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Abstract: This article presents a modified version of the SVIR compartmental model for predicting the
evolution of the COVID-19 pandemic, which incorporates vaccination and a saturated incidence rate,
as well as piece-wise time-dependent parameters that enable self-regulation based on the epidemic
trend. We have established the positivity of the ODE version of the model and explored its local
stability. Artificial neural networks are used to estimate time-dependent parameters. Numerical
simulations are conducted using a fourth-order Runge–Kutta numerical scheme, and the results
are compared and validated against actual data from the Autonomous Communities of Spain. The
modified model also includes explicit parameters to examine potential future scenarios. In addition,
the modified SVIR model is transformed into a system of one-dimensional PDEs with diffusive terms,
and solved using a finite volume framework with fifth-order WENO reconstruction in space and
an RK3-TVD scheme for time integration. Overall, this work demonstrates the effectiveness of the
modified SVIR model and its potential for improving our understanding of the COVID-19 pandemic
and supporting decision-making in public health.

Keywords: epidemiological models; artificial neural networks; numerical simulations; diffusion;
finite volumes; COVID-19
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1. Introduction

On 31 December 2019, the Country Office in the People’s Republic of China of the
World Health Organization (WHO) acquired media reports by Wuhan Municipal Health
Commission on cases of viral pneumonia. On 10 January 2020, the first draft genome of
the novel coronavirus was made public, this virus was denominated SARS-CoV-2, and it
is the cause of Coronavirus disease 19 (COVID-19) [1]. In March 2020, due to the spread
and severity of the infectious disease, COVID-19 was declared a pandemic [1]. Different
stages have been observed throughout the pandemic, including developing and launching
vaccines with high effectiveness, emerging new strains of concern, massive vaccination in
developed countries, and significant lag in others. According to [2], up to 14 October 2022,
there have been over 13.5 million reported cases and over 114 thousand deaths in Spain.

Compartmental models, such as the well-known SIR model, are commonly used
in epidemic simulations to model the dynamics of Susceptible, Infected, and Recovered
compartments. In previous studies, the SIR model with vaccination and immunization was
proposed. The vaccination models include those with partial and waning immunity, pulse
vaccination, and vaccination in newborns, which are modeled using two rates related to
vaccination [3–6]. General vaccination models for homogeneous groups in the population
were proposed in [7].

For more detailed vaccination policies and vaccine-related parameters, ref. [8] studied
vaccine coverage, the average duration of immunity acquired by a vaccine, and vaccine
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leakiness. Additionally, ref. [9] proposed two models with delay, one with and without
vaccination, to establish comparisons of the vaccination effort effects.

Overall, these models provide insight into the effects of vaccination on the spread and
control of infectious diseases and can be used to inform public health policy.

The incidence rate is a critical characteristic of compartmental models that drives
infections. The most frequently used incidence rates are the bilinear incidence rate and the
standard incidence rate. Various incidence rates have been applied in different models and
for different applications, such as the Holling-type incidence function [10], the saturated
incidence rate [11,12], and other types, including those originally implemented in host–
parasite population models, such as the saturated incident rate types in [13]. Some examples
of applications for the different incident rate types are: [14] where bilinear incidence
rate is used in a model considering vaccination, a Holling-type incidence function for a
SEIR model in [10], a standard incidence rate in [15] where there are different coefficients
considered for each defined infected sub-population (infected, asymptomatic, and dead
infectious corpses), a saturated incidence rate in a SIR model used in [11]. Recent studies
have applied compartmental models to simulate the COVID-19 outbreak in Spain and
Italy, using nonlinear data-fitting approaches [16] and Runge–Kutta methods [17,18]. Many
recent references dealing with mathematical models and numerical simulation of COVID-
19 can be mentioned, such as [19–22]. In [16], a study on a modified SEIR model applied
to the COVID-19 outbreak in Spain and Italy, solving the ODE system using a nonlinear
data-fitting approach minimizing a least-squares error function.

Artificial Neural Networks (ANNs) have been used as efficient tools for estimating
suitable values of parameters in epidemiological models. The first reference found with an
application relating Artificial Neural Networks to epidemiological models is [23] and dates
back to 1995. Even though other more recent applications [24–26] have been published, their
use in this task is not widespread, therein lies the opportunity to propose their application
as a parameter estimation technique. Several studies have applied ANNs to estimate the
rate of infection and spread of an epidemic, including cooperative and supportive neural
networks [24]. Some recent studies have used Long short-term memory (LSTM) ANNs to
forecast time-varying parameters for a SIRD model for COVID-19 [26,27].

In this work, we modified a model that is a variant of the classical SIR model, including
vaccination, called the SVIR model. The model’s formulation, equilibrium points, and
reproduction number were studied, and the contact rate (β) was estimated using LSTM
ANNs. The numerical simulations were conducted using the fourth-order Runge–Kutta
scheme. A PDE model with diffusion was also included and studied, and numerical
simulations were performed.

The results of the numerical simulations were discussed and compared with actual
data for the ODE models, and insights from the PDE model implementation were presented.
The study demonstrated the effectiveness of LSTM ANNs in estimating the contact rate
and the suitability of compartmental models for simulating the COVID-19 pandemic.

In conclusion, this study modified a compartmental model, including vaccination, and
applied ANNs to estimate the contact rate. The study also demonstrated the effectiveness
of compartmental models and ANNs in simulating the COVID-19 pandemic. The results
provide insights into the dynamics of the pandemic and suggest the importance of vaccina-
tion efforts in controlling the spread of the virus. This study’s proposed modifications to
the SVIR model, including time-varying parameters, may offer additional insights into the
dynamics of the pandemic.

The results of the numerical simulations for the PDE model with diffusion suggest that
the diffusion term may play a role in reducing the spread of the virus, particularly at the
early stages of the outbreak. This finding may have implications for policy decisions, such
as the timing of lockdowns and social distancing measures, and highlights the importance
of including spatial effects in epidemiological models.

Overall, this study’s use of ANNs and numerical simulations provides a valuable
tool for understanding the COVID-19 pandemic’s spread and control. The application



Mathematics 2023, 11, 1436 3 of 23

of these tools can help policymakers make informed decisions about vaccination and
other measures to slow the virus’s spread, ultimately reducing the number of cases and
deaths worldwide.

2. ODE SVIR Compartmental Model

In this section, we present the ODE SVIR compartmental model and its modifications.
We begin with the model formulation and then discuss its positivity, equilibrium, and
reproduction number. Next, we describe how the contact rate is estimated using LSTM,
followed by a discussion on numerical simulations.

2.1. ODE Model Formulation

SVIR Compartmental models incorporate vaccinated individuals into the classical SIR
model; this is relevant since vaccination greatly influences the evolution of an epidemic
or pandemic. In the SVIR compartmental model, S is for individuals susceptible to the
infection, V is for vaccinated, I is for infected, and R is for retired individuals (which in this
case includes recovered and deceased). A simplified version of the SVIR compartmental
model is considered a baseline for this work’s proposed techniques; this version is one of
the cases in [7] where four compartments describe the dynamics of the epidemic in time,
vital dynamics are not included, and reinfection is not considered. Even though the model
shown in Equation (1) is a simplification with multiple assumptions, it is helpful in broadly
studying the changes in population dynamics of epidemics involving vaccination.

dS
dt

= − βSI
N
− αS

dV
dt

= αS

dI
dt

=
βSI
N
− γI

dR
dt

= γI

(1)

In system (1), α is the vaccination rate, β is the transmission rate and γ is the recovery
rate. The model divides the total population (N) into these four compartments (S, V, I, R)
such that S + V + I + R = N, and the values for these compartments are always positive
(S ≥ 0, V ≥ 0, I ≥ 0, R ≥ 0).

It is important to state that several assumptions are considered in this model:

• The contact rate (β), vaccination rate (α), and recovery rate (γ) are positive.
• The recruitment rate of new susceptible individuals (such as newborns or migration

into the established population) is equal to the death rate or migration outside of the
established population and, therefore, not included in the model.

• Once an individual is vaccinated with two dosages (these dosages are given to an
individual with a delay, but the delay is not included in the model), the individual
cannot be infected.

As mentioned in the introduction, Section 1, different versions of the incidence rate
have been implemented in compartmental models. Modifications of the standard incidence
rate are particularly relevant for the specific case of COVID-19 due to the impact of changes
in restrictions and human behavior based on their perceived risk by implementing more
personal cautions, which affect the rate of infections. Without explicitly defining parameters
representing governmental restrictions and changes in human behavior, an alternative
is to modify the incidence rate via parameters that regulate the model based on prior
infection trends.

This work proposes modifications to the base SVIR model shown in system (1); the
modified model is as follows:
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dS
dt

= −
{
(1− ρ2)

[
ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
+ ρ2α2β

}
SI
N
− αS

dV
dt

= αS

dI
dt

=

{
(1− ρ2)

[
ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
+ ρ2α2β

}
SI
N
− γI

dR
dt

= γI

(2)

This system can be simplified by expressing the incidence rate as a function of S,
denoted κ(S):

κ(S) =

{
(1− ρ2)

[
ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
+ ρ2α2β

}
(3)

This modified model combines a saturated incidence rate (such as one mentioned
in [12]) with a modified standard incidence rate to generate a mechanism that can decrease
or increase the infection rate based on two parameters acting as logical gates: ρ1 and ρ2.
In an epidemiological context, these parameters can be considered as reflecting varying
restrictions or changes in the spread of the disease due to the appearance of new variants
that vary in contagiousness. Both scenarios have been observed at different points through-
out the COVID-19 pandemic. The modification introduces two additional parameters, α1
and α2, for regulating the incidence rate: α1 is used to decrease the incidence rate, while α2
has the opposite effect.

The parameter ρ1 is used to decrease the incidence rate and is defined as follows:

ρ1(t) =


1, if

∣∣∣∣dβ

dt

∣∣∣∣− δ1(t) > 0

0, if
∣∣∣∣dβ

dt

∣∣∣∣− δ1(t) ≤ 0
(4)

The threshold at which the decrease in the incidence rate takes effect is defined by
Equation (4) and is time-dependent. This threshold is related to outlier detection, which
involves considering the median and standard deviation of the estimated β parameter.
These parameters display highly different behaviors at different points of the epidemic,
particularly at the onset of the epidemic and when new waves of infection are triggered.

δ1(t) = med
{

β̃abs

}
+ aσ

β̃abs
. (5)

Equation (5) introduces the time-dependent threshold δ1(t), which determines the
point at which the decrease in the incidence rate takes effect. This threshold is related
to the detection of outliers in the estimated β parameter. Specifically, we calculate the

median and standard deviation of the absolute daily changes in β, denoted by β̃abs =

∣∣∣∣dβ

dt

∣∣∣∣.
The constant a can be customized for each Autonomous Community, and we provide the
determined values in Table A1 in Appendix A.

Similarly, ρ2 serves as a mechanism to increase the incidence rate, and it is regulated

by the recent changes in the infection trend
dI
dt

. Its definition is as follows:

ρ2(t) =


1, if

1
i

[
i

∑
j=1

dI
dt

∣∣∣∣
n−j

]
− δ2 > 0

0, if
1
i

[
i

∑
j=1

dI
dt

∣∣∣∣
n−j

]
− δ2 ≤ 0

(6)
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Equation (5) sets a time-dependent threshold for the decrease in incidence rate, with

β̃abs =

∣∣∣∣dβ

dt

∣∣∣∣ representing the absolute value of the daily changes for the estimated β

parameter. The median (medβ̃abs) and standard deviation (σ
β̃abs

) of this series are calculated,
with the constant parameter a specified for each Autonomous Community. Table A1 in
Appendix A includes the determined values.

Similarly, ρ2 is regulated by the most recent changes in the infection trend
dI
dt

, with its
definition provided by Equation (6). This mechanism is designed to increase the incidence
rate and depends on the i time steps preceding the current one, where i is an integer. The

rate of infected individuals at time tn−j is denoted by
dI
dt

∣∣∣∣
n−j

, and the average at each

particular time step is calculated by division with i. The parameter δ2 sets a threshold
of action for the ρ2 parameter. Appendix B in Table A2 includes the specific values per
Autonomous Community determined in this study.

In Equation (2) for the specific case where ρ2 = 0 for any t, the dynamic system is
simplified as:

dS
dt

= −
[

ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
SI
N
− αS

dV
dt

= αS

dI
dt

=

[
ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
SI
N
− γI

dR
dt

= γI

(7)

Equation (7) provides a simplified version that only includes a mechanism for reducing
the incidence rate, which is often the most relevant scenario. Numerical simulations in
Section 2.6 support this assumption by showing that this version is typically sufficient.

To analyze the model’s behavior at the equilibrium, the model is extended to include
a recruitment rate for the Susceptible compartment, φ, and a natural death rate ω for all
compartments.

dS
dt

= φ−
{
(1− ρ2)

[
ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
+ ρ2α2β

}
SI
N
− αS−ωS

dV
dt

= αS−ωV

dI
dt

=

{
(1− ρ2)

[
ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
+ ρ2α2β

}
SI
N
− γI −ωI

dR
dt

= γI −ωR

(8)

where dN
dt = φ−ωN(t), and ω and φ are positive constants.

2.2. Positivity of the ODE Model

Theorem 1. All solutions S(t), V(t), I(t), R(t) for the model in Equation (8) with initial condi-
tions S(0) ≥ 0, V(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, are non-negative for all t ≥ 0.

Proof. To demonstrate the positivity of the ODE model we follow the strategy put forward
in [28]. The model is given by the expression

dS(t)
dt

= φ− S(t)
(

κ(S)
I
N

+ α + ω

)
, (9)
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where κ(S) is given by Equation (3).
We first multiply Equation (9) by E(t) = exp

{∫ t
0

(
κ(S) I

N + α + ω
)

dτ
}

to get

dS(t)
dt

E(t) + S(t)
(

κ(S)
I
N

+ α + ω

)
E(t) = φE(t), (10)

so we have
d
dt

(
S(t)E(t)

{∫ t

0

(
κ(S)

I
N

+ α + ω

)
dτ

})
= φE(t). (11)

Integrating Equation (11) in [0, t]

S(t) exp
{∫ t

0

(
κ(S)

I
N

+ α + ω

)
dτ

}
− S(0) =

∫ t

0
φE(t)dt. (12)

Therefore we obtain

S(t) = S(0) exp
{
−
∫ t

0

(
κ(S)

I
N

+ α + ω

)
dτ

}
+ exp

{
−
∫ t

0

(
κ(S)

I
N

+ α + ω

)
dτ

}
∫ t

0
φ exp

{∫ t

0

(
κ(S)

I
N

+ α + ω

)
dσ

}
dτ > 0.

(13)

Similarly it can be established that V(t) ≥ 0, I(t) ≥ 0, and R(t) ≥ 0, for all t ≥ 0.

2.3. ODE Model Disease-Free Equilibrium and Reproduction Number

For Equation (8), at the disease-free equilibrium (DFE), the rate of change of each
compartment is zero, that is, dS

dt = 0, dV
dt = 0, dI

dt = 0, dR
dt = 0. Equations (4) and (6) imply

that ρ1 and ρ2 are both 0 at the DFE. At the DFE, I0 = 0. For S, from dS
dt = 0, we obtain

S0 = φ
α+ω . For V, from dV

dt = 0, we obtain V0 = αφ
ω(α+ω)

, and R0 = 0. Therefore, the DFE is

E0 =
(

φ
α+ω , αφ

ω(α+ω)
, 0, 0

)
.

To calculate the Basic Reproduction Number R0 for the proposed SVIR model in
Equation (8), we use the next-generation matrix method to derive an expression for R0
based on the I compartment. We linearize the differential equation for I as dx

dt = (F1 + V1),
where x = I, and calculate the matrices F1 and V1.

F1 =
[ (

(1− ρ2)
(

ρ1β
α1S+1 + (1− ρ1)β

)
+ ρ2α2β

)
SI
]

(14)

V1 = [γI + ωI]. (15)

These expressions are differentiated with respect to I and evaluated with the values at
the DFE (E0). Therefore:

F =

[(
(1−ρ2)

(
ρ1β

α1φ
α+ω +1

+(1−ρ1)β

)
+ρ2α2β

)
φ

α+ω

]
(16)

V =
[
γ + ω

]
(17)

The inverse of V is needed:

V−1 =
[

1
ω+γ

]
(18)

An expression for the Reproduction Number is obtained with FV−1:

R0 =
βφ

(α + ω)(ω + γ)
(19)
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This equation provides a useful measure of the potential for disease spread in the
proposed SVIR model, taking into account key parameters such as the contact rate, recovery
rate, and vaccination rate.

2.4. ODE Model Local Stability

In the system (8), it is observed that the equation for dR
dt is independent of the rest.

Taking this into consideration, for the purposes of the local stability analysis, the system is
reduced to:

dS
dt

= φ−
{
(1− ρ2)

[
ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
+ ρ2α2β

}
SI
N
− αS−ωS

dV
dt

= αS−ωV

dI
dt

=

{
(1− ρ2)

[
ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
+ ρ2α2β

}
SI
N
− γI −ωI

(20)

Theorem 2. The disease-free equilibrium of the system defined in Equation (20) is locally unstable
when R0 < 1.

Proof. The Jacobian matrix is calculated for the system in Equation (20) and evaluated for
at the DFE (E0), with the following outcome:

JE0
=

−α−ω 0 − βφ
(α+ω)N

α −ω 0
0 0 βφ

(α+ω)N − γ−ω

 (21)

The characteristic equation is given by det(λI − JE0
) = 0, where I is the identity

matrix, and its solution is a cubic equation of the form λ3 + a2λ2 + a1λ + a0 = 0, where

a2 = (R0 − 1)γ + (R0 − 3)ω− α

a1 = (2R0 − 3)ω2 + ((R0 − 2)α + 2(R0 − 1)γ)ω + αγ(R0 − 1)

a0 = (ω + γ)(R0 − 1)ω(α + ω)

(22)

The terms a0, a1, a2, in Equation (22), will always be negative when R0 < 1, there are
no conditions in which the Routh–Hurwitz criterion is met. Therefore when R0 < 1, the
disease-free equilibrium of the system in Equation (20) is locally unstable.

Theorem 3. The system defined in Equation (20) is a saddle point at the endemic equilibrium
point E∗.

Proof. The Jacobian evaluated at E∗ is as follows:

JE∗ =

j11 j12 j13
j21 j22 j23
j31 j32 j33

 (23)
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where,

j11 =
(1− ρ2)ρ1βα1S∗ I∗

(S∗α1 + 1)2N
−

(
(1− ρ2)

(
ρ1β

S∗α1+1 + (1− ρ1)β
)
+ ρ2α2β

)
I∗

N
− α−ω

j12 = 0

j13 = −

(
(1− ρ2)

(
ρ1β

S∗α1+1 + (1− ρ1)β
)
+ ρ2α2β

)
S∗

N
j21 = α

j22 = −ω

j23 = 0

j31 = − (1− ρ2)ρ1βα1S∗ I∗

(S∗α1 + 1)2N
+

(
(1− ρ2)

(
ρ1β

S∗α1+1 + (1− ρ1)β
)
+ ρ2α2β

)
I∗

N

j32 = 0

j33 =

(
(1− ρ2)

(
ρ1β

S∗α1+1 + (1− ρ1)β
)
+ ρ2α2β

)
S∗

N
− γ−ω

(24)

The first eigenvalue from the Jacobian matrix at E∗ is −ω, which is negative. In order
to further analyze this case, we computed the trace of the Jacobian matrix at E∗ and assessed
the possible scenarios for ρ1 and ρ2. To obtain a negative value in the trace, a condition
relating I and S was determined:

I∗ > −S∗(α1 + 1)((α + γ + 3ω)(S∗α1 + 1)N − S∗β)
β

(25)

Subsequently, the determinant of the Jacobian matrix evaluated at E∗, and there
are two cases depending on the possible scenarios of ρ1 and ρ2, as can be seen in the
following expressions:

det JE∗1
= −

(
Nω2 + ((α + γ)N − βα2(S∗ − I∗)

)
ω + Nαγ− βα2(−I∗γ + S∗α))ω

N
(26)

A = N(S∗α1 + 1)2ω2

B =
(
(S∗α1 + 1)2(α + γ)N − β

(
S∗2α1 − I∗ + S∗

))
ω

C = αγ(S∗α1 + 1)2N

D = β
(

S∗2αα1 − I∗γ + S∗α
)

det JE∗2
= − (A + B + C− D)ω

N(S∗α1 + 1)2

(27)

Given the negative sign associated with the expressions for the determinant, we cannot
ensure that the determinant will be positive, therefore it is established that the system
defined in Equation (20), at E∗ is a saddle point.

2.5. ODE Model Contact Rate (β) Estimation with LSTM Neural Networks

The data for the SVIR compartmental model were collected from reliable sources,
including the National Center of Epidemiology of Spain (CNE, Centro Nacional de Epi-
demiología), the Ministry of Health of Spain (Ministerio de Sanidad), the Ministry of
Transport, Mobility and Urban Agenda (Ministerio de Transportes, Movilidad y Agenda
Urbana), and the National Institute of Statistics of Spain (INE, Instituto Nacional de Estadís-
tica), as specified in Table 1. To address shortcomings in data availability, assumptions were
made to simplify the model, such as the required granularity or a complete lack of infor-
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mation. This work is focused on modeling the SARS-CoV-2 epidemic for the Autonomous
Communities of Spain, which have undergone a specific set of restrictions.

Table 1. Data sources, assumptions, and pre-processing considerations.

Variable Data Source Assumptions Pre-Processing

Infected CNE 1, SiViES 2 Only reported cases MA-7 3

Recovered N/A 4 Based on infected MA-7
Vaccinated Ministry of Health of Spain

(Ministerio de Sanidad)
– MA-7

Mobility Ministry of Transport, Mobil-
ity and Urban Agenda (Min-
isterio de Transportes, Movili-
dad y Agenda Urbana

Set as 1 after data were no
longer available 5

MA-7

Population INE Calculated the variation from
available points in time and
divided the variation in daily
changes for smoothness

MA-7

1 CNE: National Center of Epidemiology of Spain, Centro Nacional de Epidemiología. 2 SiViES: a platform of the
CNE, Sistema de Vigilancia de España. 3 MA-7: defined as moving averages of 7 days. 4 N/A: reliable data source
is unavailable. 5 Mobility data are only available from 29 February 2020, to 9 May 2021; they are the percentage of
mobility compared to a reference period (established from 14–20 February 2020). Manually tabulated from the
published dashboards since processed data were not made available for download.

To handle irregularities in the data and improve the training process for artificial neural
networks, data processing techniques were implemented. These techniques are commonly
used in data-driven applications. Automated data collection (where applicable), data
processing, artificial neural networks, and numerical simulations were coded in Python.

To calculate the system dynamics, we assumed that the epidemics would follow the
established system from Equation (1), resulting in a system with time-varying parameters
instead of constant values. The model dynamics were then calculated with available
data, and these dynamics were used to train an LSTM neural network for estimating
the contact rate (β). LSTM networks were chosen for their ability to handle sequential
data, including time series, and their capacity to preserve trends in such data, which is
desirable when estimating parameters for dynamical systems that describe the evolution of
an epidemic in time. Additionally, LSTM networks can handle multi-dimensional input,
allowing for consideration of multiple variables, such as mobility and other underlying
contributing factors. The input for the LSTM network in this work is a multi-dimensional
array with terms limited to the dynamics established by the system and the contributing
factors. We implemented the LSTM neural network in Python using the torch library and
set the following hyperparameters: learning rate of 0.1, 1 layer, 1000 training epochs, a
sequence length of 28 data points, 80% of the data used for training, and 20% for testing.
We trained a separate network for each Autonomous Community to estimate both the
contact (β) and recovery (γ) rates. The input matrix for the LSTM networks consists of
28 time observations for the variables I, dI/dt, mobility percentage, dV/dt, and V, with the
output variable being dR/dt. This output is subsequently used to calculate the parameters
γ and β. An example of the input and output of the LSTM network for Madrid is displayed
in Figure 1 and Figure 2, respectively.
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Figure 1. Input variables used for the LSTM network for Madrid.

Figure 2 shows the values of dR/dt used to train and test the LSTM network with data
for the Community of Madrid and the output value of the network after training.
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Figure 2. Output from the LSTM network for Madrid.
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To train the LSTM network for each Autonomous Community, we used the data
specific to that region, which resulted in different errors due to variations in the input data.
For each community, we calculated three different errors: one for the training dataset, one
for the test dataset, and a consolidated error combining both datasets. The root mean square
error (RMSE) for all of the Autonomous Communities is presented in the heatmap shown
in Figure 3. We observed that the errors were highest in the training dataset and lowest in
the test dataset, which indicates that the LSTM is capable of generalizing well to unseen
data. Specific error values for each community are included in Table A1 in Appendix A.
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Figure 3. RSME for LSTM networks per Autonomous Community.

The trained LSTM networks output the time series for the parameter β in the system
described by Equation (1). To obtain this parameter, the value of dR/dt from the LSTM is
substituted into the system. However, since the LSTM output has an associated estimation
error, as illustrated in Figure 3 and detailed in Table A1 in Appendix A, the calculated
parameters are also affected by these errors.

2.6. ODE Model Numerical Simulations

This study employed numerical simulations using a fourth-order Runge–Kutta method
with LSTM-estimated parameters to solve initial value problems (IVPs) for ordinary differ-
ential equation (ODE) systems. IVPs involve finding the solution of a differential equation
at a specific initial time, given the initial conditions. The fourth-order Runge–Kutta method
is widely used in solving IVPs of the form given in Equation (28), which is a system with
time-varying parameters.

(IVP)

{
dU(t)

dt = f(t, U(t))
U(0) = U(0),

(28)

The fourth-order Runge–Kutta method is an explicit multi-stage one-step method that
requires only information from the previous time-step and is efficient for ODE systems.
Here, U is the vector of unknowns, f is the right-hand side of Equation (2), and U(0) is
the initial condition. Predictor-corrector methods are also efficient solvers for initial value
problems but were not used in this study.

The fourth-order Runge–Kutta method is expressed as a set of equations, which
include four intermediate values (K1, K2, K3, K4) and the new state vector, Un+1, at the next
time step. The method is shown below:

K1 = ∆tf(tn, Un)

K2 = ∆tf(tn + ∆t
2 , Un + K1

2 )

K3 = ∆tf(tn + ∆t
2 , Un + K2

2 )
K4 = ∆tf(tn + ∆t, Un + K3)
Un+1 = Un + 1

6 (K1 + 2(K2 + K3) + K4),

(29)
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Here, tn+1 is the time for which the solution is computed, and tn is the previous time.
Un is the vector of unknowns for time tn, Un+1 is the vector of unknowns for time tn+1,
and ∆t is the size of the time step considered.

The study conducted different simulations using the ODE models described in Section 2.1.
Simulation A followed the dynamic from Equation (2), with specific values of α1 and α2
that fit best to each Autonomous Community. Simulation B followed the same dynamic,
but with a different set of parameters for each Autonomous Community, as in Simulation
A. Simulation C followed the same dynamic from Equation (2), but with the same set of
parameters for all Autonomous Communities. Simulation D maintained the dynamic from
Equation (1) but involved outlier handling for the LSTM-estimated parameters, removing
them and imputing values through linear interpolation. Simulation E established the
baseline, following the dynamic from Equation (1).

To compare the simulation results, the Root Mean Square Error (RMSE) was used as
the error measure, computed as the difference between the actual data and the simulation
results. The RMSE values for the different simulations and Autonomous Communities
are displayed in Figure 4, and detailed results can be found in Table A3 in Appendix C.
The largest differences in RMSE values were observed between Simulation E and the other
simulations, except for the Autonomous City of Ceuta and the Autonomous Community
of Canarias. Simulation C was largely ineffective, with gaps in the results, mainly in three
Autonomous Communities (Andalucía, Aragón, and Extremadura), and in some cases, also
for Simulations A and B. These results are discussed further in Section 4.
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Figure 4. RSME values for the numerical simulations per Autonomous Community.

3. PDE SVIR Compartmental Model with Diffusion

This section extends the previous compartmental models to incorporate Diffusion,
which allows the study of epidemic or pandemic transmission across physical space. The
proposed system of one-dimensional PDEs is based on the modified SVIR Compartmental
Model, and is expressed in Equations (30) and (31).

To solve the proposed PDE system, a finite volume framework is used with fifth-order
WENO reconstruction in space, allowing for accurate and stable representations of sharp
gradients in the solution. The time integration is performed using an RK3-TVD scheme,
which is a third-order, total variation diminishing scheme that is highly effective in handling
numerical oscillations and preserving the monotonicity of the solution. The accuracy of the
numerical scheme is validated through the Manufactured Solutions methodology, yielding
accurate numerical results compared to the exact solution. However, as the model is not
based on known diffusion coefficients, the simulations cannot be directly compared to
real data. While the current study uses arbitrary values for the diffusion parameters, the
proposed model can be further studied and modified to explore more realistic scenarios.
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3.1. PDE Model Formulation

To incorporate spatial variation in one dimension, we introduce Diffusion in the SVIR
model described by Equation (2), which considers the case where ρ2 = 0 for any t. The
resulting PDE system is as follows:

∂S(x, t)
∂t

= dS
∂

∂x

(
S

∂S
∂x

)
−
[

ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
SI
N
− αS

∂V(x, t)
∂t

= dV
∂

∂x

(
V

∂V
∂x

)
+ αS

∂I(x, t)
∂t

= dI
∂

∂x

(
I

∂I
∂x

)
+

[
ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
SI
N
− γI

∂R(x, t)
∂t

= dR
∂

∂x

(
V

∂R
∂x

)
+ γI,

(30)

In Equation (30), the diffusion constants dS, dV , dI , and dR are introduced to consider
diffusion–dispersion mechanisms in the model. This inclusion of diffusion is important
because it provides the model with an element that may increase its capacity to represent a
more realistic situation, especially in determining the spatial propagation of the different
compartments due to population mobility in one dimension. Related works, such as [29,30],
have proposed incorporating diffusion in epidemic models to improve their realism and
applicability. For instance, [30] proposes a reaction–diffusion SVIR epidemic model that
considers spatial heterogeneity, while [29] introduced diffusion into a SIR model.

Similarly, when introducing Diffusion into the ODE version with both mechanisms ρ1
and ρ2, i.e., Equation (2), the resulting model is:

∂S(x, t)
∂t

= dS
∂

∂x

(
S

∂S
∂x

)
− κ(S)

SI
N
− αS

∂V(x, t)
∂t

= dV
∂

∂x

(
V

∂V
∂x

)
+ αS

∂I(x, t)
∂t

= dI
∂

∂x

(
I

∂I
∂x

)
+ κ(S)

SI
N
− γI

∂R(x, t)
∂t

= dR
∂

∂x

(
R

∂R
∂x

)
+ γI,

(31)

where κ(S) = (1− ρ2)

[
ρ1

(
β

1 + α1S

)
+ (1− ρ1)β

]
+ ρ2α2β.

To further enhance the proposed diffusion model, the recovery and vaccination mech-
anisms have been modified. It is assumed that recovered individuals become susceptible
again after an established constant rate, and vaccinated individuals also become susceptible
again due to waning immunity at a fixed rate based on averages from the literature. By in-
corporating these factors into the model, a more realistic representation of the transmission
dynamics can be achieved.

∂S(x, t)
∂t

= dS
∂

∂x

(
S

∂S
∂x

)
− κ(S)

SI
N
− αS + ηRR + ηVV

∂V(x, t)
∂t

= dV
∂

∂x

(
V

∂V
∂x

)
+ αS− ηVV

∂I(x, t)
∂t

= dI
∂

∂x

(
I

∂I
∂x

)
+ κ(S)

SI
N
− γI

∂R(x, t)
∂t

= dR
∂

∂x

(
R

∂R
∂x

)
+ γI − ηRR,

(32)

For Equations (30)–(32), the control mechanisms are similar to those of the ODE version
of the modified model. The parameter β is only time-dependent; therefore, ρ1 also follows
Equation (4). Regarding ρ2, an average number of infected individuals Īt is calculated for
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the number of cells nx at each time step. Moreover, an average of the last m time steps is
considered, where a value A is calculated (as shown in Algorithm 1) to compare against the
threshold δ2. This comparison establishes whether the control parameter ρ2 will be active
with a value of ρ2 = 1 or inactive as ρ2 = 0. The algorithm is:

Algorithm 1 Steps to calculate ρ2

At each time step t

Īt ← 1
nx

nx
∑

i=1
Ii

Considering j as the current time step

A← 1
m

j
∑

t=j−m

(
Īt − Īt−1

tt − tt−1

)
if A− δ2 > 0 then

ρ2 ← 1
else

ρ2 ← 0
end if

3.2. PDE Model Numerical Simulations

To study the diffusion of the epidemic, we use a partial differential equation (PDE)
approach, which can be represented more compactly as follows:

∂U
∂t

=
∂F
∂x

+ Q, (33)

where the vector of unknowns is U = (S, V, I, R)T . The vector of fluxes, F, is given by

F =


dSS ∂S

∂x
dVV ∂V

∂x
dI I ∂I

∂x
dRR ∂R

∂x

. (34)

and the source term, Q, is given by

Q =


κ(S) SI

N αS
αS
κ(S) SI

N − γI
γI

. (35)

where dS, dV , dI , and dR are the diffusion coefficients for each compartment. The diffusion
terms in Equation (33) account for the spatial variation of the epidemic dynamics, which
can be important in modeling the spread of the disease across regions.

To discretize the system in (33) in space, we utilize the finite volume method, where
we divide the spatial domain into discrete control volumes. Denoting the ith control volume
as Ti = [xi−1/2, xi+1/2], we integrate the system over Ti using cell averages, resulting in the
following equation:

∂Ui
∂t

=
1

∆xi
(Fi+1/2 − Fi−1/2) + Qi, (36)

where the cell average of the solution is

Ui =
1

∆xi

∫ xi+1/2

xi−1/2

U(x, t)dx, (37)

and the cell average of the source term reads
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Qi =
1

∆xi

∫ xi+1/2

xi−1/2

Q(x, t)dx. (38)

To obtain values and derivatives where needed, we use the Weighted Essentially Non
Oscillatory (WENO) reconstruction method based on cell averages ([31–33]). The WENO
method reconstructs the values based on r candidate stencils for reconstruction, each of
which consists of r control volumes and a polynomial of degree r− 1. The reconstructed
values are obtained as a convex combination of the values of the r possible polynomials,
pr(x), weighted with nonlinear weights.

The nonlinear weights are defined as

ωk =
αk

∑r−1
j=0 αj

, (k = 0, · · · , r− 1) (39)

where αk = dk
ε+βk

, ε is a small value introduced to avoid division by zero, and βk are

smoothness indicators. In this work, we take ε = 10−6. The smoothness indicators are
computed according to the formulas

βk =
r−1

∑
m=0

∫ xi+1/2

xi−1/2

(
dm

dxm pk(x)
)2

∆x2m−1
i dx, (k = 0, · · · , r− 1), (40)

For r = 3, which corresponds to second degree polynomials, we have β0, β1, and β2
given by the expressions shown in the paragraph above.

β0 =
13
12

(Ui− 2Ui + 1 + Ui + 2)2 +
1
4
(3Ui− 4Ui + 1 + Ui + 2)2

β1 =
13
12

(Ui− 1− 2Ui + Ui + 1)2 +
1
4
(3Ui− 1 + Ui + 1)2

β2 =
13
12

(Ui− 2− 2Ui− 1 + Ui)2 +
1
4
(3Ui− 2− 4Ui− 1 + 3Ui)

2,

(41)

After discretizing the system in space using the finite volume method, we obtain a
system of ODEs given by (42).

d
dt

Ui = Li

(
U,

d
dx

U
)

, (42)

To solve this system, we use a third-order Runge–Kutta TVD numerical scheme [34],
which is designed to maintain the positivity of the solutions. The system takes the form of
d
dt Ui = Li(U, d

dx U), where Li(U, d
dx U) = 1

∆xi
(Fi + 1/2− Fi− 1/2) + Qi.

In the third-order Runge–Kutta TVD numerical scheme, Un
i represents the numerical

solution at time tn, and Un+1
i represents the numerical solution at time tn+1 = tn + ∆t.

In this scheme, the intermediate states Uk,1
i and Uk,2

i are computed, followed by the final
update step to obtain Un+1

i . The third-order Runge–Kutta TVD numerical scheme is well
suited for solving hyperbolic PDEs, as it maintains stability and accuracy even in the
presence of discontinuities in the solution.

The manufactured solutions method is a validation technique used to test the accuracy
of numerical schemes. In this method, an exact solution is artificially created by speci-
fying a set of functions that satisfy the governing equations. For this study, we use the
manufactured solutions method to verify the accuracy of the numerical scheme for the
diffusion case. We consider Equation (43), where the small value of the derivatives can be
considered zero for the numerical scheme, and the solution is considered to have Neumann
boundary conditions. This system of equations describes a diffusion process for the S, V, I,
and R variables.
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S = 4 e−x2−t

V = e−2x2−t

I = 1.5 e−4x2−t

R = 2.5 e−0.8x2−t

(43)

Figure 5 visually compares the exact solution obtained using Equation (43) and the
numerical result, which serves as a validation of the accuracy of the numerical method.

Figure 5. SVIR with Diffusion Manufactured Solutions for Fortran code implementation Exact vs
Numeric Solution.

The resulting order of accuracy for the numerical scheme is 3, as shown in Table 2.
This was achieved with 640 cells. The lower order seen in Cells 160 can be disregarded as
it trends towards three after the increase to 320 cells, which is expected since the scheme
includes time integration with the third-order Runge–Kutta TVD method. Moreover, the
order trending upwards of 3 is also expected because the space integration is performed
via a 1-D WENO reconstruction with a higher order. However, the lower order of the time
integration is causing the order reduction.

Incorporating the PDE model proposed in this study, Equation (31), with the model
from [30] yields the following combined model:

∂S(x, t)
∂t

= dS
∂

∂x

(
S

∂S
∂x

)
− κ(S)

SI
N
− αS + φ−ωS

∂V(x, t)
∂t

= dV
∂

∂x

(
V

∂V
∂x

)
+ αS− β2VI − γ2V −ωV

∂I(x, t)
∂t

= dI
∂

∂x

(
I

∂I
∂x

)
+ κ(S)

SI
N

+ β2VI − γI −ωI

∂R(x, t)
∂t

= dR
∂

∂x

(
R

∂R
∂x

)
+ γI + γ2V −ωR,

(44)

We simulate the PDE model using the parameter values φ = 0.392465, β2 = 0.0016,
γ2 = 0.001832, and ω = 3.9× 10−5, along with a time-dependent β estimated from data
for the Autonomous Community of Madrid using the LSTM methodology described in
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Section 2.5. The initial values are set to (S(0), V(0), I(0), R(0)) = (60, 50, 30, 0). Since
no real data are available for comparison, we compare the behavior of this simulation
to that observed in the reference paper [30]. The waves observed in our simulation are
not uniformly distributed (Figure 6), unlike the comparison example, and exhibit more
realistic behavior that could be attributed to changes in behavior or policies throughout
the epidemic evolution. These variations are related to the estimated β and the control
parameters underlying the mechanism defined by κ.

Table 2. SVIR with Diffusion Manufactured Solutions for Fortran code Error Norms and correspond-
ing Order, for t = 0.25.

Susceptible

Cells L2 Order L1 Order L∞ Order

40 1.2000× 10−1 1.9140× 10−1 1.0900× 10−1

80 8.8400× 10−3 3.76 1.3700× 10−2 3.80 8.1730× 10−3 3.74
160 5.4800× 10−3 0.69 8.6100× 10−3 0.67 4.9680× 10−3 0.72
320 8.1200× 10−4 2.75 1.2690× 10−3 2.76 7.4320× 10−4 2.74
640 7.1200× 10−5 3.51 1.1655× 10−4 3.44 5.8970× 10−5 3.66

Vaccinated

Cells L2 Order L1 Order L∞ Order

40 2.5030× 10−2 3.3300× 10−2 2.6520× 10−2

80 1.7500× 10−3 3.84 2.3000× 10−3 3.86 1.8660× 10−3 3.83
160 1.1260× 10−3 0.64 1.4920× 10−3 0.62 1.1980× 10−3 0.64
320 1.6415× 10−4 2.78 2.1670× 10−4 2.78 1.7494× 10−4 2.78
640 1.6572× 10−5 3.31 2.2510× 10−5 3.27 1.7450× 10−5 3.33

Infected

Cells L2 Order L1 Order L∞ Order

40 3.1750× 10−2 3.5810× 10−2 3.8650× 10−2

80 2.2700× 10−3 3.81 2.5500× 10−3 3.81 2.5990× 10−3 3.89
160 1.4350× 10−3 0.66 1.6100× 10−3 0.66 1.7498× 10−3 0.57
320 2.1092× 10−4 2.77 2.3680× 10−4 2.77 2.5086× 10−4 2.80
640 2.0140× 10−5 3.39 2.2130× 10−5 3.42 2.9039× 10−5 3.11

Recovered

Cells L2 Order L1 Order L∞ Order

40 7.9300× 10−2 1.3300× 10−1 6.7040× 10−2

80 5.6110× 10−3 3.82 9.3380× 10−3 3.83 4.7760× 10−3 3.81
160 3.5660× 10−3 0.65 5.9560× 10−3 0.65 3.0220× 10−3 0.66
320 5.2250× 10−4 2.77 8.7110× 10−4 2.77 4.4377× 10−4 2.77
640 5.0478× 10−5 3.37 8.5370× 10−5 3.35 4.2030× 10−5 3.40

Figure 6. PDE Numerical simulation of infected individuals (I), with Equation (44).
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4. Results and Discussion

In this section, we discuss the performance of the proposed model for simulating the
spread of COVID-19 in Spain. The model was trained using LSTM neural networks to
estimate the parameters of the SIR epidemiological model, and it was validated against
real data. We start by presenting the results of the baseline simulation and then discuss the
effectiveness of the proposed outlier handling techniques.

To improve the performance of the baseline simulation, which is referred to as simula-
tion E and is based on the base model from Equation (1), we utilized linear interpolation as
a technique for outlier handling. This approach aimed to correct the under and overesti-
mations introduced by the LSTM-estimated parameters. While this process improved the
RSME values, significant miss-estimations remained, as observed in Figure 7 for the case of
Madrid. Specifically, this figure shows that the infected ratio was underestimated in the
first waves and vastly overestimated in the last wave included in the study.

Figure 4 displays the RMSE values for all Autonomous Communities for simulation
E, highlighting the significant deviation of the simulation from the actual values. Thus, a
pattern of mis-estimations emerges, and the need for further improvements is evident.

The neural network estimated parameters can yield simulations where the evolution
of infected individuals is over or underestimated, depending on the input data and other
outside factors not included in the input data used to train the neural network. To correct
these potential behaviors observed with estimated parameters, a modified version of the
SVIR compartmental model is introduced. This model is defined by Equation (2), which
includes explicit terms controlled by established thresholds for the different Autonomous
Communities of Spain.

Using the same parameters for the model described by Equation (2), the simulation is
ineffective for nine communities, and poor results are obtained for four of the communities
where the simulation can be carried out. These results indicate significant differences in
behavior between the different communities, pointing to the need to determine specific val-
ues more adequate to the particular series/community. When utilizing specific parameter
values for each Autonomous Community, the results obtained by the simulation are much
closer to actual infected values, with lower RSME values, for the majority of Autonomous
Communities. However, there were a few exceptions involving three communities for
which Simulations A, B, and C were ineffective. The improvement is visually observable in
the case of Madrid, shown in Figure 7, particularly in the simulated period’s last wave.

Assessing the specific values of RSME and visual analysis of the simulations, the
following can be stated: without modifying the SVIR system from Equation (1) or the LSTM
estimated parameters, there are significant errors in the numerical simulation compared
to actual data. As a general solution, post-processing LSTM estimated parameters with
well-established techniques can improve the simulation’s result, as observed by comparing
Simulation D in Figure 4 vs. Simulation E. However, outlier handling is still insufficient,
leading to the proposed modified SVIR model, for which not only the RSME improved but
the deviation of the behavior in the waves from the simulation to actual data is reduced,
highlighting the relevance of the proposed modified SVIR model.

We compared the relative L2 error for 16 Autonomous communities (or autonomous
cities in the case of Ceuta and Melilla) with a previous study by Bousquet et al. [27], who
used Deep Learning to forecast values of the β parameter. Their study reported relative L2
errors ranging from 3.13× 10−3 to 6.29× 10−2. In contrast, our study achieved an average
relative L2 error of 1.10× 10−3, with a range from a minimum of 8.91× 10−5 to a maximum
of 3.92× 10−3. Table A4 lists the computed errors. Our findings suggest that our predictions
for the β parameter in COVID-19 are more accurate and precise. Although the two studies
used different compartmental models, the β parameter was the contact parameter in both.
We did not compare the results for other parameters reported by Bousquet et al. as our
study focused solely on the β parameter.

The PDE system from Equations (30) and (31), based on the modified SVIR Compart-
mental Model, can be used to study scenarios including Diffusion with the bi-parameter
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(ρ1, ρ2) control system. To validate the simulation mechanism, the Manufactured Solu-
tions methodology was implemented, obtaining accurate numerical results compared to
the exact solution. Although this is not a completely realistic system and does not have
specified-known diffusion coefficients, reasonable constants were selected and applied to
carry out the Manufactured Solutions methodology. These coefficients should be further
studied and modified if the intention is to explore more realistic situations. In this study,
the system was proposed as an extension of the ODE system to increase the potential
to resemble a more realistic situation. So far, the study has validated the model and its
corresponding order. Further studies could focus on comparing the model’s simulation
when changing the currently used Diffusion coefficients.
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Figure 7. Numerical simulations of infected individuals (I) for Madrid.

5. Conclusions

This study presents a detailed simulation of COVID-19 in the Autonomous Communi-
ties of Spain using LSTM-estimated parameters and the modified SVIR model. The model
includes regulating mechanisms based on the behavior of previous time steps. We have
established the positivity of the ODE version of the model and explored its local stability.
However, further analysis is needed to confirm the consistency and global stability of the
modified model.

The proposed mechanisms show significant improvements in simulation accuracy, as
evidenced by lower RSME and closer waves to actual data. Although LSTM proved to be
efficient for estimating parameters for the compartmental model. The proposed modified
SVIR model and LSTM neural networks approach is a promising tool for forecasting the
spread of COVID-19, improving the accuracy of predictions for key parameters such as β,
with a relatively low relative L2 error, as shown by the results of the comparison with a
previous study.

The proposed modified SVIR model has demonstrated its value as a tool for studying
epidemic behavior in a short period, and its potential can be extended to other countries or
more granular levels in Spain. However, the SVIR and proposed modified SVIR models
have limitations, particularly with regard to their assumptions, such as granting permanent
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immunity to vaccinated and recovered individuals, which is not the case. To improve
the accuracy and applicability of these models, future studies should explore strategies
to incorporate waning immunity and recurrent vaccination, which could be crucial in
accurately simulating the long-term impact of the COVID-19 pandemic.

This work presents an extension of the SVIR compartmental model in the form of a
one-dimensional PDE system with diffusion. Although the stability analysis of the PDE
system has not been carried out, the numerical scheme for the system is validated using
the manufactured solutions methodology. The PDE system is solved using a fifth-order
WENO reconstruction in space and an RK3-TVD scheme for time integration. While it
is not possible to compare the results of the PDE system with actual data, this extension
of the SVIR model has the potential to provide additional insights into the behavior of
epidemics. Further studies are needed to fully explore the potential of this extension of the
SVIR model.

In summary, this work highlights the relevance of developing and improving mod-
els to provide more accurate and comprehensive insights into epidemic behavior, and
demonstrates the value of incorporating advanced numerical techniques such as LSTM
and PDEs with diffusion into these models. Further studies can build upon the proposed
methodology to enhance our understanding of epidemics and support decision-making in
the public health sector.
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Appendix A. LSTM Errors

Table A1 details the errors, RSME, obtained for each Autonomous Community, for
the Training and Test datasets, as well as the Overall dataset, which includes both training
and test.

Table A1. LSTM errors (RSME) per Autonomous Community.

Autonomous
Community Overall Training Test

Andalucía 7.7988× 10−6 6.3157× 10−6 1.4880× 10−5

Aragón 1.1609× 10−5 8.0570× 10−6 2.5895× 10−5

Asturias 6.9153× 10−6 7.2418× 10−6 3.5171× 10−6

Baleares 3.0618× 10−5 1.0651× 10−5 8.5197× 10−5

C. Valenciana 2.3124× 10−5 9.9428× 10−6 6.2305× 10−5

Canarias 2.6032× 10−6 2.2519× 10−6 4.4566× 10−6

Cantabria 6.6877× 10−6 6.3992× 10−6 8.5846× 10−6

Castilla La Mancha 4.6016× 10−5 2.4329× 10−5 1.1756× 10−4

Castilla y Leon 9.8641× 10−6 9.1941× 10−6 1.3974× 10−5

Cataluña 1.9340× 10−5 7.4910× 10−6 5.3035× 10−5
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Table A1. Cont.

Autonomous
Community Overall Training Test

Ceuta 1.9893× 10−5 1.4680× 10−5 4.2168× 10−5

Extremadura 4.0817× 10−5 9.5022× 10−6 1.1728× 10−4

Galicia 5.0179× 10−6 4.9919× 10−6 5.2295× 10−6

La Rioja 1.4697× 10−5 1.0096× 10−5 3.3032× 10−5

Madrid 1.8866× 10−5 8.8077× 10−6 4.9913× 10−5

Melilla 2.0307× 10−5 2.0553× 10−5 1.8314× 10−5

Murcia 1.0300× 10−4 6.6730× 10−6 3.0274× 10−4

Navarra 1.2086× 10−5 1.2723× 10−5 4.9761× 10−6

País Vasco 8.5856× 10−6 8.3311× 10−6 1.0332× 10−5

Appendix B. Parameters for the Modified ODE SVIR Compartmental Model

Parameters were determined for the modified SVIR model. As can be seen in Table A2,
most parameters are equal for most of the Autonomous Communities. In the case of a,
found in Equation (5) part of the mechanism of the model from Equation (2), the parameter
ranges from 2 to 9; these are related to the variations of the estimated β parameters which
have different behaviours for the communities. One of the parameters remains constant for
all simulations and all Autonomous Communities, α1 = 10.

Table A2. Parameters for the proposed modified SVIR model per Autonomous Community.

Autonomous Community a δ2 α2 i

Andalucía N/A N/A N/A N/A
Aragón N/A N/A N/A N/A
Asturias 3 1500 1.5 3
Baleares 6 1500 1.5 6

C. Valenciana 3 1500 1.5 3
Canarias 6 1500 1.5 9
Cantabria 3 1500 1.5 3

Castilla La Mancha 3 1500 1.5 3
Castilla y Leon 6 1500 1.5 3

Cataluña 2 1500 1.5 3
Ceuta 3 1500 1.01 3

Extremadura N/A N/A N/A N/A
Galicia 3 1500 1.5 3

La Rioja 9 1500 1.5 9
Madrid 6 300 1.1 3
Melilla 3 1500 1.5 3
Murcia 3 1500 1.5 6

Navarra 3 1500 1.5 3
País Vasco 9 1500 1.5 3
Default 1 3 1500 1.01 3

1 General parameter value used if the Autonomous Community, Simulation C.

Appendix C. ODE Numerical Simulation Errors

Table A3 details the errors, RSME, obtained for each Autonomous Community when
performing numerical simulations. As mentioned in Section 2.6, some results are not
available due to the nature of the data, and more adequate parameters were not determined
during this study.
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Table A3. Numerical simulation errors (RSME) per Autonomous Community.

Autonomous
Community A B C D E

Andalucía N/A N/A N/A 2.4203× 10−4 1.3161× 10−2

Aragón N/A N/A N/A 7.4293× 10−4 2.2352× 10−2

Asturias 8.7013× 10−4 8.7013× 10−4 6.7207× 10−3 6.9233× 10−4 2.1149× 10−2

Baleares 1.1484× 10−3 1.1484× 10−3 1.0802× 10−2 2.5237× 10−3 6.1029× 10−3

C. Valenciana 1.7533× 10−4 1.7533× 10−4 N/A 1.2169× 10−4 7.9763× 10−3

Canarias 1.7698× 10−4 1.7698× 10−4 6.2609× 10−4 2.9668× 10−3 2.5351× 10−3

Cantabria 2.5861× 10−4 2.5861× 10−4 3.1585× 10−3 2.8453× 10−4 1.6875× 10−2

Castilla La Mancha 1.2475× 10−3 1.2475× 10−3 N/A 1.2316× 10−3 4.5537× 10−2

Castilla y Leon 5.7199× 10−4 5.7199× 10−4 1.7050× 10−2 1.1459× 10−3 1.8104× 10−2

Cataluña 1.3750× 10−3 1.3750× 10−3 N/A 2.0126× 10−4 9.1348× 10−3

Ceuta 2.2848× 10−5 2.2848× 10−5 6.1686× 10−4 7.0457× 10−5 1.1597× 10−3

Extremadura N/A N/A N/A 8.8996× 10−4 9.2140× 10−3

Galicia 7.9528× 10−5 7.9528× 10−5 8.2338× 10−5 2.2975× 10−3 8.1395× 10−3

La Rioja 1.0924× 10−4 1.0924× 10−4 1.7713× 10−3 1.1966× 10−3 3.4083× 10−2

Madrid 5.4030× 10−4 5.4030× 10−4 3.2903× 10−4 8.9100× 10−4 1.2344× 10−2

Melilla 1.9580× 10−4 1.9580× 10−4 3.2850× 10−4 3.2719× 10−3 2.1193× 10−2

Murcia 4.6199× 10−4 4.6199× 10−4 N/A 1.7584× 10−4 1.7155× 10−2

Navarra 2.0010× 10−4 2.0010× 10−4 N/A 5.5822× 10−4 2.1931× 10−2

País Vasco 1.2436× 10−3 1.2436× 10−3 N/A 4.1042× 10−4 4.5271× 10−2

Table A4. Relative L2 error for β.

Autonomous Community Relative L2 Error

Andalucía N/A
Aragón N/A
Asturias 3.9174× 10−3

Baleares 1.0725× 10−3

C. Valenciana 6.3781× 10−4

Canarias 3.1516× 10−4

Cantabria 5.4328× 10−4

Castilla La Mancha 1.6311× 10−3

Castilla y Leon 7.2528× 10−4

Cataluña 1.0131× 10−3

Ceuta 5.8867× 10−4

Extremadura N/A
Galicia 1.8901× 10−4

La Rioja 8.9091× 10−5

Madrid 5.0681× 10−4

Melilla 3.3019× 10−3

Murcia 5.1324× 10−4

Navarra 2.5385× 10−4

País Vasco 1.7748× 10−3

References
1. World Health Organization. Listings of WHO’s response to COVID-19; World Health Organization: Geneva, Switzerland, 2020.
2. Ministerio de Sanidad. Enfermedad por Nuevo Coronavirus, COVID-19 Situación Actual; Paseo del Prado: Madrid, Spain, 2022.

Available online: https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/situacionActual.htm
(accessed on 24 October 2022).

3. Hethcote, H.W.; Tudor, D.W. Integral equation models for endemic infectious diseases. J. Math. Biol. 1980, 9, 37–47. [CrossRef]
4. Alexander, M.E.; Bowman, C.; Moghadas, S.M.; Summers, R.; Gumel, A.B.; Sahai, B.M. A Vaccination Model for Transmission

Dynamics of Influenza. SIAM J. Appl. Dyn. Syst. 2004, 3, 503–524. [CrossRef]
5. Meng, X.; Chen, L. The dynamics of a new SIR epidemic model concerning pulse vaccination strategy. Appl. Math. Comput. 2008,

197, 582–597. [CrossRef]

https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/situacionActual.htm
http://doi.org/10.1007/BF00276034
http://dx.doi.org/10.1137/030600370
http://dx.doi.org/10.1016/j.amc.2007.07.083


Mathematics 2023, 11, 1436 23 of 23

6. Arino, J.; McCluskey, C.C.; van den Driessche, P. Global Results for an Epidemic Model with Vaccination That Exhibits Backward
Bifurcation. SIAM J. Appl. Math. 2003, 64, 260–276. [CrossRef]

7. Hethcote, H.W. An immunization model for a heterogeneous population. Theor. Popul. Biol. 1978, 14, 338–349. [CrossRef]
[PubMed]

8. Kribs-Zaleta, C.M.; Velasco-Hernández, J.X. A simple vaccination model with multiple endemic states. Math. Biosci. 2000,
164, 183–201. [CrossRef] [PubMed]

9. Kaymakamzade, B.; Hincal, E. Delay epidemic model with and without vaccine. AIP Conf. Proc. 2018, 1997, 020025. [CrossRef]
10. Safi, M.A.; Garba, S.M. Global Stability Analysis of SEIR Model with Holling Type II Incidence Function. Comput. Math. Methods

Med. 2012, 2012, 826052–826058. [CrossRef]
11. Kaddar, A. Stability analysis in a delayed SIR epidemic model with a saturated incidence rate. Nonlinear Anal. 2010, 15, 299–306.

[CrossRef]
12. Hou, J.; Teng, Z. Continuous and impulsive vaccination of SEIR epidemic models with saturation incidence rates. Math. Comput.

Simul. 2009, 79, 3038–3054. [CrossRef]
13. Anderson, R.M.; May, R.M. Regulation and Stability of Host-Parasite Population Interactions: I. Regulatory Processes. J. Anim.

Ecol. 1978, 47, 219–247. [CrossRef]
14. Brauer, F. Backward bifurcations in simple vaccination models. J. Math. Anal. Appl. 2004, 298, 418–431. [CrossRef]
15. Nistal, R.; De la Sen, M.; Alonso-Quesada, S.; Ibeas, A. On a New Discrete SEIADR Model with Mixed Controls: Study of Its

Properties. Mathematics 2019, 7, 18. [CrossRef]
16. López, L.; Rodó, X. A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy: Simulating control scenarios

and multi-scale epidemics. Results Phys. 2021, 21, 103746. [CrossRef] [PubMed]
17. Marinov, T.T.; Marinova, R.S. Inverse problem for adaptive SIR model: Application to COVID-19 in Latin America. Infect. Dis.

Model. 2022, 7, 134–148. [CrossRef] [PubMed]
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