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Abstract: A conformally flat GRW space-time is a perfect fluid RW space-time. In this note, we
investigated the influence of many differential curvature conditions, such as the existence of recurrent
and semi-symmetric curvature tensors. In each case, the form of the Ricci curvature tensor, the
energy–momentum tensor, the energy density, the pressure of the fluid, and the equation of state
are determined and interpreted. For example, it is demonstrated that a Ricci semi-symmetric RW
space-time reduces to Einstein space-time or a Ricci recurrent RW space-time, and the perfect fluid
space-time is referred to as Yang pure space-time or dark matter era.
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1. Introduction

One of the most significant areas of research in both mathematics and physics is the
geometry of generalized Robertson–Walker (or GRW) space-times. A warped product
manifold with a one-dimensional base manifold serves as the representation of a GRW
space-time. The term Friedmann–Lemaitre–Robertson–Walker metrics, which accurately
captures the contributions of different scientists to this issue, is currently used in physics
for Robertson–Walker-type metrics. There are many exciting decomposition theorems on
Lorentzian manifolds. The author of [1] described a particularly remarkable decomposition
of a Lorentzian manifold to a GRW space-time. The existence of a time-like concircular
vector field is sufficient for a Lorentzian manifold to be a GRW space-time. This condition
becomes weaker as follows in the presence of another condition [2]. If a unit time-like torse-
forming vector field ωi that is an eigenvector of the Ricci tensor Sij exists on a Lorentzian
manifold M, then M is a GRW space-time. By a unit time-like torse-forming, we mean that
there is a scalar function ϕ on M such that

∇kωj = ϕ
(

ωkωj + gkj

)
, (1)

ωiωi = −1. (2)

The factor ϕ coincides with the Hubble’s parameter H on a GRW space-time M. How
rapidly the universe is expanding is determined by Hubble’s parameter H (for a description
of H and further information, see [3]). This torse-forming vector field is also an eigenvector
of the Ricci tensor Sij, that is, ωiSij = ψωj where ψ is the corresponding eigenvalue of
ωj [1,2,4]. In [5], a GRW space-time Ricci tensor has been established to be
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Sij =
S− ψ

n− 1
gij +

S− nψ

n− 1
ωiωj + (n− 2)ωkωlCkijl (3)

where Ckijl is the Weyl conformal curvature tensor and S is the scalar curvature. The
classical Robertson–Walker (or RW) space-time is a conformally flat GRW space-time,
which allows the Ricci curvature form to change as

Sij =
S− ψ

n− 1
gij +

S− nψ

n− 1
ωiωj. (4)

On the other hand, the Ricci tensor of a perfect fluid space-time has the form

Sij = αgij + βτiτj. (5)

Accordingto this equation, an RW space-time is a perfect fluid space-time where

α =
S− ψ

n− 1
, β =

S− nψ

n− 1
, τi = ωi. (6)

For further information about perfect fluid space-times and characterization of GRW
space-times and RW space-times, the reader is recommended to read [2,4–7]. An algebraic
curvature condition is that a space-time is a perfect fluid space-time [8]. Manifolds having
this algebraic curvature criterion are known as quasi-Einstein manifolds in differential
geometry [9]. However, there are additional types of differential curvature conditions that
can be used, such as the existence of recurrent and semi-symmetric curvature tensors. Many
alternative differential curvature conditions are examined in this article by using Riemann
and Ricci curvature tensors. In each case, the form of the Ricci tensor, energy–momentum
tensor, pressure, energy density and equation of state of the perfect fluid is given.

2. Notes on RW Space-Times

It is easy to obtain the scalar curvature of RW space-time, the eigenvalue of the Ricci
tensor corresponding to ω and the divergence of the one form ω as

S = nα− β, ψ = α− β (7)

∇jωj = (n− 1)ϕ (8)

It should be observed that the form (5) on an RW space-time has a perfect fluid
structure that is unique up to a sign. For this, we assume that there exists a vector field υ
that is time-like and

Sij = ᾱgij + β̄υiυj.

Then,

ωiSij = ᾱωj + β̄
(

ωiυi

)
υj

(ψ− ᾱ)ωj = β̄
(

ωiυi

)
υj.

Since any two time-like vectors can not be orthogonal to each other, ψ− ᾱ = β̄ = 0;
that is, M is Einstein, or ωj = ±υj.

Einstein’s field equations without cosmological constant are

Sij −
S
2

gij = kTij

where Tij is the energy–momentum tensor, and k is the gravitational constant. Thus,

αgij + βωiωj −
S
2

gij = kTij(
α− S

2

)
gij + βωiωj = kTij. (9)
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However, the energy–momentum tensor for a perfect fluid space-time with velocity
vector field ω is given by

Tij = pgij + (p + µ)ωiωj (10)

where p and µ are pressure and energy density, respectively [10]. Equations (9) and (10)
show that

kp = α− S
2
=

S− ψ

n− 1
− S

2
=

(3− n)S− 2ψ

2(n− 1)
(11)

k(p + µ) = β =
S− nψ

n− 1
(12)

kµ =
S− nψ

n− 1
− (3− n)S− 2ψ

2(n− 1)
=

S− 2ψ

2
. (13)

3. Ricci Curvature Conditions on RW Space-Times
3.1. Semi-Symmetric Ricci Curvature

A space-time is called Ricci semi-symmetric if [11]

∇l∇kSij −∇k∇lSij = 0.

Taking the covariant derivative of Equation (5) twice, one obtains

∇l∇kSij −∇k∇lSij = ∇l∇k
(
αgij + βωiωj

)
−∇k∇l

(
αgij + βωiωj

)
= β∇l∇k

(
ωiωj

)
− β∇k∇l

(
ωiωj

)
= β

[
ωi(∇l∇k −∇k∇l)ωj + ωj(∇l∇k −∇k∇l)ωi

]
. (14)

It is clear that this equation implies that an RW space-time is Ricci semi-symmetric
if and only if either β = 0 or ∇l∇kωj = ∇k∇lωj. Let us consider the first condition. It
is noted that β = 0 implies that an RW space-time is Einstein. The converse is also true.
Assume that the space-time is Einstein, then

S
n

gij = αgij + (nα− S)ωiωj,

S
n

ωj = (α− nα + S)ωj,

S
n

= α− nα + S,

that is, α = S
n . Equation (5) yields β = nα − S and consequently β = 0. The second

condition is equivalent to ωhSh
ilk = 0

Theorem 1. An RW space-time M is Ricci semi-symmetric if and only if M is Einstein or ωhSh
ilk = 0.

Now, assume that β = 0. Then an RW space-time is Einstein and the eigenvalue is
ψ = S

n . Let us rewrite the Ricci tensor and the energy–momentum tensor for a perfect fluid
space-time in the case β = 0 as

Sij =
S
n

gij (15)

Tij = pgij + (p + µ)ωiωj (16)

where
α = ψ =

S
n

. (17)
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The equation of state in this case

k(p + µ) = 0, (18)

kp = −
(

n− 2
2n

)
S, (19)

kµ =

(
n− 2

2n

)
S. (20)

kTij = −
(

n− 2
2n

)
Sgij. (21)

That is, the perfect fluid is referred to as the dark energy. On the other hand, if
∇l∇kωj = ∇k∇lωj, then

ωhSh
ilk = 0.

This equation yields
ωhSh

k = 0.

Using Equation (5), it is
0 = (α− β)ωj

and consequently ψ = 0, α = β, and in this case, it is

Sij =
S

n− 1
(

gij + ωiωj
)
. (22)

Equations (9) and (10) show that

kTij = − (n− 3)
2(n− 1)

Sgij +
S

n− 1
ωiωj, (23)

kp = − (n− 3)
2(n− 1)

S, (24)

kµ =
S
2

, (25)

k(p + µ) =
S

n− 1
. (26)

Theorem 2. Let M be a Ricci semi-symmetric RW space-time. Then, M satisfies one of the following:

1. (β = 0) M is Einstein. The Ricci tensor and the equation of state take the form of Equation
(15) and Equations (18)–(21). The perfect fluid is referred to as dark matter era.

2. (α = β) The Ricci tensor, the energy–momentum tensor, and the equation of state take the
form of Equations (22)–(26).

Remark 1. Notably, an RW space-time is a perfect fluid space-time. Dark matter era refers to
perfect fluid space with the equation of state p + µ = 0 [12]. However, so far, according to [13], a
four-dimensional perfect fluid space-time with p + µ 6= 0 is RW space-time if and only if it is a Yang
pure space-time. These space-times are identified by a Ricci tensor, which is a Codazzi tensor [13].

Corollary 1. A four-dimensional Ricci semi-symmetric RW space-time is a Yang pure space-time
given that β 6= 0.

3.2. Generalized Recurrent Ricci Curvature

A space-time M is called generalized Ricci recurrent if there are two 1−form a and b
such that

(∇XS)(Y, Z) = a(X)S(Y, Z) + b(X)g(Y, Z) (27)
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where X, Y, Z ∈ X(M) and a, b are called the corresponding recurrence 1−forms. In local
coordinates, one may write

∇lSij = alSij + bl gij. (28)

Two contractions of this equation by gij and gli yield

∇lS = Sal + nbl (29)
1
2
∇jS = alSl

j + bj. (30)

A third contraction with ωi infers

ωi∇lSij = al

(
ωiSij

)
+ blωj. (31)

Since ωi is an eigenvector of the Ricci tensor, it is

∇l

(
ωiSij

)
− Sij∇lω

i = (ψal + bl)ωj (32)

∇l
(
ψωj

)
− Sij∇lω

i = (ψal + bl)ωj. (33)

Now, we may insert the definition of the Ricci tensor as

∇l
(
ψωj

)
−
(
αgij + βωiωj

)
∇lω

i = (ψal + bl)ωj (34)

∇l
(
ψωj

)
− α∇lωj = (ψal + bl)ωj (35)

(∇lψ)ωj + (ψ− α)∇lωj = (ψal + bl)ωj. (36)

By multiplying both sides by ω j, one obtains

(∇lψ) = ψal + bl . (37)

Back substitution in Equation (36) results in

(ψ− α)∇lωj = 0. (38)

Thus, we have two cases, namely, ψ− α = 0 and ∇lωj = 0. The first case ψ− α = 0
implies that β = 0 and so M is Einstein, and the Ricci tensor and the equation of state take
the form of Equation (15) and Equations (18)–(21). To consider the second case ∇lωj = 0, it
is clear that ϕ = 0. In this case, the perfect fluid is called static. One may use the fact that

ψ = (n− 1)
(

ϕ2 + ϕ̇
)

where ϕ̇ = ωk∇k ϕ to obtain ψ = 0, that is α = β. In this case, the Ricci tensor, the
energy–momentum tensor, and the equation of state take the form

Sij =
S

n− 1
(

gij + ωiωj
)
,

kTij =
S

2n− 2
(
−(n− 3)gij + 2ωiωj

)
,

k(p + µ) =
S

n− 1
,

kp = − (n− 3)S
2(n− 1)

,

kµ =
S
2

.
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The covariant derivative of the Ricci tensor is now given by

∇lSij =
∇lS

n− 1
(

gij + ωiωj
)
.

Using the defining property of the generalized Ricci recurrent tensor, it is

alSij + bl gij =
∇lS

n− 1
(

gij + ωiωj
)
.

Now, the definition of the Ricci tensor yields

al
S

n− 1
(

gij + ωiωj
)
+ bl gij =

∇lS
n− 1

(
gij + ωiωj

)
.

One may simplify this equation as

0 =

(
∇lS

n− 1
− al

S
n− 1

− bl

)
gij +

(
∇lS

n− 1
− al

S
n− 1

)
ωiωj

0 = (∇lS− Sal − (n− 1)bl)gij + (∇lS− Sal)ωiωj.

Different contractions of this equation infer

bl = 0,

0 = ∇lS− Sal − nbl .

Sal = ∇lS

The defining equation of the generalized Ricci recurrent RW space-time reduces to

∇lSij = alSij

For a non-zero scalar curvature S, it is

∇lSij = ∇l(ln S)Sij.

Theorem 3. Let M be a generalized Ricci recurrent RW space-time. Then M reduces to be Einstein
or to a Ricci recurrent RW space-time of the form

∇lSij = ∇l(ln S)Sij.

Moreover, M satisfies one of the following:

1. M is Einstein. The Ricci tensor and the equation of state take the form of Equations (15) and
(18)–(21).

2. M is a static perfect fluid, and the Ricci tensor, the energy–momentum tensor, and the equation
of state take the form of Equations (22)–(26).

A space-time M is called Ricci recurrent if there is a 1−form a such that

(∇XS)(Y, Z) = a(X)S(Y, Z)

where X, Y, Z are vector fields on M and a is called the recurrence 1−form. In local
coordinates, one may write

∇lSij = alSij.
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It should be noted that a Ricci recurrent space-time is a generalized Ricci recurrent
space-time. Let M be a Ricci recurrent RW space-time. Then M reduces to be Einstein or to
a Ricci recurrent RW space-time of the form

∇lSij = ∇l(ln S)Sij.

Moreover, M is either Einstein and Equations (15)–(21) hold or M is a static perfect
fluid and the Ricci tensor, the energy–momentum tensor, and the equation of state take the
form of Equations (22)–(26).

A space-time M is called Ricci symmetric if [14]

(∇XS)(Y, Z) = 0

where X, Y, Z are vector fields on M. In local coordinates, one may write

∇lSij = 0.

It should be noted that a Ricci symmetric space-time is a Ricci recurrent space-time. In
the Ricci flat case, it is easy to show that only one case of the above result will hold, namely,
M is Einstein.

Corollary 2. Let M be a Ricci symmetric RW space-times. Then M reduces to be Einstein, and the
Ricci tensor and the equation of state take the form of Equations (15) and (18)–(21).

3.3. Codazzi Type of Ricci Tensor

The RW space-time is of Codazzi type of Ricci tensor if

(∇XS)(Y, Z) = (∇YS)(X, Z) (39)

where X, Y, Z are vector fields on M. In local coordinates, it is

∇kSij = ∇iSkj. (40)

To obtain contraction of this equation by ωiωk, let us first evaluate both sides as

ωiωk∇kSij = ωi(α̇gij + β̇ωiωj + βω̇iωj + βωiω̇j
)

= α̇ωj − β̇ωj − βω̇j

= ψ̇ωj − βω̇j (41)

and

ωiωk∇iSkj = ωi∇i

(
ωkSkj

)
−ωiSkj∇iω

k

= ωi∇i
(
ψωj

)
−ωiSkj∇iω

k

= ψ̇ωj + ψω̇j −ωi ϕSkj

(
δk

i + ωiω
k
)

= ψ̇ωj + ψω̇j −ωi ϕ
(
Sij + ψωiωj

)
= ψ̇ωj + ψω̇j −ωi ϕ

(
ψωj − ψωj

)
= ψ̇ωj + ψω̇j (42)

The above equations imply

ψ̇ωj − βω̇j = ψ̇ωj + ψω̇j

(ψ + β)ω̇j = 0
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Therefore, ψ + β = 0 or ω̇j = 0. The first case infers α = 0 ψ = −β = S and
consequently

Sij = −Sωiωj. (43)

Space-times with this form of Ricci curvature are called Ricci simple space-times [15].
The energy–momentum tensor, the pressure and energy density are consequently given by

kTij = −S
2

gij −
3S
2

ωiωj, (44)

kp = −S
2

, (45)

kµ = −S, (46)

k(p + µ) = −3S
2

. (47)

The second condition implies that the fluid acceleration is zero and the velocity vector
field is geodesic.

Theorem 4. Let M be an RW space-time admitting a Codazzi type of Ricci tensor. Then, the
velocity vector field is geodesic or M is Ricci simple and

Sij = −Sωiωj, (48)

kTij = −S
2

gij −
3S
2

ωiωj, (49)

k(p + µ) = −3S
2

, (50)

kp = −S
2

, (51)

kµ = −S. (52)

4. Riemann Curvature Tensor on RW Space-Times

The Riemann curvature tensor of an RW space-time is completely determined by the
vector ω as follows. It is clear that the conformal curvature tensor is null and so

0 = Cjklm

= Sjklm +
1

n− 2

[
gjmSkl − gkmSjl + gklSjm − gjlSkm

]
− S
(n− 1)(n− 2)

[
gjmgkl − gkmgjl

]
. (53)

Now, the Riemann curvature tensor has the form

Sjklm =
S

(n− 1)(n− 2)

[
gjmgkl − gkmgjl

]
− 1

n− 2

[
gjmSkl − gkmSjl + gklSjm − gjlSkm

]
(54)

Using the form of the Ricci curvature tensor, one obtains

Sjklm =
S− 2(n− 1)α
(n− 1)(n− 2)

[
gjmgkl − gkmgjl

]
− β

n− 2

[
gjmωkωl − gkmωjωl + gklωjωm − gjlωkωm

]
. (55)
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It is clear that

∇r(ωkωl) = ∇r(ωk)ωl + ωk∇r(ωl)

= ϕ(grk + ωrωk)ωl + ϕ(grl + ωrωl)ωk

= ϕ(grkωl + grlωk + 2ωrωkωl)

After lengthy computations using this equation, the covariant derivative of the Rie-
mann curvature tensor may be finally rewritten as

∇rSjklm =
∇rS− 2(n− 1)∇rα

(n− 1)(n− 2)

[
gjmgkl − gkmgjl

]
− ∇rβ

n− 2

[
gjmωkωl − gkmωjωl + gklωjωm − gjlωkωm

]
− ϕβ

n− 2
[
gjmgrkωl + gjmgrlωk + 2gjmωrωkωl − gkmgrjωl

]
− ϕβ

n− 2
[
−gkmgrlωj − 2gkmωrωjωl + gkl grjωm + gkl grmωj

]
− ϕβ

n− 2

[
2gklωrωjωm − gjl grkωm − gjl grmωk − 2gjlωrωkωm

]
(56)

4.1. Locally Symmetric RW Space-Time

Assume that an RW space-time is symmetric, that is, ∇rSjklm = 0 [16], and conse-
quently, the scalar curvature is constant and n∇α = ∇β. Thus,

0 =
−2∇rα

(n− 2)

[
gjmgkl − gkmgjl

]
−n∇rα

n− 2

[
gjmωkωl − gkmωjωl + gklωjωm − gjlωkωm

]
− ϕβ

n− 2
[
gjmgrkωl + gjmgrlωk + 2gjmωrωkωl − gkmgrjωl

]
− ϕβ

n− 2
[
−gkmgrlωj − 2gkmωrωjωl + gkl grjωm + gkl grmωj

]
− ϕβ

n− 2

[
2gklωrωjωm − gjl grkωm − gjl grmωk − 2gjlωrωkωm

]
.

By multiplying this equation by gjl , it is

0 = ∇rα[nωkωm + gkm] + ϕβ[grkωm + grmωk + 2ωrωkωm]. (57)

A last contraction with ωkωm gives us ∇rα = 0. Back substitution in the above
equation yields

0 = ϕβ[grkωm + grmωk + 2ωrωkωm] (58)

= ϕβ[ωm∇ruk + ωk∇rum] (59)

= ϕβ[ωm∇rωk + ωk∇rωm] (60)

From this equation, it is easy to show that either β = 0 or ∇rωm = 0. The first case
implies that the space-time is Einstein, and the second case infers the space-time is static.
In the first case, the Riemann curvature tensor becomes

Sjklm =
S− 2(n− 1)α
(n− 1)(n− 2)

[
gjmgkl − gkmgjl

]
(61)

=
S

n(n− 1)

[
gkmgjl − gjmgkl

]
. (62)
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Therefore, RW space-time has constant curvature. A simple contraction of this equation
implies α = 0. Now, the manifold is Ricci flat and consequently is flat.

Theorem 5. Let M be a locally symmetric RW space-time. Then,

1. M has a constant curvature. The Riemann tensor, the Ricci tensor, and the equation of state
take the form

Sjklm =
S

n(n− 1)

[
gkmgjl − gjmgkl

]
.

Sij =
S
n

gij,

kTij = −
(

n− 2
2n

)
Sgij,

kp = −kµ = −
(

n− 2
2n

)
S,

k(p + µ) = 0.

2. M is a static space-time.

4.2. Recurrent RW Space-Times

A space-time is called recurrent if there is one form a such that

(∇US)(X, Y, Z, W) = a(U)S(X, Y, Z, W).

In local coordinates, it is
∇rSjklm = arSjklm.

Thus, an RW space-time is recurrent if

arSjklm = ∇rSjklm

=
∇rS− (n− 1)∇rα

(n− 1)(n− 2)

[
gjmgkl − gkmgjl

]
− ∇rβ

n− 2

[
gjmωkωl − gkmωjωl + gklωjωm − gjlωkωm

]
− ϕβ

n− 2
[
gjmgrkωl + gjmgrlωk + 2gjmωrωkωl − gkmgrjωl

]
(63)

− ϕβ

n− 2
[
−gkmgrlωj − 2gkmωrωjωl + gkl grjωm + gkl grmωj

]
− ϕβ

n− 2

[
2gklωrωjωm − gjl grkωm − gjl grmωk − 2gjlωrωkωm

]
Using the calculations in the above subsection, one obtains

arSkm = − ∇rα

n− 2
gkm +∇rβωkωm + ϕβ[grkωm + grmωk + 2ωrωkωm].

Using two contractions with gkm and ωkωm, this equation infers

arS = −n∇rα

n− 2
−∇rβ

arψωk = − ∇rα

n− 2
ωk −∇rβωk + ϕβ[−grk −ωrωk]

arψ = − ∇rα

n− 2
−∇rβ



Mathematics 2023, 11, 1440 11 of 13

The subtraction of these two equations implies

ar(S− ψ) = −n− 1
n− 2

∇rα

ar(n− 1)α = −n− 1
n− 2

∇rα

arα = − 1
n− 2

∇rα.

Theorem 6. Let M be a recurrent RW space-time. Then, M is Ricci simple or the recurrence form
is given by

ar = −
1

n− 2
1
α
∇rα.

4.3. Harmonic RW Space-Time

A contraction of ∇rSjklm with grj infers

∇jSjklm =
∇mS− (n− 1)∇mα

(n− 1)(n− 2)
gkl −

∇lS− (n− 1)∇lα

(n− 1)(n− 2)
gkm

−∇mβ

n− 2
ωkωl +

β̇

n− 2
gkmωl −

β̇

n− 2
gklωm +

∇l β

n− 2
ωkωm

− ϕβ

n− 2
[gkmωl + glmωk + 2ωmωkωl − ngkmωl ] (64)

− ϕβ

n− 2
[−gkmωl + 2gkmωl + ngklωm + gklωm]

− ϕβ

n− 2
[−2gklωm − glkωm − glmωk − 2ωlωkωm]

Thus, the divergence of the Riemann tensor is give by

∇jSjklm =
1

(n− 1)(n− 2)
((∇mψ)gkl − (∇lψ)gkm)

+

(
β̇

n− 2
+ ϕβ

)
(gkmωl − gklωm) (65)

− 1
n− 2

((∇mβ)ωkωl − (∇l β)ωkωm).

Assume that M is harmonic, that is,

0 = ∇jSjklm

=
1

(n− 1)(n− 2)
((∇mψ)gkl − (∇lψ)gkm)

+

(
β̇

n− 2
+ ϕβ

)
(gkmωl − gklωm) (66)

− 1
n− 2

((∇mβ)ωkωl − (∇l β)ωkωm).
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Therefore, one obtains

0 =
1

n− 2
(∇mψ +∇mβ) +

(
−β̇ + ϕβ(1− n)

)
ωm

0 =
n∇mα

n− 2
−
(

β̇ + (n− 1)ϕβ
)
ωm

0 =
nα̇

n− 2
+
(

β̇ + (n− 1)ϕβ
)

(67)

0 = nα̇ + (n− 2)
(

β̇ + (n− 1)ϕβ
)

However, a harmonic RW space-time has a divergence free Ricci tensor, that is,

0 = ∇jSjk

0 = ωk∇jSjk = ∇j
(

ωkSjk

)
− Sjk∇jωk

= ∇j(ψωj
)
− ϕSjk

(
gjk + ω jωk

)
= ψ∇j(ωj

)
+ ωj∇j(ψ)− ϕ(S− ψ) (68)

= ψϕ(n− 1) + ψ̇− ϕ(nα− β− α + β)

= ψ̇− (n− 1)ϕα + ψϕ(n− 1)

= ψ̇− (n− 1)ϕβ.

Thus, ψ̇ = (n− 1)ϕβ. Equation (68) now becomes

0 = nα̇ + (n− 2)
(

β̇ + ψ̇
)

= (2n− 2)α̇.

Hence, α̇ = 0, β̇ = −ψ̇ = −(n− 1)ϕβ and Equation (67) reduce to

0 =
1

(n− 1)
((∇mψ)gkl − (∇lψ)gkm)

− 1
n− 2

ϕβ(gkmωl − gklωm) (69)

−((∇mβ)ωkωl − (∇l β)ωkωm).

A contraction by gkl implies

0 = ∇mψ +
n− 1
n− 2

ϕβωm +∇mβ + β̇ωm

= ∇mα +

(
1− 1

n− 2

)
β̇ωm (70)

= ∇mα +
n− 3
n− 2

β̇ωm

Again, transfecting this equation by ωm yields

0 = α̇− n− 3
n− 2

β̇ = −n− 3
n− 2

β̇ =
n− 3
n− 2

(n− 1)ϕβ.

Therefore, β = 0 or ϕ = 0.

Theorem 7. Let M be a harmonic RW space-time. Then, M is Einstein or M is a static space-time.

5. Conclusions

A conformally flat GRW space-time satisfies an algebraic curvature condition; namely,
it is a perfect fluid RW space-time. The existence of one of the differential curvature
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conditions (i.e., semi-symmetric Ricci curvature, generalized recurrent Ricci curvature
tensor, recurrent Ricci curvature tensor, parallel Ricci curvature tensor, Codazzi Ricci tensor,
locally symmetric, and harmonic Riemann curvature tensor) implies the RW space-time
has a constant curvature or is a static space-time.
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