,p < 0 andp2 > 4r.

(ii) It has two real roots and two non-real complex conjugate roots if, and only if,
(

p2 + 12r
)3

<[
p
(

p2 − 36r
)
+ 27

2 q2]2.

(iii) It has four non-real complex roots if, and only if,
(

p2 + 12r
)3

>
[
p
(

p2 − 36r
)
+ 27

2 q2]2 with
p ≥ 0 or with p2 ≤ 4r.

Proof. (i) First of all, note that Equation (10) guarantees ∆4 > 0 whenever
(

p2 + 12r
)3

>[
p
(

p2 − 36r
)
+ 27

2 q2]2, so Theorem 3 implies that this inequality also guarantees that all
the roots of the GQE are of the same nature, whereas the SFRC has three real roots.

Likewise, if the GQE has four real roots, then (i) of Theorem 4 guarantees that the
three real roots of the SFRC are non-negative; since the GQE does not have multiple
roots, at most one of these roots is equal to zero, whereas the other two roots must be
strictly positive. So, if these roots are s1 ≥ 0, s2 > 0 and s3 > 0; then, according to
the Viète Theorem, the following two inequalities hold: s1 + s2 + s2 = −2p > 0 and
s1s2 + s1s3 + s2s3 = p2 − 4r > 0; therefore, p < 0 and p2 > 4r. Now, in order to prove the
reciprocal, consider the following two cases:

Case 1. Suppose that p ≥ 0; then the relation s1 + s2 + s3 = −2p ≤ 0 implies
s1 ≤ −(s2 + s3); however, if (i) of Theorem 4 guarantees s1 ≥ 0, s2 > 0 and s3 > 0, then
0 ≤ s1 ≤ −(s2 + s3) < 0, which is an obvious contradiction.

Case 2. Suppose that p2 ≤ 4r; then the relation s1s2 + s1s3 + s2s3 = p2− 4r ≤ 0 implies
s1(s2 + s3) ≤ −s2s3; however, if (i) of Theorem 4 guarantees s1 ≥ 0, s2 > 0 and s3 > 0, then
0 ≤ s1(s2 + s3) ≤ −s2s3 < 0, so again, this is another obvious contradiction.

(ii) First of all, consider that Equation (10) guarantees ∆4 < 0 whenever
(

p2 + 12r
)3

<[
p
(

p2 − 36r
)
+ 27

2 q2]2, so the result in question is a consequence of (ii) of Remark 2 and
Theorem 5.

(iii) This is a consequence of (ii) of Theorem 4 and (i) of this theorem. �

Corollary 4. If the GQE does not have multiple roots, then

(i) It has four real roots if, and only if, the following three inequalities hold simultaneously:
∆4 > 0, p < 0 and p2 > 4r.

(ii) It has two real roots and two non-real complex conjugate roots if, and only if, ∆4 < 0.
(iii) It has four non-real complex roots if, and only if, ∆4 > 0 with p ≥ 0 or with p2 ≤ 4r.

Proof. This holds because of Theorem 6 and the validity of Equation (10). �

Corollary 5. If ∆4 > 0, then

(i) p < 0 and p2 > 4r if, and only if, the SFRC has three different non-negative real roots.
(ii) p ≥ 0 or p2 ≤ 4r if, and only if, the SFRC has three different real roots and at least one of

them is negative.

Proof. All these are consequences of Theorem 4 and Corollary 4. �

Corollary 6. If the GQE corresponds to the Ferrari Case and ∆4 > 0; then

(i) p < 0 and p2 > 4r if, and only if, the SFRC has three different positive real roots.
(i) p ≥ 0 or p2 ≤ 4r if, and only if, the SFRC has one positive real root and two different negative

real roots.

Proof. Since the Viète Theorem guarantees q2 = s1s2s3 > 0 in Equation (17) whenever the
GQE corresponds to the Ferrari Case, the law of signs guarantees that (i) of Corollary 5 holds
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whenever the SFRC has three different positive real roots; meanwhile, (ii) of Corollary 5 holds
whenever the SFRC has one positive real root and two different negative real roots. �

Proposition 3. If p = 0 and p2 = 4r, then ∆4 ≤ 0.

Proof. If p = 0 and p2 = 4r, then r = 0 as well; so, Equation (10) implies

∆4 =
4[0+12(0)]3−[(0){02−36(0)}+27q2]

2

27 = −27q4 ≤ 0. �

Remark 5. Note that Proposition 3 guarantees the impossibility of p = 0 and p2 = 4r at the same
time in (iii) of Theorem 6 and (iii) of Corollary 4.

Finally, the following theorem gives a complete and slightly more precise answer to
the question in the title of this subsection than what is stated in [13].

Theorem 7. The nature of the roots of the GQE can be identified a priori as follows:
The GQE has four real roots if, and only if, only one of the following two possibilities happens:
(i) ∆4 ≥ 0, p < 0 and p2 > 4r.
(ii) p ≤ 0 and p2 = 4r ≥ q = 0.

The GQE has two real roots and two non-real complex conjugate roots if, and only if, only one of the
following four possibilities happens:

(iii) ∆4 < 0.
(iv) ∆4 = 0, p ≥ q 6= 0 and r > 0.
(v) ∆4 = 0, p < q 6= 0 and p2 ≤ 4r.
(vi) p > q = r = 0.

The GQE has four non-real complex roots if, and only if, only one of the following four possibilities
happens:

(vii) ∆4 > 0, p ≥ 0 and p2 > 4r.
(viii) ∆4 > 0, p ≥ 0 and p2 < 4r.
(ix) ∆4 > 0, p < 0 and p2 ≤ 4r.
(x) p > 0 and p2 = 4r > q = 0.

Proof. (i) Theorem 6 and Corollary 4 guarantee this for ∆4 > 0, whereas ∆4 = 0 cor-
responds to the cases with multiple roots; so, according to [6], the GQE has the form
a(x− l)2(x−m)(x− n) = 0 with l, m, n ∈ R, such that all of them are different from
each other whenever p < q = r = 0 or p < 0 6= q with p2 > 4r; thus, possibility (i) also
holds with these conditions; in addition, the GQE has the form a(x− l)3(x−m) = 0 with l,
m ∈ R, such that l 6= m, whenever p2 = −12r > 0 and 27q2 = −8p3 > 0; so, it is clear that
possibility (i) also holds with these conditions.

(ii) According to [6], the GQE has the form a(x− l)2(x−m)2 = 0 with l, m ∈ R;
whenever p ≤ 0 and p2 = 4r ≥ q = 0, it does not matter whether l 6= m or l = m; and these
conditions do not correspond to any other possibility of this theorem.

(iii) This is guaranteed by (ii) of Corollary 4.
(iv)–(vi) According to [6], each of these different possibilities occurs whenever the

GQE has the form a(x− l)2(x−m)(x− n) = 0 with l ∈ R and m, n ∈ C−R, such that
m = n.

(vii)–(ix) These possibilities are guaranteed by (iii) of Corollary 4 and Proposition 3.
(x) According to [6], the GQE has the form a(x− l)2(x−m)2 = 0 with l
, m ∈ C− R, such that l = m, whenever p > 0 and p2 = 4r > q = 0; and these

conditions do not correspond to any other possibility of this theorem. �

Remark 6. Note that Equation (10) guarantees ∆4 = 0 in possibilities (ii), (vi) and (x) of Theorem
7, so this condition was not included in the mentioned possibilities due to its redundancy.
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3. Development of the Program and Results
3.1. How to Avoid Complex Arithmetic during the Resolution of the GQE?

In Section 2.1, it was exposed how to avoid complex arithmetic during the resolution
of the GCE; in addition, it is important to know how to avoid in general the application of
these kinds of operations during the resolution of the GQE in order to design an efficient
program that can solve all these equations without complex arithmetic. So, according to [6],
the following three facts related to the coefficients of the DQE guarantee that complex
arithmetic is also completely unneeded to analytically solve the GQE:

1. Equation (7) solves the GQE without dealing with the square roots of non-real complex
numbers whenever q = 0 with p2 ≥ 4r.

2. Equation (32) solves the GQE without dealing with the square roots of non-real
complex numbers whenever q = 0 with r ≥ 0.

3. Property II of the SFRC guarantees that Equation (9) can solve the GQE without
dealing with the square roots of non-real complex roots whenever q 6= 0.

Note that facts 1 and 2 guarantee that the GQE can always be solved while avoiding
complex arithmetic operations whenever this equation corresponds to the biquadratic case;
meanwhile, fact 3 guarantees this for the Ferrari Case; however, although the existence
of the SFRC’s root referred to in Property II was proven in [6], it was not explained how
to obtain in practical terms that root in that document; so, the following theorem finally
reveals how to always obtain this root effectively.

Theorem 8. Since the SFRC has at least one positive real root s1whenever the GQE corresponds to
the Ferrari Case, this root can always be obtained without complex arithmetic, as follows:

(i) If ∆4 ≤ 0, thens1 =
3

√
− q∗

2 +
√
− ∆4

108 +
3

√
− q∗

2 −
√
− ∆4

108 −
2p
3 > 0.

(ii) If ∆4 > 0, thens1 = 2
√
− p∗

3 cos

[
1
3 arccos

{
− q∗

2

√(
− 3

p∗

)3
}]
− 2p

3 > 0.

Proof. Since Property I guarantees that the discriminant of the GQE is identical to the
discriminant of the SFRC, consider the following three possible cases:

Case 1. If ∆4 < 0, then (ii) of Remark 2 guarantees that the SFRC has only one real
root and a couple of non-real complex conjugate roots; thus, Property II guarantees that the
only real root of the SFRC must be strictly positive; hence, Equations (4)–(6) and (20) and (i)
of Theorem 1 allow us to obtain this root without complex arithmetic operations as follows:

s1 =
3

√
− q∗

2 +
√
− ∆4

108 +
3

√
− q∗

2 −
√
− ∆4

108 −
2p
3 > 0.

Case 2. If ∆4 = 0, then the GQE and the SFRC have multiple roots, whereas Remark 2
guarantees that the three roots of the SFRC are all real; thus, according to [6], if the GQE
corresponds to the Ferrari Case, then there are only the following two possibilities:

• The three roots of the SFRC are all positive, so for this possibility the root s1 can be
obtained without complex arithmetic operations as in Case 1.

• Only one of the three roots of the SFRC is positive, whereas the other two are negative
and multiple; hence, Equations (4)–(6) and (20) and Proposition 2 imply that the roots
of the SFRC are given as follows for this possibility: s1 = − 3

√
4q∗ − 2p

3 > 0 and

s2 = s3 = 3
√

q∗
2 −

2p
3 < 0 ; now note that the first of these relations is equivalent to the

formula of Case 1 depending on whether (i) of Theorem 1 is applied to the SFRC with
∆3 = ∆4 = 0.

Finally, note that the possibility of two positive multiple roots and only one negative
root is disregarded here because the Viète Theorem and the law of signs would imply the
following contradictory relation in Equation (17): q2 = s1s2s3 < 0.
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Case 3. If ∆4 > 0, then the SFRC corresponds to the Casus Irreducibilis; so, according
to Remark 2, this equation has three non-multiple real roots. Additionally, all these roots
are other than zero depending on whether Equation (5) implies q 6= 0—that is, when the
GQE corresponds to the Ferrari Case. Thus, Equations (4)–(6), (11) and (20) imply that the
three roots of the SFRC can be obtained without complex arithmetic in the case as follows:

sk = 2

√
− p∗

3
cos
(

θk
3

)
− 2p

3
6= 0, where θk := arccos

− q∗

2

√(
− 3

p∗

)3
+ 2(k− 1)π, for k = 1, 2, 3. (35)

On the other hand, if Property II guarantees that the SFRC has at least one positive
real root for this case, then at least the greatest of the three real roots of the SFRC must
always be positive; that is, max{s1, s2, s3} > 0. Thus, (i) of Lemma 1 guarantees that this
root is given in general by Equation (35) whenever k = 1. �

Therefore, Theorem 8 and Equations (7)–(9) and (32) allow us to solve the GQE without
complex arithmetic operations, even when the GQE has non-real complex roots.

Example 6. Suppose that 2x4 − 12x3 + 15x2 + 6x− 8 = 0, then a = 2, b = −12, c = 15, d = 6
and e = −8; hence, Equations (4)–(6) imply ,p = −6, q = − 3

2 6= 0 and r = 35
16 , so Equation (10)

implies ∆4 =
4[(−6)2+12( 35

16 )]
3−
[
2(−6){(−6)2−36( 35

16 )}+27(− 3
2 )

2]2

27 = 47089
2 > 0. On the other

hand, note that p < 0 and p2 = 36 > 35
4 = 4r; so, (i) of Theorem 7 guarantees that the given

equation has four real roots; meanwhile, Equation (20) implies p∗ = − (−6)2+12( 35
16 )

3 = − 83
4 and

q∗ = − 2(−6)3−72(−6)( 35
16 )+27(− 3

2 )
2

27 = − 85
4 ; thus, (ii) of Theorem 8 implies s1 = 2

√
− (− 83

4 )
3 cos 1

3 arccos

− (− 85
4 )

2

√(
− 3
{− 83

4 }

)3

− 2(−6)

3 = 2
(

1
2

√
83
3

)
cos
[

1
3 arccos

(
255
83

√
3

83

)]
+ 4 =√

83
3

(
5
√

3√
83

)
+ 4 = 5 + 4 = 9 > 0; therefore, Equation (8) impliesαs = − 2(−3/2)√

9
= 1, so

Equation (9) impliesx =
ξ
√

9±
√

ξ(1)−2(−6)−9
2 − (−12)

4(2) = 3ξ+3±
√

ξ+3
2 ; hence, x1 = 3+3+

√
1+3

2 =

4, x2 = 3−3+
√

1+3
2 = 2 and x3,4 = −3+3±

√
−1+3

2 = ± 1√
2
. In fact, the given equation can also

be expressed as 2(x− 4)(x− 2)
(

x− 1√
2

)[
x−

(
− 1√

2

)]
= 0; finally, note that Lemma 3 implies

that the other two roots of the SFRC are s2,3 = 3
2 ±
√

2 > 0, which agrees with (i) of Theorem 4.

Example 7. Suppose that 5x4 − 57x3 + 216x2 + 2x− 816 = 0, then a = 5, b = −57, c = 216,
d = 2 and e = −816; hence, Equations (4)–(6) imply p = − 1107

200 , q = 61447
1000 6= 0 and

r = − 1454883
160000 , so Equation (10) implies ∆4 =

4
[
(− 1107

200 )
2
+12(− 1454883

160000 )
]3
−
[
2(− 1107

200 )
{
(− 1107

200 )
2−36(− 1454883

160000 )
}
+27( 61447

1000 )
2]2

27 = − 5556938723856
15625 < 0;

thus, (iii) of Theorem 7 guarantees that the given equation has only two real roots and a couple of non-
real complex conjugate roots. On the other hand, Equation (20) implies

q∗ = − 2(− 1107
200 )

3−72(− 1107
200 )(−

1454883
160000 )+27( 61447

1000 )
2

27 = − 90724
25 ; thus, (i) of Theorem 8 implies s1 =

3

√
− (− 90724

25 )
2 +

√
− (− 5556938723856

15625 )
108 +

3

√
− (− 90724

25 )
2 −

√
− (− 5556938723856

15625 )
108 − 2(− 1107

200 )
3 =

3
√

45362
25 + 130962

√
3

125 +
3
√

45362
25 −

130962
√

3
125 + 369

100 = 74
5 + 369

100 = 1849
100 > 0; therefore, Equation (8)

implies αs = − 2(61447/1000)√
1849/100

= − 1429
50 , so Equation (9) implies x =

ξ
√

1849
100 ±

√
ξ(− 1429

50 )−2(− 1107
200 )−

1849
100

2 − (−57)
4(5) = 43ξ+57

20 ± 1
2

√
−1429ξ−371

50 ; hence, x1,2 = 43+57
20 ±

1
2

√
−1429−371

50 = 5±
√
−36
2 = 5± 3i, x3 = −43+57

20 + 1
2

√
1429−371

50 = 7
10 + 1

2
( 23

5
)
= 3 and
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x4 = −43+57
20 − 1

2

√
1429−371

50 = 7
10 −

1
2
( 23

5
)
= − 8

5 . In fact, the given equation can also be

expressed as 5[x− (5 + 3i)][x− (5− 3i)](x− 3)
[
x−

(
− 8

5
)]

= 0; finally, note that Lemma 3
implies that the other two roots of the SFRC are s2,3 = − 371

100 ±
69
5 i ∈ C−R, which agree with

Theorem 5.

Example 8. Suppose that 4x4 + 4x3 + 17x2 + 4x + 13 = 0 , then a = b = d = 4 , c = 17
, d = 6 and e = 13; hence, Equations (4)–(6) imply p = 31

8 , q = −1 6= 0 and r = 833
256 , so

Equation (10) implies ∆4 =
4
[
( 31

8 )
2
+12( 833

256 )
]3
−
[
2( 31

8 )
{
( 31

8 )
2−36( 833

256 )
}
+27(−1)2

]2

27 = 28227
16 > 0.

On the other hand, note that p > 0 and p2 = 961
64 > 833

64 = 4r; so, (vii) of Theorem 7 guar-
antees that the given equation has four non-real complex roots; meanwhile, Equation (20) im-

plies p∗ = − ( 31
8 )

2
+12( 833

256 )
3 = − 865

48 and q∗ = − 2( 31
8 )

3−72( 31
8 )(

833
256 )+27(−1)2

27 = 24463
864 ; thus,

(ii) of Theorem 8 implies s1 = 2

√
− (− 865

48 )
3 cos

 1
3 arccos

− ( 24463
864 )
2

√(
− 3
{− 865

48 }

)3

− 2( 31

8 )
3

= 2
(√

865
12

)
cos
[

1
3 arccos

(
− 24463

865
√

865

)]
− 31

12 =
√

865
6

(
17√
865

)
− 31

12 = 17
6 −

31
12 = 1

4 > 0; there-

fore, Equation (8) implies αs = − 2(−1)√
1/4

= 4, so Equation (9) implies x =
ξ
√

1
4±
√

ξ(4)−2( 31
8 )−

1
4

2 −
4

4(4) = ξ−1
4 ±

√
4ξ−8
2 ; hence, x1,2 = 1−1

4 ±
√

4−8
2 = ±i and x3,4 = −1−1

4 ±
√
−4−8

2 = − 1
2 ±√

3i. In fact, the given equation can also be expressed as 4(x− i)[x− (−i)]
[

x−
(
− 1

2 +
√

3i
)]

[
x−

(
− 1

2 −
√

3i
)]

= 0; finally, note that Lemma 3 guarantees that the other two roots of the

SFRC are s2,3 = −4± 2
√

3 < 0, which agrees with (ii) of Theorem 4.

Remark 7. Note that if the GQE corresponds to the Ferrari Case, then the knowledge of ∆4 given
by Equation (10) implies that the application of Equation (20) to obtain p∗ is sometimes unneeded
to solve the GQE; that is, if ∆4 ≤ 0, then (i) of Theorem 8 requires only the obtention of q∗ to solve
the GQE (Example 7); meanwhile, if ∆4 > 0, then (ii) of Theorem 8 demands the obtention of p∗

and q∗ to solve the GQE (Examples 6 and 8).

Finally, it is important to point out that Equation (8) also theoretically works to solve
the GQE when s is a negative real number or when s ∈ C−R; however, if this happens,
then the resolution of the GQE implies the application of some annoying operations with
non-real complex numbers, such as divisions and square roots whose obtaining requires at
least the application of the result exposed in [5] (pp. 16–18), which complicates in practical
terms the resolution of the GQE. Thus, the importance of Theorem 8 lies in ensuring
that these uneasy complex arithmetic operations are always avoidable when the GQE
corresponds to the Ferrari Case.

3.2. Designing a Program That Analytically Solves the SDE, the GCE and the GQE without
Complex Arithmetic

It is clear that Proposition 1 gives an easy analytical solution to the GCE without
complex arithmetic operations when this equation has purely imaginary roots; in addition,
the formulae of Proposition 2 give an easy analytical solution to any case of the GCE
with multiple roots applying only real arithmetic operations; meanwhile, the formulae of
Theorem 1 can analytically solve all the other cases of the GCE without complex arithmetic
operations. On the other hand, the previous subsection exposes how to analytically solve
any case of the GQE without complex arithmetic operations; however, in order to make it
simpler, consider the following theorem.
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Theorem 9. If the GQE corresponds to the Ferrari Case, then the resolvent cubic and the GQE
always have the same number of multiple roots; in addition,

(i) These equations have exactly three multiple roots if, and only if, ∆4 = 0 and p2 = −12r;

meanwhile, the four roots of the GQE are given as follows: x1 = x2 = x3 =
√
− p

6 −
b

4a 6=

x4 = −
√
− 3p

2 −
b

4a whether q > 0, and x1 = x2 = x3 = −
√
− p

6 −
b

4a 6= x4 =√
− 3p

2 −
b

4a whether q < 0.
(ii) These equations have only two multiple roots if, and only if, ∆4 = 0 and p2 > −12r; mean-

while, the four roots of the GQE are given by the following general formula:

x = 1
2

[
ξ
√

s1 ±
√

2
(

s2 − ξq√
s1

)]
− b

4a , where s1 = 9q2−32pr
p2+12r > 0 and

s2 = − 2p(p2−4r)+9q2

2(p2+12r) 6= 0.

This theorem does not require any proof here, because all its affirmations have already
been proven in [6]; additionally, Theorem 9 and Equations (7) and (32) allow us to affirm
that the non-biquadratic quartic equations with non-multiple roots other than zero are the
only cases of the GQE in which the resolvent cubic is actually indispensable to analytically
solve the GQE; hence, Theorem 8 and Equations (8) and (9) will only be used here to solve
the GQE when this one corresponds to the Ferrari Case with non-multiple roots other than
zero; otherwise, the resolvent cubic will always be overlooked.

Now, in order to design a program that can analytically solve all algebraic equations
with real coefficients of the second, third and fourth degree, it is important to consider here
the SDE as any equation of the form ax2 + bx + c = 0, with a, b, c ∈ R and a 6= 0; so, it is
well known that the general solution for this equation is given by the quadratic formula [3],
which guarantees the following three cases of the SDE:

1. The quadratic equations with two different real roots (whenever b2 − 4ac > 0 ).
2. The quadratic equations with two multiple real roots (whenever b2 − 4ac = 0 ).
3. The quadratic equations with a couple of non-real complex conjugate roots (whenever

b2 − 4ac < 0).

Meanwhile, the GCE will be classified in the following four main cases:

1. The equations with multiple roots, which are easily solved by Proposition 2.
2. The equations with purely imaginary roots, which can be solved by Proposition 1.
3. The cubic equations that have zero as a non-multiple root so that these equations

are essentially quadratic equations; thus, these ones can be solved by Lemma 2 with
xr = x1 = 0, which reduces this lemma to the quadratic formula.

4. The equations with non-multiple roots different from zero that are also non-purely
imaginary roots, so these equations can be solved in general by Theorem 1.

In addition, the GQE will also be classified in four main cases as follows:

1. All the biquadratic equations, which can be easily solved by Equation (7) when
p2 ≥ 4r; otherwise, they will be solved by Equation (32).

2. The non-biquadratic quartic equations with multiple roots, which can be easily solved
by Theorem 9.

3. The non-biquadratic quartic equations that have zero as a non-multiple root, which are
essentially cubic equations because e = x1 = 0 6= d in these equations, so these ones
are reduced to the equation ax4 + bx3 + cx2 + dx = x

(
ax3 + bx2 + cx + d

)
= 0; thus,

the other three roots of this kind of quartic equations can be obtained by applying
Proposition 1 or Theorem 1 to the cubic equation ax3 + b2 + cx + d = 0.

4. The non-biquadratic quartic equations with non-multiple roots different from zero,
which can only be solved by applying Theorem 8 and Equations (8) and (9).
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Finally, Figure 1 shows how all the procedures described above are implemented in a
single program.
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3.3. Results

The procedures described in the previous subsection have been programmed in Wol-
fram Mathematica, so all the panels in Figure 2 are screenshots of the output given by this
program.
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Figure 2. Examples of different cases of the SDE, the GCE and the GQE: (a) Case of the SDE with
b2 − 4ac > 0. (b) Case of the SDE with b2 − 4ac = 0. (c) Case of the SDE with b2 − 4ac < 0. (d) Case of
the GCE with only two multiple roots. (e) Case of the GCE with three multiple roots. (f) Case of the
GCE with purely imaginary roots. (g) Case of the GCE with zero as a non-multiple root. (h) Case of the
GCE with non-multiple roots other than zero. (i) Case of the GQE with four multiple roots. (j) Case of
the GQE with three multiple roots. (k) Case of the GQE with a pair of two different couples of multiple
roots. (l) Case of a biquadratic equation with only two multiple roots. (m) Case of a non-biquadratic
equation with only two multiple roots. (n) Case of a biquadratic equation without multiple roots.
(o) Case of the GQE with zero as a non-multiple root and a couple of purely imaginary roots. (p) Case a
non-biquadratic quartic equation with non-multiple roots other than zero.

Remark 8. As stated in the Introduction of this paper, the coefficient q of the DQE determines if
the GQE corresponds to the biquadratic case or to the Ferrari Case; in other words, if Equation (5)
implies q = 0, then the GQE and the DQE are biquadratic equations, but if Equation (5) implies
q 6= 0, then the GQE and the DQE are non-biquadratic equations; however, in graphical terms,
the difference between biquadratic and non-biquadratic quartic equations is that the plots of the
biquadratic equations are symmetrical with respect to the vertical line in R2 whose equation is
x = − b

4a (thus, the plot of the DQE is always symmetrical with respect to the ordinate axis), while
the plots of the non-biquadratic quartic equations do not have any symmetry; so, all of this can be
observed in all panels from (i) to (p) of Figure 2.

Finally, since the plots are not substantial for the fundamental objectives of this paper,
all the criteria applied in this program to make them are presented in Appendix C; however,
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it is also important to say here that some of these criteria are perfect examples of the
practicality and usefulness of the analytical solution for the GCE that has been erroneously
described as being less practical than the iterative Newton–Raphson Method applied to
third-degree algebraic equations [2] (p. 51).

4. Discussion

The main objection to solving the third- and fourth-degree equations by applying ana-
lytical methods has always been the apparently inevitable application of complex arithmetic
operations and all the difficulties that this implies; however, the results exposed here have
proven that complex arithmetic is actually not needed in order to analytically solve the GCE
and the GQE in practical terms. In addition, another arguable common objection to using
these tools is that they are not as quick and easy to apply as the quadratic formula, and some
of the examples exposed here seem to validate that argument, such as Examples 4, 5 or 7,
whose solutions inevitably involved fractions with huge integer numbers.

Despite this, the analytical methods to solve these equations in particular, as exposed
here, are more efficient than the numerical methods because the analytical ones go straight
to the precise solution right away; meanwhile, the numerical methods work by approximat-
ing the solution by iterating, which can imply arithmetic calculations even more tiresome
than the ones applied in every example of this paper. So, if the same powerful computa-
tional tools that are used to apply the numerical methods are used to apply the analytical
methods to solve these equations, then all their solutions can be obtained faster without
iterating, as the program presented in Section 3 shows.

Additionally, the accuracy of the obtained results will depend on the computing power
of the computational tools used; for example, the program presented in Section 3 was made
using the Wolfram Mathematica programming language, and it was observed that the
precision error in the obtained results is generally less than 10−15, which can be considered
very accurate in solving a practical problem.

Likewise, it is certainly somewhat ironic that this document presents how to use the
methods that were discovered half a millennium ago to analytically solve the GCE and
the GQE, always avoiding the use of complex arithmetic, since the development of these
methods gave rise to the definition and study of complex numbers; thus, in historical
terms, the Casus Irreducibilis of third-degree equations caused this because this case of
the GCE occurs whenever it has three different real roots, while the solutions given by
Equations (1) and (2) to this case inevitably imply the appearance of imaginary quantities.

In this sense, a new proof of the trigonometric solution given by Equation (11) to the
Casus Irreducibilis is also included in Appendix A, without alluding to the existence of
imaginary or non-real complex numbers; so curiously, if everything exposed here about
how to avoid complex arithmetic during the resolution of cubic and quartic equations with
real coefficients had been known 500 years ago, then the definition and study of set C
would have been delayed.

5. Conclusions

The most relevant results exposed in this paper are listed as follows:

1. The results that guarantee that the GCE and the GQE can always be solved analytically
without complex arithmetic (Theorems 1 and 8).

2. The general relationship between the discriminant of the GQE and the discriminant
of all forms of the resolvent cubic (Theorem 2).

3. The definition and relevance of the SFRC (Section 2.2).
4. All the relationships between the nature of the roots of the GQC and the nature of the

roots of the corresponding resolvent cubic (Section 2.3).
5. The program developed in Section 3.

In addition, the results shown in Figure 2 are perfect examples of the effectiveness
of the analytical methods to solve the GCE and the GQE, which can be applied to give a
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more efficient solution to practical problems related to these kinds of algebraic equations;
nevertheless, it does not mean that the program presented in Section 3 cannot be improved.

In this sense, note that all the known forms of the resolvent cubic that are characterized
by Equation (18) were listed in Section 2.2.3; however, another special form of the resolvent
cubic that is not characterized by Equation (18) is known, hence it was not included in that
list; this special form is obtained by the Descartes Method to solve quartic equations, as
exposed in [7] (p. 66), and is given as follows:

RC

(
t2
)
= t6 + 2pt4 +

(
p2 − 4r

)
t2 − q2 = 0 ; (36)

this equation is typically considered another form of the resolvent cubic, although it is a
sixth-degree equation; thus, the Fundamental Theorem of Algebra guarantees that it has
six complex roots [1] (pp. 399–400); in addition, its discriminant is different from ∆RC and
∆4, so Equation (10) and Theorem 2 do not work for this equation.

In spite of these important facts, in practical terms, to solve the GQE and the DQE,
it is obvious that Equation (36) is essentially the SFRC given by Equation (17); therefore,
Equation (36) can also be defined here as the “Bicubic SFRC”, whose properties are material
for a subsequent article because the relationship between the nature of the roots of the
GQE and the nature of the roots of Equation (36) in terms of rationality can be very useful
for designing more sophisticated and accurate algorithms to analyze and solve the GQE
without numerical methods or complex arithmetic.

Finally, the authors of this paper hope that this will contribute to tearing down all the
great prejudices that currently exist regarding the practical use of the invaluable results
given by del Ferro, Tartaglia, Cardano and Ferrari five centuries ago with the help of
modern computational tools.
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Appendix A

This appendix is dedicated to presenting a proof of Equation (11) without appealing
to the existence of non-real complex numbers. So, first of all, consider that the relationship
between the GCE and the DCE is determined by the following equation:

x = y− b
3a

; (A1)

in addition, consider the following well-known trigonometric identities that hold for any α,
β, θ ∈ R [12] (pp. 417, 523, 524, 526), and the subsequent propositions:

sin(α± β) ≡ sin α cos β± sin β cos α, (A2)

cos(α± β) ≡ cos α cos β∓ sin α sin β, (A3)

sin2 θ + cos2 θ ≡ 1. (A4)
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Proposition A1. The relation cos3 θ ≡ cos 3θ+3 cos θ
4 holds for any θ ∈ R.

Proof. If θ = α = β, then Equations (A2) and (A3) guarantee sin 2θ ≡ 2 sin θ cos θ and
cos 2θ ≡ cos2 θ − sin2 θ for any θ ∈ R; so, these identities and Equations (A2)–(A4) imply
the following relations for any θ ∈ R: cos 3θ ≡ cos(2θ + θ) ≡ cos 2θ cos θ − sin 2θ sin θ ≡(
cos2 θ − sin2 θ

)
cos θ− (2 sin θ cos θ) sin θ ≡ cos3 θ− 3 sin2 θ cos θ ≡ cos3 θ− 3

(
1− cos2 θ

)
cos θ ≡ 4 cos3 θ − 3 cos θ; therefore, cos3 θ ≡ cos 3θ+3 cos θ

4 for any θ ∈ R. �

Proposition A2. If θ ∈ R, then the relation cos θ ≡ cos(θ + 2nπ) holds for any n ∈ Z.

Proof. First of all, consider that cos 2nπ ≡ cos 2π ≡ 1 and sin 2nπ ≡ sin 2π ≡ 0 for all
n ∈ Z [12] (pp. 456–457); then, Equation (A3) implies cos(θ + 2nπ) ≡ cos θ cos 2nπ −
sin θ sin 2nπ ≡ cos θ·1− sin θ·0 ≡ cos θ. �

Now, consider the following theorem.

Theorem A1. If ∆3 > 0, then the three non-multiple real roots of the DCE are given as follows:

yk = 2
√
− p

3 cos

[
1
3 arccos

{
− q

2

√(
− 3

p

)3
}
+ 2(k−1)π

3

]
, for k = 1, 2, 3.

Proof. Suppose that there exist α, θ ∈ R, with α > 0, such that the expression α cos θ ∈ R is a
root of the DCE; then, α3 cos3 θ + pα cos θ + q = 0, so this equality and Proposition A1 imply
the following equation: α3

(
cos 3θ+3 cos θ

4

)
+ pα cos θ + q = α3

4 cos 3θ +
(

3α2

4 + p
)

α cos θ +

q = 0; now note that the previous equation holds whether the following two equations also
hold simultaneously:

3α2

4
+ p = 0, (A5)

α3

4
cos 3θ + q = 0. (A6)

On the other hand, if ∆3 > 0, then Equation (13) implies
( q

2
)2

+
( p

3
)3

= − ∆3
108 < 0;

thus, (i) of Remark 1 guarantees p < 0, which implies the following three facts:
√
− p

3 ∈ R,√(
− 3

p

)3
∈ R and

√
− p

3 > 0; so, Equation (A5) implies the following relation:

α =

√
−4p

3
= 2

√
− p

3
> 0; (A7)

meanwhile, Equations (A6) and (A7) imply the following equality:

cos 3θ = −4q
α3 = − 4q(

2
√
−p/3

)3 = − q
2

√(
− 3

p

)3
, (A8)

which also involves real numbers, only; hence, Equation (A8) and Proposition A2 guarantee

that the relation cos 3θ = cos(3θ − 2nπ) = − q
2

√(
− 3

p

)3
holds for any n ∈ Z; then, there

can exist an infinite number of real values of angle θ that satisfy Equation (A8), which are
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given as follows: θn = 1
3 arccos

{
− q

2

√(
− 3

p

)3
}
+ 2nπ

3 , for any n ∈ Z. Therefore, θn and

Equation (A7) guarantee that all the roots of the DCE are given as follows:

y = α cos θn = 2
√
− p

3
cos

1
3

arccos

− q
2

√(
− 3

p

)3
+

2nπ

3

, for all n ∈ Z; (A9)

likewise, it is clear that θ0 = 1
3 arccos

{
− q

2

√(
− 3

p

)3
}

, so the following relation also holds

for any n ∈ Z:

θn = θ0 +
2nπ

3
. (A10)

On the other hand, consider the definitions of the following three sets:
A1 := {l ∈ Z : l = 3m with m ∈ Z}, A2 := {l ∈ Z : l = 3m + 1 with m ∈ Z} and A3 :=
{l ∈ Z : l = 3m + 2 with m ∈ Z}; thus, it is clear that A1 ∪ A2 ∪ A3 = Z whereas Ai ∩
Aj = ∅ whenever i 6= j. Now consider that Equation (A10) and Proposition A2 guarantee
the following three relations for all m ∈ Z:

cos θ3m = cos
[
θ0 +

2(3m)π
3

]
= cos(θ0 + 2mπ) = cos θ0 ,

cos θ3m+1 = cos
[
θ0 +

2(3m+1)π
3

]
= cos

[{
θ0 +

2(1)π
3

}
+ 2mπ

]
= cos(θ1 + 2mπ) = cos θ1 ,

cos θ3m+2 = cos
[
θ0 +

2(3m+2)π
3

]
= cos

[{
θ0 +

2(2)π
3

}
+ 2mπ

]
= cos(θ2 + 2mπ) = cos θ2 .

(A11)

Finally, ∆3 > 0 and Equations (A11) guarantee that there is a unique non-multiple
real root yk of the DCE related by Equation (A9) with all the elements of set Ak, for each

k ∈ {1, 2, 3}; which is given as follows: yk = α cos θk−1 = 2
√
− p

3 cos[
1
3 arccos

{
− q

2

√(
− 3

p

)3
}
+ 2(k−1)π

3

]
. �

Corollary A1. If ∆3 > 0, then the three non-multiple real roots of the GCE are given as follows:

xk = 2
√
− p

3 cos

[
1
3 arccos

{
− q

2

√(
− 3

p

)3
}
+ 2(k−1)π

3

]
− b

3a , for k = 1, 2, 3.

Proof. This is an immediate consequence of Theorem A1 and Equation (A1). �

Remark A1. Note that Equation (11) can also solve the GCE when this one has only two mul-

tiple real roots because in this case, p 6= ∆3 = 0 6= q guarantees

∣∣∣∣∣− q
2

√(
− 3

p

)3
∣∣∣∣∣ = 1; so,

arccos

{
− q

2

√(
− 3

p

)3
}

= arccos(−1) = π whether q > 0 and arccos

{
− q

2

√(
− 3

p

)3
}

=

arccos 1 = 0 whether q < 0; which imply the following alternative formulae that are equivalent to
(i) of Proposition 2:

(i) x1 = −
√
− 4p

3 −
b

3a 6= x2 = x3 =
√
− p

3 −
b

3a whether q > 0,

(ii) x1 =
√
− 4p

3 −
b

3a 6= x2 = x3 = −
√
− p

3 −
b

3a whether q < 0;

meanwhile, if the GCE has three multiple real roots, then Equation (11) becomes undefined because
(ii) of Proposition 2 guarantees ∆3 = p = q = 0 for this case.
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Appendix B

This appendix is mainly focused on exposing the equivalence between Proposition 2
and Theorem 1 when ∆3 = 0. For this purpose, it is clear that Proposition 2 is a particular
case of (i) of Theorem 1 for x1 when ∆3 = 0; now, in order to prove the equivalence between
Proposition 2 and (iii) of Theorem 1 for x2 and x3 when ∆3 = 0, consider the following two
possible cases:

Case 1: Supposing that the GCE has only two multiple real roots, then Proposition
2 guarantees that the three roots of this equation are given as follows: x1 = − 3

√
4q −

b
3a 6= x2 = x3 = 3

√
q
2 −

b
3a ; hence, if l := − 3

√
4q − b

3a and m := 3
√

q
2 −

b
3a , then

the GCE is given as follows: a(x− l)(x−m)2 = ax3 − a(l + 2m)x2 + a(2l + m)mx −
alm2 = 0; so b = −a(l + 2m) and c = a(2l + m)m; ergo, x1 = l = − b

a − 2m and

c = a
[
2
(
− b

a − 2m
)
+ m

]
m = −2bm− 3am2. Therefore:

−(ax1+b)±
√

b2−4ac−(3a2x2
1+2abx1)

2a =

−[a(− b
a−2m)+b]±

√
b2−4a(−2bm−3am2)−

[
3a2(− b

a−2m)
2
+2ab(− b

a−2m)
]

2a =

b+2am−b±
√

b2+8abm+12a2m2−3b2−12abm−12a2m2+2b2+4abm
2a = 2am±

√
0

2a = m = 3
√

q
2 −

b
3a = x2 =

x3, so (i) and (iii) of Theorem 1 are equivalent to Proposition 1 whether ∆3 = 0 in this case.
Case 2: Supposing that the GCE has three multiple real roots, then Proposition 2

guarantees that these roots are given as follows: x1 = x2 = x3 = − b
3a ; hence, the

GCE is given as follows: a
(

x + b
3a

)3
= ax3 + bx2 + b2

3a x + b3

27a2 = 0; so, c = b2

3a . Therefore:

−(ax1+b)±
√

b2−4ac−(3a2x2
1+2abx1)

2a =
−[a(− b

3a )+b]±
√

b2−4a
(

b2
3a

)
−
[
3a2(− b

3a )
2
+2ab(− b

3a )
]

2a =
b
3−b±

√
b2− 4b2

3 −
b2
3 + 2b2

3
2a =

− 2b
3 ±
√

0
2a = − b

3a = x2 = x3, so (i) and (iii) of Theorem 1 are
also equivalent to Proposition 1 whether ∆3 = 0 in this case.

Remark A2. Note that the equivalence between (iii) of Theorem 1 and Equation (2) for ∆3 < 0
and the equivalence between (iii) of Theorem 1 and Equation (11) for ∆3 > 0 are guaranteed by
Lemma 2.

Remark A3. Note that Lemma 1 also holds when the GCE has three multiple real roots because
x1 = x2 = x3 = max{x1, x2, x3} = min{x1, x2, x3} in this case; however, this lemma does not
hold in general when the GCE has only two multiple real roots because (i) of Proposition 2 and
Remark A1 guarantee the following facts for that case:

(i) x1 = min{x1, x2, x3} 6= x2 = x3 = max{x1, x2, x3} whenever q > 0
(ii) x1 = max{x1, x2, x3} 6= x2 = x3 = min{x1, x2, x3} whenever q < 0

therefore, if ∆3 = 0, then Lemma 1 holds only when q ≤ 0.

Appendix C

In order to make the plots of the program exposed in Section 3, consider the “middle
point of the polynomial”, defined as xm := − b

na ∈ R, where n is the polynomial’s degree,
so n ∈ {2, 3, 4}; in addition, xmin and xmax are the respective lower and upper limits of the
interval of the plot given in the output of the program, so xmin < xmax and they also satisfy
xmin ≤ 0 ≤ xmax in order to show the origin on each plot of the output.

Second-Degree Equation: Define f (x) := ax2 + bx + c, whose two roots are given
by the Quadratic Formula: x1,2 = −b±

√
b2−4ac

2a , whereas xm = − b
2a ; then, consider the

following cases:
Case 1. If ac ≥ 0 6= b, then xm 6= 0, so define l := |xm| > 0.
Case 2. If ac < 0, then x1, x2 ∈ R and x1 6= x2, so define l := 3|x2−x1|

4 > 0.
Case 3. If ac = b = 0, then x1 = x2 = xm = 0, so define l := 2|a| > 0.
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Case 4. If b2 − 4ac < 0 = b, then xm = Re(x1,2) = 0 6= Im(x1,2), so define l :=
|Im(x1)| = |Im(x2)| > 0 .

Finally, put xmax = xm + l and xmin = xm − l, for all Cases 1–4.

General Cubic Equation: Define f (x) := ax3 + bx2 + cx + d, whose three roots are
x1, x2 and x3, whereas xm = − b

3a ; then, consider the following cases:
Case 1. If xm = x1, then there are the following subcases:

(i) If b = p = q = 0, then x1 = x2 = x3 = xm = 0, so define l := 3|a| > 0.
(ii) If p > 0 = b = q, then ∆3 < 0, so x1 = xm = 0 and x2, x3 ∈ C−R; therefore, define

l := 3
√

p > 0.
(iii) If p ≥ q = 0 6= b, then ∆3 = p = q = 0 6= xm = x1 = x2 = x3 or ∆3 < 0 6= xm = x1

with x2, x3 ∈ C−R, so define l := |xm| > 0.

Thus, put xmax = xm + l and xmin = xm − l, for all subcases (i)–(iii).
Case 2. If ∆3 < 0 with xm 6= x1 ∈ R, then define l := |xm − x1| > 0; finally, if l < |xm|;

then, put xmax = xm + |xm| and xmin = xm − |xm|; otherwise, put xmax = xm + 3l
2 and

xmin = xm − 3l
2 .

Case 3. If ∆3 ≥ 0 and xm 6= x1, then the three roots of the GCE are all real and at
most two of them are multiple; thus, define l := max{x1, x2, x3} −min{x1, x2, x3} > 0.
Finally, if max{x1, x2, x3} ≥ 0, then put xmax = xm + 3l

4 , otherwise put xmax = 0; and if
min{x1, x2, x3} ≤ 0, then put xmin = xm − 3l

4 , otherwise put xmin = 0.

General Quartic Equation: Define f (x) := ax4 + bx3 + cx2 + dx + e, whose four roots
are x1, x2, x3 and x4, whereas xm = − b

4a ; then, consider the following cases:
Case 1. According to Theorem 7, the GQE has four real roots when ∆4 ≥ 0 with p < 0

and p2 > 4r, or when p ≤ 0 with p2 = 4r ≥ q = 0; so, there are the following subcases:

(i) According to [6], if b = p = q = r = 0, then x1 = x2 = x3 = x4 = xm = 0, so define
l := 4|a| > 0.

(ii) If b 6= 0 = p = q = r, then x1 = x2 = x3 = x4 = xm 6= 0, so define l := 4|xm| > 0.
(iii) If at least one of the three main coefficients of the DQE are different from zero,

then max{x1, x2, x3, x4} 6= min{x1, x2, x3, x4}; so, if ∆4 = 0, then define l := 2max
{|xm −max{x1, x2, x3, x4}|, |xm −min{x1, x2, x3, x4}|} > 0, otherwise define l :=
max{|xm −max{x1, x2, x3, x4}|, |xm −min{x1, x2, x3, x4}|} > 0.

Finally, if max{x1, x2, x3, x4} ≥ 0, then put xmax = max{x1, x2, x3x4}+ l
4 , otherwise

put xmax = 0; and if min{x1, x2, x3, x4} ≤ 0, then put xmin = min{x1, x2, x3, x4} − l
4 ,

otherwise put xmin = 0; for all subcases (i)–(iii).
Case 2. According to Theorem 7, the GQE has four non-real complex roots when

∆4 > 0 with p ≥ 0 or p2 ≤ 4r, or when ∆4 = q = 0 < p with p2 = 4r; then, consider the
derivative of f given as follows: f ′(x) = 4ax3 + 3bx2 + 2cx + d, thus, all the critical points
of function f are determined by the real roots of the following cubic equation:

4ax3 + 3bx2 + 2cx + d = 0; (A12)

hence, Equation (3) applied to Equation (A12) gives p∗ = 8ac−3b2

16a and q∗ = 27b3−108abc+216a2d
864a3 ,

so Equation (13) implies that the discriminant of Equation (A12) is ∆3 = −4p∗3− 27q∗2. Now,
consider the following subcases:

(i) If ∆3 > 0, then Equation (A12) has three different real roots, so f has three different
critical points; in addition, Lemma 1 guarantees that Equation (11) applied to Equation
(A12) with k = 1 will always give the largest of the critical points of f , whereas the
smallest of these points is obtained with k = 2. Thus, if cp1 and cp2 are respectively
the largest and the smallest of the critical points of f , then define l := cp1 − cp2 > 0;
finally, if cp1 ≥ 0, then put xmax = xm + 3l

4 , otherwise put xmin = 0; and if cp2 ≤ 0,
then put xmin = xm − 3l

4 , otherwise put xmin = 0.
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(ii) If ∆3 = 0 > p∗, then Equation (A12) has three real roots and two of them are multiple;

thus, f has only two different critical points, so define l := 3
√
− 4p∗

3 + 3
√
− p∗

3 > 0.
In addition, if cp1 and cp2 are respectively the largest and the smallest of the two
critical points of f ; then, (i) of Proposition 2 applied to Equation (A12) guarantees

cp1 = 3
√

q∗
2 + xm and cp2 = − 3

√
4q∗ + xm whether q∗ > 0, otherwise cp1 = − 3

√
4q∗ +

xm and cp2 = 3
√

q∗
2 + xm (note that Remark A1 guarantees that the definition of l

in this subcase is also equivalent to l = cp1 − cp2). Finally, put xmax and xmin as in
subcase (i).

(iii) If ∆3 = p∗ = q∗ = 0 or ∆3 < 0 = f ′(xm), then there are two possibilities: Equation
(A12) has three multiple real roots, which are all xm; or xm is the only real root of
Equation (A12), which does not have multiple roots. In any possibility, xm is the only
critical point of f ; therefore, define l := 4|a| > 0 whether xm = b = 0, otherwise
define l := |xm| > 0. Finally, if xm ≥ 0, then put xmax = xm + 3l

4 , otherwise put
xmax = 0; and if xm ≤ 0, then put xmin = xm − 3l

4 , otherwise put xmin = 0.
(iv) If ∆3 < 0 6= f ′(xm), then Equation (A12) has only one real root, which is different

from xm, and a couple of non-real complex conjugate roots; so, f has only one critical

point, which is cp =
3

√
− q∗

2 +
√
− ∆3

108 +
3

√
− q∗

2 −
√
− ∆3

108 + xm 6= xm; therefore, define

l :=
∣∣xm − cp

∣∣ > 0. Finally, if 2l ≥ |xm|, then put xmax = xm + 2l and xmin = xm − 2l;
if 2l < |xm| and xm > 0, then put xmax = xm + 2l and xmin = 0; and if 2l < |xm| and
xm < 0, then put xmax = 0 and xmin = xm − 2l.

Case 3. According to Theorem 7, the GQE has only two real roots when ∆4 < 0 or
p ≥ q 6= ∆4 = 0 < r or p < q 6= ∆4 = 0 < p2 ≤ 4r or p > q = r = ∆4 = 0; now, consider
the following subcases:

(i) If b = d = e = 0 < c/a, then zero is a multiple root of the GQE and it also has two
purely imaginary roots; in addition, Equation (A12) guarantees that f has only one
critical point, which is xm = 0; finally, put xmax = |a| > 0 and xmin = −xmax < 0.

(ii) If ∆4 = f (xm) = 0 6= xm, then xm is a multiple real root of the GQE, so define
l := 2|xm| > 0; finally, put xmax = xm + l and xmin = xm − l.

(iii) If ∆4 < 0, then the GQE do not have multiple roots and only two of them are real, so
at least one of this real roots is different from xm; therefore, put lk = |xm − xk| ≥ 0
whether Im(xk) = 0 (that is, when xk ∈ R), otherwise put lk = 0, for each
k ∈ {1, 2, 3, 4}; so, define l := 2max{l1, l2, l3, l4} > 0. Additionally, if l ≥ −2xm, then
put xmax = xm + l, otherwise put xmax = 0; and if l ≥ 2xm, then put xmin = xm − l,
otherwise put xmin = 0.

Finally, it is important to say that in the cases of the SDE with two non-real roots and
the GQE with four non-real roots, the plot of the function g(x) := 0 was also included to
emphasize the fact that these equations do not have any real root (see panels (c), (k) and (n)
of Figure 2).
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