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Abstract: A conformally flat GRW space-time is a perfect fluid RW space-time. In this note, we
investigated the influence of many differential curvature conditions, such as the existence of recurrent
and semi-symmetric curvature tensors. In each case, the form of the Ricci curvature tensor, the
energy-momentum tensor, the energy density, the pressure of the fluid, and the equation of state
are determined and interpreted. For example, it is demonstrated that a Ricci semi-symmetric RW
space-time reduces to Einstein space-time or a Ricci recurrent RW space-time, and the perfect fluid
space-time is referred to as Yang pure space-time or dark matter era.
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1. Introduction

One of the most significant areas of research in both mathematics and physics is the
geometry of generalized Robertson—-Walker (or GRW) space-times. A warped product
manifold with a one-dimensional base manifold serves as the representation of a GRW
space-time. The term Friedmann-Lemaitre-Robertson-Walker metrics, which accurately
captures the contributions of different scientists to this issue, is currently used in physics
for Robertson-Walker-type metrics. There are many exciting decomposition theorems on
Lorentzian manifolds. The author of [1] described a particularly remarkable decomposition
of a Lorentzian manifold to a GRW space-time. The existence of a time-like concircular
vector field is sufficient for a Lorentzian manifold to be a GRW space-time. This condition
becomes weaker as follows in the presence of another condition [2]. If a unit time-like torse-
forming vector field ' that is an eigenvector of the Ricci tensor Sij exists on a Lorentzian
manifold M, then M is a GRW space-time. By a unit time-like torse-forming, we mean that
there is a scalar function ¢ on M such that

Viwj = fP(wkwj +gkj>r 1)

ww; = -1 ()

The factor ¢ coincides with the Hubble’s parameter H on a GRW space-time M. How
rapidly the universe is expanding is determined by Hubble’s parameter H (for a description
of H and further information, see [3]). This torse-forming vector field is also an eigenvector
of the Ricci tensor §j;, that is, wiSl-]- = pw; where ¢ is the corresponding eigenvalue of
w; [1,24]. In [5], a GRW space-time Ricci tensor has been established to be
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Si = w8t Ty

where Cy;j; is the Weyl conformal curvature tensor and S is the scalar curvature. The

classical Robertson-Walker (or RW) space-time is a conformally flat GRW space-time,
which allows the Ricci curvature form to change as

wiwj+ (n — Z)wkwleiﬂ 3)

S— S—n
Sij = n_lfgij-F n_llpwiwj- (4)

On the other hand, the Ricci tensor of a perfect fluid space-time has the form

Sij = agij + BT ©)

Accordingto this equation, an RW space-time is a perfect fluid space-time where

e ©

For further information about perfect fluid space-times and characterization of GRW
space-times and RW space-times, the reader is recommended to read [2,4-7]. An algebraic
curvature condition is that a space-time is a perfect fluid space-time [8]. Manifolds having
this algebraic curvature criterion are known as quasi-Einstein manifolds in differential
geometry [9]. However, there are additional types of differential curvature conditions that
can be used, such as the existence of recurrent and semi-symmetric curvature tensors. Many
alternative differential curvature conditions are examined in this article by using Riemann
and Ricci curvature tensors. In each case, the form of the Ricci tensor, energy-momentum
tensor, pressure, energy density and equation of state of the perfect fluid is given.

§ =

2. Notes on RW Space-Times

It is easy to obtain the scalar curvature of RW space-time, the eigenvalue of the Ricci
tensor corresponding to w and the divergence of the one form w as

S = n—p p=a-p @)
Viwj = (n-1)g ®)

It should be observed that the form (5) on an RW space-time has a perfect fluid
structure that is unique up to a sign. For this, we assume that there exists a vector field v
that is time-like and

Si]' = Elgij + ﬁl),‘l)j.
Then,
wiSi]- = dwj+ E((u’@) v;
(v —r)w; = B(wiv,-)vj.

Since any two time-like vectors can not be orthogonal to each other, y —& = = 0;
that is, M is Einstein, or wj = :I:vj.
Einstein’s field equations without cosmological constant are

S
Sij — 58ij = kTjj

where Tj; is the energy-momentum tensor, and k is the gravitational constant. Thus,

S
agij+ pwiw; — 5gij = kT

S
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However, the energy—-momentum tensor for a perfect fluid space-time with velocity
vector field w is given by

Tij = pgij + (p + p)wiw; (10)

where p and y are pressure and energy density, respectively [10]. Equations (9) and (10)
show that

_ a5 _5-¢ S _(B-nsS-2¢p
R I e e Ty (1)
Kptw = p=""" (12)
 S—np (B-n)S-2¢p S—2¢
e T (S ) R B (13)

3. Ricci Curvature Conditions on RW Space-Times
3.1. Semi-Symmetric Ricci Curvature

A space-time is called Ricci semi-symmetric if [11]
VIVkSZ-]- — VleSij =0.
Taking the covariant derivative of Equation (5) twice, one obtains

ViViSii — ViViSii = Vi Vi(agij + Bwiw;) — ViV (agij + Bwiw;)
[SVIVk ((U,'OJ]‘) — ﬁvkvl (w,-wj)
= Blwi(ViVi = ViV)w; + wj(ViVi = ViV)wi].  (14)

It is clear that this equation implies that an RW space-time is Ricci semi-symmetric
if and only if either § = 0 or V,Vyw; = VV w;. Let us consider the first condition. It
is noted that f = 0 implies that an RW space-time is Einstein. The converse is also true.
Assume that the space-time is Einstein, then

S
L8 = agij+ (na = S)wwj,
S
Lwi= (& — na + S)wj,
§ = a—na—+S,
n

that is, « = % Equation (5) yields § = na — S and consequently § = 0. The second
condition is equivalent to wy, Szhlk =0

Theorem 1. An RW space-time M is Ricci semi-symmetric if and only if M is Einstein or wy, S?lk =0.
Now, assume that § = 0. Then an RW space-time is Einstein and the eigenvalue is

P = % Let us rewrite the Ricci tensor and the energy—-momentum tensor for a perfect fluid
space-time in the case p = 0 as

Sij = %gij (1)
Tij = pgij+ (p+pwiw; (16)

where S
=1 = pt (17)
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The equation of state in this case

k(p+u) = 0, (18)

kp = —(”2;2)5, (19)

ku = (”z_nz>s. (20)

kT; = (nz_nz)Sgi]-. (21)

That is, the perfect fluid is referred to as the dark energy. On the other hand, if
V,kaj = Vkvle, then

This equation yields
wthj =0.
Using Equation (5), it is
0= (a— ,B)a)j
and consequently i = 0,« = B, and in this case, it is
S
Sij = T (gij + wiwj). (22)

Equations (9) and (10) show that

o =3 S
kTij = 2(n—1)5g11+n—1w1w]' (23)
_ _(n=3)
kp = _msz (24)
S
o= 2, (25)
2
S
kp+w) = ——5 (26)

Theorem 2. Let M be a Ricci semi-symmetric RW space-time. Then, M satisfies one of the following:

1. (B = 0) M is Einstein. The Ricci tensor and the equation of state take the form of Equation
(15) and Equations (18)—(21). The perfect fluid is referred to as dark matter era.

2. (a = B) The Ricci tensor, the energy—momentum tensor, and the equation of state take the
form of Equations (22)—(26).

Remark 1. Notably, an RW space-time is a perfect fluid space-time. Dark matter era refers to
perfect fluid space with the equation of state p + u = 0 [12]. However, so far, according to [13], a
four-dimensional perfect fluid space-time with p + u # 0 is RW space-time if and only if it is a Yang
pure space-time. These space-times are identified by a Ricci tensor, which is a Codazzi tensor [13].

Corollary 1. A four-dimensional Ricci semi-symmetric RW space-time is a Yang pure space-time
given that B # 0.

3.2. Generalized Recurrent Ricci Curvature

A space-time M is called generalized Ricci recurrent if there are two 1—form a4 and b
such that

(VxS)(Y,Z) = a(X)S(Y,Z) + b(X)g(Y, Z) 27)
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where X,Y,Z € X(M) and a, b are called the corresponding recurrence 1—forms. In local

coordinates, one may write
Vls,j = LZ[SZ']' + blgij‘

Two contractions of this equation by ¢/ and g' yield
VS = Sa;+nb
%v,-s =4S +b;.
A third contraction with ' infers
inlSi]- =uaq (wiSij) + byw;.
Since w' is an eigenvector of the Ricci tensor, it is
v, (wfs,j) — SV = (pay + by)w;
\Y/ (l/Ja)j) — Sijvlwi = (Ya; + by)wj.

Now, we may insert the definition of the Ricci tensor as

Vi(pw;) — (agij + pwiw)) Viw' = (ya; + br)w;
\Y| (1,[7(/.)]') — IXVI(U]' = (1}7&] + bl)wj
(Vip)w; + (¢ —a)Viw; = (Ya; + by)w.

By multiplying both sides by w/, one obtains
(Viyp) = wa; + by
Back substitution in Equation (36) results in

(p — oc)Vlan =0.

(28)

(29)
(30)

(31)

(32)
(33)

(34)
(35)
(36)

(37)

(38)

Thus, we have two cases, namely,  —a = 0 and V;w; = 0. The first case  —a =0
implies that = 0 and so M is Einstein, and the Ricci tensor and the equation of state take
the form of Equation (15) and Equations (18)-(21). To consider the second case V,w; = 0, it
is clear that ¢ = 0. In this case, the perfect fluid is called static. One may use the fact that

p=mn-1)(9*+9)

where ¢ = wfV¢ to obtain ¢ = 0, that is « = B. In this case, the Ricci tensor, the

energy-momentum tensor, and the equation of state take the form

S
Sij = ——(&ij+wiwy),
S
le‘]' = 2n_2(7(n73)gij+2wiwj),
S
kp+uw = ——
B _(n—3)S
e Tk

s
=
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The covariant derivative of the Ricci tensor is now given by
VS
Vlsij = P (gi]‘ + wiw]-).
Using the defining property of the generalized Ricci recurrent tensor, it is
VS
aSij +bigij = 5 - 7 (8ij + wicwy).

Now, the definition of the Ricci tensor yields

5 Y
o (gij + w,wj) +bigij = —] (gij + a)iwj).

One may simplify this equation as

o (VS S N (Vs s\ o
I T L B 0 n—1 ‘ly—1)%i

0 = (VIS — Sa; — (Vl - 1)bl)gl] + (VIS - Sa,)wiw]-.

Different contractions of this equation infer

by = 0,
0 = VZS—Sal—nbl.
Sﬂl = VZS

The defining equation of the generalized Ricci recurrent RW space-time reduces to
ViSij = a;S;
For a non-zero scalar curvature S, it is

V;Sij = Vl(ln S)Sl]

Theorem 3. Let M be a generalized Ricci recurrent RW space-time. Then M reduces to be Einstein
or to a Ricci recurrent RW space-time of the form

VISl-j = V[(h‘l 5)51]
Moreover, M satisfies one of the following:

M is Einstein. The Ricci tensor and the equation of state take the form of Equations (15) and
(18)-(21).

M is a static perfect fluid, and the Ricci tensor, the energy—-momentum tensor, and the equation
of state take the form of Equations (22)—(26).

A space-time M is called Ricci recurrent if there is a 1—form a such that

(VxS)(Y,Z) = a(X)S(Y, Z)

where X,Y,Z are vector fields on M and a is called the recurrence 1—form. In local
coordinates, one may write

VISij = alSi]-.
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It should be noted that a Ricci recurrent space-time is a generalized Ricci recurrent
space-time. Let M be a Ricci recurrent RW space-time. Then M reduces to be Einstein or to
a Ricci recurrent RW space-time of the form

VlSi]- = Vl(ll’l S)Sl]

Moreover, M is either Einstein and Equations (15)—(21) hold or M is a static perfect
fluid and the Ricci tensor, the energy-momentum tensor, and the equation of state take the
form of Equations (22)—(26).

A space-time M is called Ricci symmetric if [14]

(VxS)(Y,Z)=0
where X, Y, Z are vector fields on M. In local coordinates, one may write
VlSij =0.

It should be noted that a Ricci symmetric space-time is a Ricci recurrent space-time. In
the Ricci flat case, it is easy to show that only one case of the above result will hold, namely,
M is Einstein.

Corollary 2. Let M be a Ricci symmetric RW space-times. Then M reduces to be Einstein, and the
Ricci tensor and the equation of state take the form of Equations (15) and (18)—(21).

3.3. Codazzi Type of Ricci Tensor
The RW space-time is of Codazzi type of Ricci tensor if

where X, Y, Z are vector fields on M. In local coordinates, it is
ViSij = ViSk]-. (40)

To obtain contraction of this equation by w'w¥, let us first evaluate both sides as

wiwkvksﬁ = o (tiégl']' + Bwiwj + ,Bd]iaij + ,BwidJ]')
= ﬁéw]' — ,8(4]] — ,3(4)/
and
wika,-Skj = wivi (wkSkj> - wiSijiwk

= (/Jivi (ll]a)]) - wiSijiwk
= Yoy + iy — w'gSy (8F + wiek)
= i+ pi; — 0'9(S; + pwiw))
= i yaj - @'p(Yw; — Ywj)
= IIJ(Uj + l/)d)]‘ (42)
The above equations imply
¢Wj — ﬁcu] = l/JCU] + le]
(¢ + B)w; 0
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Therefore,  + p = 0 or w; = 0. The first case infersa = 0y = —f = S and

consequently
Sij = —Swiw]-. (43)

Space-times with this form of Ricci curvature are called Ricci simple space-times [15].
The energy—-momentum tensor, the pressure and energy density are consequently given by

S 3§
kTyj = —58ij— 5 wiwj, (44)
S
35
kptp) = - (47)

The second condition implies that the fluid acceleration is zero and the velocity vector
field is geodesic.

Theorem 4. Let M be an RW space-time admitting a Codazzi type of Ricci tensor. Then, the
velocity vector field is geodesic or M is Ricci simple and

Sij = —Swiwj, (48)
S 3S
kTj = —38ij— 5 wiwj, (49)
35
kp+u) = —— (50)
o= -, 6
kpy = -S. (52)

4. Riemann Curvature Tensor on RW Space-Times

The Riemann curvature tensor of an RW space-time is completely determined by the
vector w as follows. It is clear that the conformal curvature tensor is null and so

0 = Cim
1
= Sikm + p— {g]’mskl — 8kmSji + 8kiSjm — gjlskm]
S
“-1)n-2) [gjmgkl - gkmgjl} : (53)

Now, the Riemann curvature tensor has the form

S
Sikim = m[gjmgkl*gkmgjl}

1
P [gjmskl — 8kmSji + 8k1Sjm _gjlskm} (54)

Using the form of the Ricci curvature tensor, one obtains

S—2n—1a
Sikim = CENCE)) [gjmgkl — 8km8jl

% [gjmwkwl — 8kmWjw; + grwjwm — gjlwkwm} - (55)
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It is clear that

Vilwrwr) = Vi(wg)w + wiVe(wy)
= Qg + wrwi)wy + @(gn + wrwy)wi
= @(gnw + gnwi + 2wrwiwy)

After lengthy computations using this equation, the covariant derivative of the Rie-
mann curvature tensor may be finally rewritten as

ViSikim = Vy(Sn—_Zl()rzn—_l)Zer [8jmgkl - gkmgﬂ}
_ nv_rﬁz [gjmwsz — SkmWjwW] + §WiWm — gﬂwkwm]
—ﬁ%&MWH&meﬂwwwwﬁ&wwﬂ
- ngo_ > [‘gkmgrle — 28kmWrwjw; + k18rjwm + gkzgrmwj]
_% [nglwf“’f“’m — 8jI8rkWm — &j1&rmWk — Zgjlwrwkwm] (56)

4.1. Locally Symmetric RW Space-Time

Assume that an RW space-time is symmetric, that is, V,S]'klm = 0 [16], and conse-
quently, the scalar curvature is constant and nVa = V. Thus,

0 = (nz_vr;; [gjmgkl - gkmgjl}
- Zv_rg [gjmwkwl = SkmWjw] + grW;jWm — gjlwkwm}
- nL_ﬁz [8jm&rkwi + 8jm&rWk + 28mWr kW] — Skm&rji]
- n(P_ 7 [~ 8km8r1Wj — 28kmWrw;jw; + 8ki8rjWm ~+ k1 grmw]
¢B

n—_2 [2gklwrijm — 8ji8rkWm — &ji&rmWk — Zgjlwrwkwm} .

By multiplying this equation by g, it is
0 = Via[nwiwm + gim] + 9Bl8rkwm + &rmwy + 2wrwiwn]. (57)

A last contraction with wfw™ gives us V,a = 0. Back substitution in the above
equation yields

0 = @Blgmwwm + grmwi + 2wrwiwm] (58)
= pBlwmVrug + Wi Vrtiy] (59)
= @BlwmVrw + WrVrwn] (60)

From this equation, it is easy to show that either § = 0 or V,w;;, = 0. The first case
implies that the space-time is Einstein, and the second case infers the space-time is static.
In the first case, the Riemann curvature tensor becomes

S—2(n—1)a
Sikim = M[gjmgkz—gkmgjl} (61)

S
w1 [gkmgjz - gjmgkz} - (62)
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Therefore, RW space-time has constant curvature. A simple contraction of this equation
implies @ = 0. Now, the manifold is Ricci flat and consequently is flat.

Theorem 5. Let M be a locally symmetric RW space-time. Then,

1. M has a constant curvature. The Riemann tensor, the Ricci tensor, and the equation of state

take the form
S
Sikim = m{gkmgjl_gjmgkl-
S
Sij = Egij,
n—2
kT = —(2n )Sgij/
n—2
kp = —ky:—( . >S,
k(p+u) = 0.

2. Ms a static space-time.

4.2. Recurrent RW Space-Times

A space-time is called recurrent if there is one form a such that
(VuS)(X,Y,Z,W) =a(U)S(X,Y,Z,W).

In local coordinates, it is
Vi Sikim = arSikim-

Thus, an RW space-time is recurrent if

Sikm = ViSikim
VWS- -O)Vyag ‘
- (Vl _ 1)(1’[ _ 2) [g]mgkl - gkmg]l}

\Y

- ni_rﬁz [gjmwkwl — 8kmWjW] + §rwjWm — gjlwkwm]

- nL_ﬁz [8jm8rkc01 + 8jm&rW + 28 jmCr W] — Sim&ri1] (63)

9
n—2

p

-2

[_gkmgrle - zgkmwrijl + 8ki8rjwm + gklgrmwj]

S

[zgklwrijm — &j1&rkWm — &j18rmWk — zgjlwrwkwm]

N

Using the calculations in the above subsection, one obtains

Vi
ArSgm = _niizgkm + ViBwrwm + @Blgrkwm + grmwi + 2wrwiwp).

Using two contractions with ¢ and w*w™, this equation infers

nV,u

a;S = o VB
V,a
e - 5 Wk = VrPwi + @B~k — wrwy]
V,a
ayp = ——— = V,p

n—2
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The subtraction of these two equations implies

n—1
-1

am(n—1a = —%Vﬂx
1

an = —n_zvra.

Theorem 6. Let M be a recurrent RW space-time. Then, M is Ricci simple or the recurrence form
is given by

1 1
—V,a.

a, = —
r n—2a

4.3. Harmonic RW Space-Time
A contraction of VS, with grj infers

VS — (n—l)Vmoc . VZS— (n—l)V,a
(n-1n-2) M Tm-1m-2) S
VP B B Vip

T = Wk S km Wl S 8k W T
¢B
n—2
%
n—2
¢B
n—2

ViSikim =

[SkmW1 + §imWi + 2Wmwiw; — NGk w] (64)

[—SkmW1 + 28kmwi + N8k Wm + W)

[—28K1Wm — §1kWm — §ImWk — 2W] W W]

Thus, the divergence of the Riemann tensor is give by
; 1
VISim = m((vm‘/’)gkl = (Vi) &km)
+ (nfz + <P5> (8kmW1 — §k1wWm) (65)

1
n—2

(VimB)wiw; — (ViB)wrwm).
Assume that M is harmonic, that is,

0 = ViSim
= (n_l)l(n_z)((vml#’)gkl — (V1) 8km)
+ (,,fz + fPf’) (8kmwr — 8k1wm) (66)

L (VnBlarr — (ViB)wron).
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Therefore, one obtains

0 = %(vmw + ViuB) + (=B + ¢B(1 —n))wn

0 = "V (pt (- 1)gB)wm
0 = o4 (Bt (n-1)gp) (©7)

0 = ni+(n—2)(B+(n—1)pp)

However, a harmonic RW space-time has a divergence free Ricci tensor, that is,

0 = VS,
0 = W'Visp=V (wkS]-k) — 5 Viwk
= V(o) — oS (8" + wiwt)
YV (@) + @i VI () = ¢(S — ¢) (68)
po(n—1)+¢ — p(na —p—a+p)
¥ —(n—1)ga+ype(n—1)
p—(n—1)9p.

Thus, § = (n — 1)@pB. Equation (68) now becomes

0 = ni+m—2)(B+¢)
= (2n—-2)a.

Hence, & = 0, 8 = —) = —(n — 1)¢B and Equation (67) reduce to

1

0 = (nil)((vmlp)gkl_(vllp)gkm)

” i ) PB(8kmwr — x1wm) (69)
~((VmB)wwr = (ViB)wreonm).

A contraction by ¢ implies

n—1 .
1 .
= Vua+ <1 — H)ﬁwm (70)
_3.
= Vua+ Z—2‘me

Again, transfecting this equation by w™ yields

n—3. n—3. n—3

0=&—-——p= FP= 5 (n—1)¢p.

Therefore, B =0or ¢ = 0.

Theorem 7. Let M be a harmonic RW space-time. Then, M is Einstein or M is a static space-time.

5. Conclusions

A conformally flat GRW space-time satisfies an algebraic curvature condition; namely,
it is a perfect fluid RW space-time. The existence of one of the differential curvature
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conditions (i.e., semi-symmetric Ricci curvature, generalized recurrent Ricci curvature
tensor, recurrent Ricci curvature tensor, parallel Ricci curvature tensor, Codazzi Ricci tensor,
locally symmetric, and harmonic Riemann curvature tensor) implies the RW space-time
has a constant curvature or is a static space-time.
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