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Abstract: Despite achieving success in many domains, deep learning models remain mostly black
boxes, especially in electroencephalogram (EEG)-related tasks. Meanwhile, understanding the
reasons behind model predictions is quite crucial in assessing trust and performance promotion in
EEG-related tasks. In this work, we explore the use of representative interpretable models to analyze
the learning behavior of convolutional neural networks (CNN) in EEG-based emotion recognition.
According to the interpretable analysis, we find that similar features captured by our model and
state-of-the-art model are consistent with previous brain science findings. Next, we propose a
new model by integrating brain science knowledge with the interpretability analysis results in the
learning process. Our knowledge-integrated model achieves better recognition accuracy on standard
EEG-based recognition datasets.

Keywords: interpretability analysis; EEG-based emotion recognition; knowledge integration

MSC: 68T07

1. Introduction

Electroencephalogram data are used to measure oscillations in the brain and can reflect
the synchronized activity of neurons. These oscillatory changes are thought to be related
to cognitive processes, including perception, attention, learning, memory, and emotion.
Out of the many EEG-related tasks, emotional identification is the most popular. Emotion
identification is the act of identifying the emotional state of individuals by obtaining physi-
ological or non-physiological signals, which is an important part of emotion computing.
Through emotion identification, we can obtain individual emotional states relatively accu-
rately without subjective interference in some practical scenes, such as judicial, medical, etc.
As a physiological signal, EEG has the advantage of being difficult to hide and disguise
compared with intuitive facial recognition. Therefore, using EEG to recognize emotions
can help us better understand emotions from the physiological perspective and establish
the cognitive connection between EEG physiological signals and emotions.

In the past decade, machine learning models, especially deep learning methods, have
achieved an exciting breakthrough in EEG-based emotion recognition. Unfortunately,
although existing work improved the recognition accuracy greatly, there is still growing
concern about their black-box nature. Simply speaking, these methods cannot provide
sufficient clues on their internal learning actions. There are still many unanswered ques-
tions surrounding their models, including but not limited to: Why these models can be
successful? Which features are most effective?

To our knowledge, increasing the interpretability is especially important to EEG-
related tasks as to the following aspects [1]: (i) understand which features better discrimi-
nate the investigated classes and check that the learning system does not rely on artifactual
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sources; (ii) increase the insight into the neural correlates of the model that underlies
learned behaviors; (iii) interpretability analysis can also shed some light on model design,
driving us to design novel learning models. Despite its many advantages, interpretability
analysis for EEG-related tasks is still in its infancy [2]. The biggest reason behind it is the
complexity of EEG data, which brings the difficulty of EEG tasks based on these data. First,
as a non-invasive signal obtained along the scalp, EEG suffers from a low signal-to-noise
ratio (SNR) [3]. Second, EEG is generally recorded using tens to hundreds of electrodes
simultaneously, and the sampling time usually exceeds a few seconds in each trial. Thus,
the original feature dimension of an EEG sample is high. However, the number of samples
in the EEG-related task is not high, which would lead to a very low initial ratio of samples
to features. Third, the inherent variabilities in brain anatomy, head size, and dynamics
across trials/subjects considerably limit the generalizability of EEG analyses across subjects
and even across trials within a single subject performing a single task. All of these lead to
problems such as over-fitting and poor generalization when building a deep learning model
on EEG data and also increase the difficulty of studying the interpretability of learned
models. To the best of our knowledge, although some recent efforts have been dedicated
to explaining the behaviors and decisions of deep networks in other fields, few existing
works attempt to provide an overview of the representative interpretable models used for
analyzing underlying behaviors of deep learning models on EEG data. In the conference
version of our work [4], we tried to use two interpretability methods, Local Interpretable
Model-agnostic Explanations (LIME) [5] and Gradient-weighted Class Activation Mapping
(Grad-CAM) [6], to study the learning behaviors of a CNN model. However, experiments
were only carried out on one dataset, and there was no attempt to integrate brain science
knowledge to obtain a better recognition model.

To sum up, the contribution of this work is three-fold: (i) we propose to use two
representative interpretability approaches to study the EEG-based emotion recognition
models; (ii) according to the interpretability analysis, we increase the understanding of
which features better discriminate the target classes. We also find that the features learned
by the model are consistent with previous brain science findings; (iii) by integrating the
knowledge from brain science, our model achieves better recognition accuracy.

The rest of the article is organized as follows: Section 2 briefly reviews the typical
studies about interpretability methods and knowledge-integrated EEG models; Section 3
details the structure of the proposed model and interpretability algorithms conducted;
Section 4 describes all the experimental settings and processes; including dataset, parame-
ters, comparative methods and comprehensive analysis of results, and Section 5 concludes
by outlining the key contents and contributions overall.

2. Related Works

To date, no studies have systematically used interpretability approaches to study the
deep learning models on EEG data and integrate neuroscience knowledge into the learning
process of their model. Therefore, in this section, we will first present the current state of
research on interpretability methods, then we will present some work on designing models
using theories related to neuroscience.

2.1. Interpretability Methods for Deep Learning

Deep neural networks are often considered black boxes. In many research studies,
despite the fact that the proposed model shows great performance, the author is usually
unable to accurately interpret the internal behaviors of the model. Therefore, the ability
to interpret deep learning models is essential for further research of specific tasks. It
can help researchers understand the model, thereby better optimizing the model and
improving the theoretical support of the proposed method. Generally, there are two types
of interpretable methods based on the timing of interpretation, passive methods, and active
methods. The task of the passive method is to explain a model that has been trained
and generally does not affect the main structure of the interpreted model; for the active
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method, the task has changed from explaining a black box model with already good
performance to building both interpretable and well-performed model, which means the
balance between interpretability and target task performance must be considered before
modeling, so as to significantly increase the difficulty of modeling compared with building
a regular convolutional neural network (CNN). Thus, most of the studies consider the
passive methods at first, where the most common ones are visualization-related methods [7].
Ribeiro et al. [5] proposed an algorithm, LIME, that interprets the prediction of the target
classifier or regressor by approximating it locally with a naturally interpretable model.
Class Activation Mapping (CAM) [8] is a general technique that can be utilized to visualize
the predicted class scores on any given image, highlighting the discriminative object parts
detected by the CNN. As a generalization of CAM, Grad-CAM [6] allows the CNN of
any structure to be visualized without modifying the network structure or retraining.
Different from gradient-based CAM and Grad-CAM, Deep Learning Important Features
(DeepLIFT) [9] is a method for decomposing the output prediction of a neural network
on a specific input by backpropagating the contributions of all neurons in the network to
every feature of the input. For active methods, they usually add extra components in the
interpreted model beforehand or extend the training framework to synchronously intervene
in the training of the target model. Li et al. [10] and Chen et al. [11] added a prototype layer
to the model to explain a prediction by the learned prototypes. Weinberger et al. [12] and
Plumb et al. [13] utilized an interpretability regularizer to regularize the prediction model,
and the latter additionally implements prior knowledge and a feature learning model
for alternate training with the predictive model. Similarly, Wojtas et al. [14] proposed a
dual-net architecture composed of an operator and a selector, both of which are Multilayer
Perceptrons (MLPs) for predicting and feature selecting, respectively. After alternate
training, the optimal feature subset and the importance order of the features are learned,
and the operator can predict the test data according to the optimal feature subset.

Before us, there were some other EEG-related tasks that used interpretability methods
to test and verify their proposed models that are good enough. In their approach, the
interpretability part is just an embellishment. The application of a deep neural network
(DNN) with layer-wise relevance propagation (LRP) on EEG data was first proposed by
Sturm et al. [15], in which the LRP-derived scalp topography maps reveal the relevance
between single test data and the decision of DNN. Vilamala et al. [16] resorted to multi-
taper spectral analysis to create visually interpretable images of sleep patterns from EEG
signals as inputs to a deep convolutional network trained to solve visual recognition tasks.
Qing et al. [17] proposed a coefficient-based method based on machine learning using
EEG signals to solve the problem of insufficient understanding of emotional stimulation
mechanisms in traditional research. This method not only outperforms the benchmark
algorithm in accuracy but can also better explain the emotion activation process. Some
works implemented visualization heatmaps to highlight the importance of EEG chan-
nels, for example, Li et al. [18] used Grad-CAM to select channels before training their
model, and the interpretability part in TSception [19] shows that the saliency maps [20]
drew from the network match the existent cognitive neuroscience theory. More recently,
Ludwig et al. [21] put forward a new EEG decoding pipeline (EEGminer) with learnable
filters, which can discover interpretable features of brain activity. Using the parameters of
trainable generalized Gaussian filters as an interpretable tool, they effectively revealed the
features of channel connectivity and the magnitude behind brain activity. Although the
above works involve interpretability, their main purpose is to propose a model with better
performance, in which interpretability is merely used as a supplementary part to support
the model, lacking systematicness and comprehensiveness.

2.2. Knowledge-Integrated EEG Model

Hemispheric lateralization refers to the phenomenon of specialization or asymmetry
in the division of labor between the left and right hemispheres of the brain. Jiang et al.
exploited the hemispheric lateralization of the human brain in the proposed deep frame-
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work to extract more compact and class-dependent brain features [22], and the experiment
results of the model on Object Category-EEG and ImageNet-EEG dataset were better than
those of the state-of-the-art. Zhong et al. proposed a network called RA-BiLSTM that
extracted additional information at the regional level to strengthen and emphasize the
differences between the two hemispheres [23]; it achieved the best results on the classifica-
tion of ImageNet-EEG. Ding et al. proposed a multi-scale convolutional neural network
and learned discriminative global and hemispherical representations using asymmetric
spatial layers [19]; the classification accuracy on DEAP and MAHNOB-HCI exceeded most
traditional machine learning and deep models. In 2022, Zhong et al. proposed a novel
bi-hemispheric asymmetric attention network combining a transformer structure with the
asymmetric property of the brain’s emotional response [24]; the results of this model were
better than both classical machine learning and state-of-the-art deep learning methods on
the DEAP. Although these works tried to incorporate some prior knowledge into model
training, we found that all of these existing works are based on hemispheric lateralization,
while none of the other knowledge was integrated into the models.

3. Methods

We first build a simple convolutional neural network Simple Asynchronous Convo-
lutional Neural Network (SACNN), then we use interpretability methods to analyze the
trained SACNN. Finally, as shown in Figure 1, we propose a new method by integrating
neuroscience knowledge into EEG emotion classification.
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Figure 1. Knowledge-Integrated Region-wise Loss Construction.

3.1. A Simple Model

In this section, we construct a simple CNN-based model SACNN. SACNN consists of
four convolutional layers, two dropout layers, and three fully connected layers. Among
them, the convolution kernel size of the four convolution layers is 3× 3, the padding is 1,
the convolution kernel step of the first and third convolution layers is 1, and the kernel
step of the second and fourth convolution layers is 2. The details of the model are given in
Table 1.
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Table 1. The structure of SACNN.

Layer (Type) Output Shape Parameters

Conv2d [−1, 128, 9, 9] 147,584
SELU [−1, 128, 9, 9] 0
Conv2d [−1, 256, 5, 5] 295,168
SELU [−1, 256, 5, 5] 0
Conv2d [−1, 256, 5, 5] 590,080
SELU [−1, 256, 5, 5] 0
Conv2d [−1, 512, 3, 3] 1,180,160
SELU [−1, 512, 3, 3] 0
Linear [−1, 1024] 4,719,616
Dropout [−1, 1024] 0
Linear [−1, 1024] 1,049,600
Dropout [−1, 1024] 0
Linear [−1, 2] 2050

In order to extract the spatial information of EEG, we map the one-dimensional EEG
channel onto the two-dimensional grid to get the input x of SACNN. For a sample s ∈ Rn×t,
n denotes the number of electrodes, and t is the sampling points of the EEG sample; in our
method, t is 128. By following existing work [25], as shown in Figure 2, we map the EEG
channels onto a 9× 9 grid according to the international 10–20 system. Finally, the size of
the SACNN input x is 9× 9× 128.
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Figure 2. Electrodes are mapped onto a 2D matrix according to their relative spatial positions.

3.2. Interpretability Algorithm
3.2.1. LIME

We try to use LIME to explore the region-level importance of EEG data extracted
and strengthened by the CNN model. For the image classification task, LIME assumes an
interpretable representation as a binary vector indicating the “presence” or “absence” of a
contiguous patch of similar pixels. In detail, it sets each segmented region as a super-pixel
and inputs every possible combination of super-pixels into the learned model to obtain
the probability of each combination. The obtained probability is used as a label for the
explanation model. Finally, the contributed value of each super-pixel is learned as the
weights of a sparse linear model via least squares by Lasso [26].

For our problem, we simply use two types of segmentations in our experiment. The
first one is the top, middle, and bottom regions, and another is the left, middle, and right
regions. We adopt these two regional divisions because they are consistent with the natural
divisions of the brain cortex and are commonly used in the existing EEG studies [27,28].
Each of the regions is set as an instance being explained; its original representation is
denoted as x ∈ R9×9×128. We use x

′ ∈ {0, 1}d to denote a binary vector for its interpretable
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representation where d is three because there exists three regions/super-pixels in each
regional division. The possible combination of super-pixels is denoted as z

′ ∈ {0, 1}d, and
it includes eight cases: {1, 1, 1}, {1, 1, 0}, {1, 0, 1}, {0, 1, 1}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0, 0, 0}.
One means the corresponding region is present, while zero means it is absent.

Given a sample z
′
, we recover the sample in the original representation z ∈ R9×9×128

and input it into the trained model ftrained and obtain the probability ftrained(z) of the
predicted label for the current EEG data, which is used as the label for the explanation model.
The contributed value wg ∈ R1·d is the weight of a sparse linear model g(z

′
) = wg · z

′
,

which is learned via least squares by Lasso. We use the locally weighted square loss as L,
as defined in Equation (1). We let πx(z

′
) be an exponential kernel defined on the distance

function D(z
′
) =

z
′ ·z′0

‖z′‖2·
∥∥∥z′0
∥∥∥

2

with width, which is used as the complexity measure for each

combination. Here, σ is equal to 0.25, and z
′
0 is defined as {1, 1, 1}.

L = ∑
z,z′

πx(z
′
)( ftrained(z)− g(z

′
))2

(1)

πx(z
′
) =

√
exp

−D(z′ )2
σ2 (2)

3.2.2. Grad-CAM

Given an EEG sample x ∈ R9×9×128, we feed x into the trained convolutional network
ftrained to find its emotion category y. We first derive the value yc of y corresponding to
the label c, then get the k-th activation map Ak of the convolutional layer, and calculate the
derivative of yc to Ak derived from the k-th feature map of a convolutional layer. Finally,
we globally sum the flowing back gradients over which the width is m and height is n to
obtain the feature map local importance weights: αc

k:

αc
k =

m

∑
i

n

∑
j

∂yc

∂Ak
ij

(3)

Using αc
k as the weight of Ak, through Equation (4), we get the weighted sum Gc of

the feature maps. Then, Gc is up-sampled to the same spatial resolution as the input.

Gc = ReLU

(
∑
k

αc
k Ak

)
(4)

3.3. Knowledge-Integrated Region-Wise Loss

As shown in Figure 1, we first input the samples into SACNN, then use the inter-
pretability algorithm to extract the decision basis of the model, and finally, according to the
chain derivation rule, we force the optimization direction of the neural network to match
the neuroscience knowledge.

Following Grad-CAM, we first derive the αc
k of the feature map from the last convo-

lutional layer; here, we input x to the untrained model f instead of ftrained, and c is the
ground truth label of x, and we obtain the normalized weight α̂c

k.
According to current research in neuroscience, different brain regions have different

effects on emotions. Therefore, we design a term in loss function to enforce that the input
contribution to the model matches the widely accepted neuroscience knowledge.

For the feature map Ak, we first obtain the derivative of yc with respect to Ak, and
then obtain the derivative of Ak with respect to x. Since the importance of different feature
maps to yc is inconsistent, we multiply α̂c

k with the above two items to locate the input x. In
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order to obtain the importance of different spatial locations, after the sigmoid, we average
the value along the sampling point dimension to get βx ∈ R9×9:

βx =
128

∑
i=1

sigmoid

(
∑
k

α̂c
k Ak · ∂Ak

∂x

)
/128 (5)

We define a 9× 9 matrix M as a mask matrix, where Mi,j ∈ {0, 1}, when Mi,j is 1, it
means that the electrode information at the corresponding position is selected, and vice
versa. Using this mask, we design several different variants to strengthen different locations
of the EEG signal, e.g., the left frontal lobe is associated with positive emotions. Finally, we
get the regularization terms LM:

LM = ∑
i

∑
j

βx
ij ·Mij (6)

Finally, put LM, cross-entropy loss function lcross , and L2 regularization together as
the new loss function of SACNN, the coefficient of the L2 parameter is p, and q is the
parameter of the prior regularization item LM.

J = lcross + L2 · p− LM · q (7)

4. Experimental Results

We first train SACNN on multiple datasets and then analyze the model with inter-
pretability methods. For each dataset, we obtain ten models with ten-fold validation and
select the model with the median accuracy on the test set for interpretability analysis. It is
worth mentioning that we also compare the explanations result of the selected one with the
others, and we find they are consistent with each other.

4.1. Experimental Setting

Here are the main experiments we design and conduct for interpretability analysis.
First, we use LIME to obtain the contributed values of each region in two manually de-
termined divisions based on two different CNNs on two datasets. With the same models
and divisions above, we additionally calculate the accuracy of each region for valida-
tion. Second, we implement Grad-CAM on SACNN on all three datasets. We select the
channels with high or low average values in the heatmaps derived from Grad-CAM and
compute their accuracies. Finally, we train and test six variants of our proposed knowledge-
integrated model on two datasets. For comparison, an active method is adopted with the
same datasets.

4.2. Dataset

In this paper, we use three datasets for experiments, namely DEAP, MAHNOB-HCI,
and SEED.

DEAP describes the recordings of EEG for 32 participants while they watched 40
one-minute-long excerpts of selected videos [29]. Each experiment included a stimulation
of 60 s and a pretrial baseline of 3 s, and the preprocessed data have been downsampled
to 128 Hz by the DEAP team [30]. After watching each video, the arousal and valence of
subjects were measured using the self-reported Self-Assessment Model (SAM) scale; here,
arousal is defined as the degree to which an individual is excited (e.g., high and low) while
valence is defined as the polarity of emotion [31]. For arousal, the subjects would rate
the video on a scale of 1–9, with 1 being boring and 9 being exciting. Regarding valence,
the subjects would again rate the video on a scale of 1–9, with 1 being unpleasant and
9 being pleasant.

MAHNOB-HCI is a database for the automatic analysis of human emotions, including
EEG and peripheral signals from 30 participants while watching 20 videos [32]. Three
subjects lost data records, and two subjects had incomplete data records. Each video clip
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lasts 34–117 s, and the EEG sampling frequency is 512 Hz; in addition, the beginning and
end of each video clip has 30 s as the baseline. After watching videos, participants were
asked to report their felt arousal and valence using the SAM scale.

The SEED dataset includes EEG signals from 15 subjects during watching 15 movie
clips. The sampling frequency is 200 Hz, and the duration of each film clip is approximately
4 min. The 15 movie clips are divided into three types according to the emotion expected to
trigger, which are negative, neutral, and positive. Each type of clip accounts for one-third of
the total number of clips. The participants were told to report their emotional reactions to
each film clip by completing the questionnaire immediately after watching each clip [33,34].
Unlike DEAP and MAHNOB, the SEED dataset does not provide arousal and valence labels
but only provides one label named emotion and divides the data into three categories.

4.3. Data Preprocessing and Parameter Setting

First, we apply baseline removal to eliminate the interference of the EEG signals in
a relaxed state, according to the experiment [35]. For different datasets, the duration of a
trial varies. Consistent with most existing works, we partition each trial of EEG signal flow
into a set of samples, where each sample contains 128 sampling points so that different
databases can work on the same model. For a sample, we convert the recorded EEG signals
into a matrix with a shape of n× 128, where the n of DEAP, MAHNOB, and SEED is 32,
32, and 62, respectively. Finally, through Figure 2, we get the input of the model with the
size 9× 9× 128. For DEAP and MAHNOB, the subject‘s self-reported arousal and valence
values are divided into two categories as the labels according to the threshold value 5; those
below 5 are 0, and others are 1. As we described before, the SEED dataset only has labels
corresponding to the polarity of emotion, which is the valence dimension. However, it
includes three categories, negative, neutral, and positive. In order to make its experimental
results comparable with those of other datasets, we only use the data with negative and
positive labels to train and test models.

In our model, cross-entropy is used as the loss function, and stochastic gradient descent
(SGD) is applied for backpropagation; the momentum factor of SGD is 0.9. We use SELU as
the activation function, the learning rate value is initialed to 1× 10−2, and multiplied by 0.1
every 30 epochs. The training time of the network is 80 epochs. For each dataset, we divide
the subsets in the trial dimension and divide all the trials of each person into ten folds
according to the time order and combine, and finally, ten-fold cross-validation is used to
train and test the constructed model. We use the L2 penalty and dropout layer to reduce
the overfitting of the model; the L2 weight p of dataset DEAP, SEED, and MAHNOB-HCI
are 1× 10−2, 2× 10−2, and 1× 10−2, respectively, and the drop rate is 0.3.

4.4. Comparative Methods

In our experiments, we use two comparative methods that are TSception [19] and
a dual-net model [14]. TSception is one of the state-of-the-art (SOTA) EEG models, for
which we conduct interpretability analysis on it for comparison with our proposed SACNN.
The dual-net model is an active interpretability model, and we take it to compare the
classification accuracy with SACNN so as to find out whether it is able to promote the
classification performance in an active way.

TSception [19] is a novel multi-scale temporal-spatial convolutional neural network
for EEG emotion recognition, which has achieved good performance in several public
datasets. TSception consists of dynamic temporal, asymmetric spatial, and high-level
fusion layers. The dynamic temporal layer consists of multi-scale 1D convolutional kernels
whose lengths are 1/2, 1/4, and 1/8 of the sampling rate of EEG, respectively, and the asym-
metric spatial layer takes advantage of the asymmetric EEG patterns for emotion, learning
the discriminative global, and hemisphere representations. The learned spatial representa-
tions are finally input into a high-level fusion layer. In order to maintain the basic structure
of TSception well and analyze the individual contribution of each region explicitly, we re-
construct the spatial layer and divide it into two modes, vertical (top/middle/bottom) and
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horizontal (left/middle/right), as shown in Figure 3. For each mode and its corresponding
division, the spatial layer consists of multi-scale 1D convolutional kernels whose lengths
are the number of EEG channels in each region. For every single input, we reorder the EEG
channels separately by their spatial location in each division so as to keep the electrodes
in a region adjacent. The updated version of TSception with both structures can achieve
similar results with the original version of TSception (93% vs. 95% in DEAP and 97% vs.
99% in MAHNOB-HCI). In both versions, cross-entropy is used as the loss function, and
stochastic gradient descent (SGD) is applied for backpropagation. The initial learning rate
is set to 1× 10−3, and the drop rate of the dropout layer is 0.5. The number of training
epochs is 200 in DEAP and 100 in MAHNOB-HCI.

2022/12/19 30
C

hannels

Kernels

…

(1,1/2*s*fs)

Dynamic Temporal Layer
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1st region : top region in vertical mode or left region in horizontal mode.

2nd region : middle region in vertical mode or middle region in horizontal mode.
3rd region : bottom region in vertical mode or right region in horizontal mode.

Figure 3. Diagram of the updated version of TSception.

The novel dual-net architecture is proposed by Wojtas et al. [14], consisting of an
operator and selector for the discovery of an optimal feature subset of a fixed size and
ranking the importance of those features in the optimal subset simultaneously. It is an
active interpretability method. In deployment, the selector generates an optimal feature
subset and ranks feature importance, while the operator makes predictions based on the
optimal subset for test data. In their experiment, MLPs (CNNs) of the sigmoid (ReLU)
neurons are employed to carry out the operator net, and MLPs with the sigmoid neurons are
employed for the selector net in the dual-net architecture. For training MLPs (CNNs), the
Adam optimizer (Adam with Nestrov momentum for the operator net) is adopted via the
stochastic gradient descent (SGD) procedure. At first, we try to implement the given dual-
net on DEAP and SEED datasets with the same preprocessed procedure as our experiments
above, which is using raw data as input and splitting the training and test sets by 10-fold
cross-validation. We use the optimal hyperparameters on Binary Classification [36] for
the MLP operator and those on the Yale dataset [37] for the CNN operator. However, it
turns out that both of the two kinds of models did not work, they did not fit, and all the
predictions tended to a single label. We deduce that it is not appropriate to directly use
MLP as the classifier for raw EEG signals because of their high signal-to-noise ratio (SNR).
As for the CNN operator, it is not suitable to use a two-dimensional spatial kernel for EEG
series as well. In addition, the random batch sampling method cannot guarantee that the
large training set is traversed enough for learning. Therefore, in order to maintain the
basic structure of the dual-net, we change our input from raw EEG to extracted differential
entropy (DE) and conduct the experiment only on the MLP operator with SELU.

4.5. Results
4.5.1. Analysis with LIME

For each dataset, we report the average contributed value of each region obtained
from the test data for our proposed simple model (SACNN) and TSception [19] in both
valence and arousal dimensions, e.g., Figure 4. The horizontal coordinate corresponds to
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the video list and the vertical coordinate is the contributed value. The first two columns
correspond to the results in the top/middle/bottom division, and the last two correspond
to those in the left/middle/right division, each of which contains the results of our model
in the left and those of TSception in the right. The first row shows the results whose ground
truth labels are 0; the second row shows those labels that are 1; and the third row gives
the results without distinguishing which label the sample belongs to. In other words, it
contains both cases.
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Figure 4. The average contributed value of each region obtained from the test data of the DEAP
dataset in the valence dimension.

We also provide classification accuracy when the information of specific regions is kept
and others are masked out on the test data of each dataset for our model and TSception in
both valence and arousal dimensions, e.g., Figure 5. Simply speaking, we only keep the
information of a certain region in each sample and set the others to zero. Then we input all
samples from the test data into the learned model and obtain accuracy. We first conduct
experiments on the DEAP dataset. From Figure 4, we can find that although the structure
of SACNN and TSception are different, the LIME analysis results in similar contributions of
each region across them. For the valence dimension in Figure 4, we can find that the middle
part in the top/middle/bottom division has a greater contribution to the high valence
(label = 1) in both models. This is due to the fact that T7 and T8 of the temporal lobe are
located in this region. The left part in the left/middle/right division has more contribution
to high valence in both models as well. As we know, asymmetry between the hemispheres
of the brain is related to emotions. A relative right frontal activation is associated with
withdrawal stimuli or negative emotions; and a relatively greater left frontal activation is
associated with positive emotions, such as joy or happiness [27]. These results are consistent
with our observation in the LIME analysis. If we simply compare the classification accuracy
of each region in the two models, it is seen that there is a difference between them, which
is mainly caused by the different infrastructures of the two models. However, when we
focus on the areas significantly relevant to emotion, they are similar though. In Figure 5,
we can find the middle part in the top/middle/bottom division achieves better accuracy
than other parts on high valence in both models. The left part in the left/middle/right
division obtains the highest accuracy on high valence, while the right part obtains the
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highest accuracy on low valence in both models as well, which are all consistent with the
contributed value obtained by LIME.
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Figure 5. The classification accuracy of each region on the test data of the DEAP dataset in valence
dimension.

In Figure 6, we report the average contributed value of each region obtained from the
test data of the DEAP dataset in the arousal dimension. From the existing research, the right
hemisphere, especially the parietal lobe, is important in activating arousal systems, right
dominance on P3, and late positive potentials over the parietal lobes appear during high
arousal [38]. In our results, in the arousal dimension, it is observable that the right part in
the left/middle/right division in SACNN and the bottom part in the top/middle/bottom
division in TSception contribute more to high arousal. This is also consistent with the
existing conclusions of brain science. The accuracy of each region is shown in Figure 7.
Although the regional accuracies in the two models are not exactly the same due to the
different structures of the models, we can still find out that the classification accuracies of
different regions of the two models are basically the same in total. For example, the middle
region is the highest in the top/middle/bottom division, while the middle is the lowest in
the left/middle/right division in both models.
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Figure 6. The average contributed value of each region obtained from the test data of the DEAP
dataset in the arousal dimension.
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Figure 7. The classification accuracy of each region on the test data of the DEAP dataset in the arousal
dimension.

In Figure 8, we display the average contributed value of each region obtained from
the test data of the MAHNOB-HCI dataset in the valence dimension. The horizontal
coordinate corresponds to the video list in MAHNOB-HCI, which is different from the
list in DEAP. Consistent with the results in the DEAP dataset, we can find the middle
part in the top/middle/bottom division has a greater contribution to the high valence in
both models, corresponding to which the middle part in the top/middle/bottom division
achieves better accuracy than the other parts on high valence in both models in Figure 9.
Although in SACNN, the line of left and right intertwine together, the left part and the
right part in the left/middle/right division have overwhelmingly more contributions to
high valence and low valence in TSception, respectively. Additionally, in Figure 9, the left
part in the left/middle/right division obtains the highest accuracy on high valence, and the
right part obtains the highest accuracy on low valence in both models. Thus, these results
can be considered in line with the results in the DEAP dataset.
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Figure 8. The average contributed value of each region obtained from the test data of the MAHOB-
HCI dataset in the valence dimension.
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Figure 9. The classification accuracy of each region on the test data of the MAHNOB-HCI dataset in
the valence dimension.

For the arousal dimension in Figure 10, it is clear that the middle part in the top/middle
/right division contributes the most to low arousal in both models. In Figure 11, the middle
part in the top/middle/bottom division obtains higher accuracy than the other two on
low arousal in both models as well. Additionally, we can find that there are many other
similarities in the regional accuracies across the two models. In the top/middle/bottom
division, apparently, the orders of the accuracies of the three regions in the two models are
identical when arousal is low (label = 0), showing that the top part is the highest, then the
bottom, and the middle is the last. In the left/middle/right division, the orders are the
same as well when label = 0 and in total, where the right part reaches the highest and the
middle is the lowest.
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Figure 10. The average contributed value of each region obtained from the test data of the MAHNOB-
HCI dataset in the arousal dimension.
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Figure 11. The classification accuracy of each region on the test data of the MAHNOB-HCI dataset in
the arousal dimension.

4.5.2. Using Grad-CAM to Select Channels

We use Grad-CAM to select channels with SACNN on all three datasets. For each
sample in the training set, we set the Grad-CAM value of each channel as the importance
value of this channel and then sort them. Then we separately sum all the ranking results on
each label to get the final ranking of each channel, respectively. We provide the classification
accuracy on the test data when the specific channels (top 10 vs. last 10) are kept, and the
others are masked out in Table 2. From the results, we can find that Grad-CAM could
help us select those important channels leading to higher classification accuracy in all
three datasets.

Table 2. The classification accuracy of the top/last 10 important channels on the test data obtained by
Grad-CAM of the three datasets with different labels.

Label = 0 Label = 1
Top 10 Channels Last 10 Channels Top 10 Channels Last 10 Channels

DEAP Valence 0.65 0.62 0.78 0.66
Arousal 0.83 0.59 0.83 0.66

HCI Valence 0.70 0.47 0.70 0.51
Arousal 0.71 0.52 0.64 0.61

SEED Emotion 0.87 0.64 0.89 0.02

4.5.3. Results of Knowledge-Integrated Model

As we described before, we propose a knowledge-integrated method by integrating
brain science knowledge into the interpretability analysis of our simple convolutional
neural network. In our method, we define a mask M, which helps us to strengthen the cor-
responding contribution from a particular brain region to emotion recognition. Specifically,
in our experiment, we consider six versions of masks, as shown in Figure 12, including
the left frontal lobe, the left hemisphere, the right frontal lobe, the right hemisphere, the
frontal lobe, and seven important electrode sites for positive emotion. The seven important
locations include the channels of FC3, C3, CP3, P3, C4, CP4, and P4. The parameter q of the
prior regularization item LM is 1.

As shown in Table 3, we give the average results for the 10-fold experiment of the
proposed baseline model, its six variants, and the active model. From the results, we could
find our proposed model shows better classification accuracy compared with the active
model. More than that, we can also find the results are also in line with our expectations.
The left frontal lobe and the left hemisphere are associated with positive emotions; and
the right frontal lobe and the right hemisphere are associated with negative emotions.
Thus, the first and second variant models show better recognition performance on high
valence, while the third and fourth variant models show better recognition performance
on low valence. If the frontal lobe is strengthened, the model will show better recognition
performance in both cases. Zhao [39] performed the ERC algorithm using LSTM as the
base regressor on EEG features with feature selection and ranking and found that the seven
electrode sites, CP4, C4, P3, C3, P4, FC3, and CP3, are associated with positive emotion.
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Through the sixth variant models, we find that after strengthening these seven channels,
the model really achieves better results on positive emotions.
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Figure 12. Different variants of the mask M. Here, the yellow means the channels are selected in the
corresponding variant mask, (a) left frontal lobe, (b) right frontal lobe, (c) left hemisphere, (d) right
hemisphere, (e) frontal lobe, and (f) seven important electrode sites.

Table 3. The results of the experiment.

Dataset Method Averaged Accuracy (%)
Positive Negative

DEAP
Proposed Method

Baseline 91.69 94.43

Left frontal lobe 91.64 (↓ 0.05) 94.54 (↑ 0.11)
Left hemisphere 91.66 (↓ 0.03) 94.56 (↑ 0.13)

Right frontal lobe 92.09 (↑ 0.40) 94,77 (↑ 0.34)
Right hemisphere 91.74 (↑ 0.05) 94.54 (↑ 0.11)

Frontal lobe 91.75 (↑ 0.06) 94.51 (↑ 0.08)
Seven electrodes 91.73 (↑ 0.04) 94.62 (↑ 0.19)

Active Model 10-fold 85.54 22.15
10-fold per subject 84.91 79.75

SEED
Proposed Method

Baseline 83.97 82.79

Left frontal lobe 84.16 (↑ 0.19) 83.06 (↑ 0.27)
Left hemisphere 84.12 (↑ 0.15) 83.16 (↑ 0.37)

Right frontal lobe 83.98 (↑ 0.01) 83.02 (↑ 0.23)
Right hemisphere 84.31 (↑ 0.34) 83.50 (↑ 0.71)

Frontal lobe 84.04 (↑ 0.07) 83.10 (↑ 0.31)
Seven electrodes 83.80 (↓ 0.17) 83.10 (↑ 0.31)

Active Model 10-fold 77.91 79.32
10-fold per subject 86.53 89.71

4.6. Discussion

In this section, we implement LIME to analyze the regional-level importance of EEG
data on emotion-recognition CNNs, from which we discover that despite different struc-
tures of the models, the discriminative features learned for classification become similar.
They also show consistency with the findings of emotion recognition in brain science, such
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as the well-acknowledged theory of brain asymmetry: a relative right frontal activation
is associated with withdrawal stimuli or negative emotions; and a relatively greater left
frontal activation is associated with positive emotions, such as joy or happiness. In addition,
we try to use Grad-CAM to select the significant channels that contribute to specific emotion
labels. It shows that the top-ranked channels with high-importance values outperform
the last-ranked ones. We also propose a new model by integrating brain science knowl-
edge with the interpretability analysis of SACNN, which achieves better accuracy than
SACNN and the comparative active model. Overall, our results strengthen and validate the
acknowledgments of emotion-recognition CNN models’ learning behaviors and enhance
the credibility of the predictions provided by them.

5. Conclusions

Over the years, deep learning has broken records in many fields in a black-box manner.
It also includes the field of EEG-based emotion recognition. However, now, more and more
people realize that breaking records with increasingly complex models is not enough. We
need to explore the potential reasons why the model is effective. On the one hand, it can
avoid the model from just fitting to some noise that has nothing to do with emotion. On the
other hand, it can give us useful inspiration for designing models. In this paper, we conduct
a series of experiments with two generally used interpretable models on three datasets.
Although the learning processes are not completely identical for the classification models
with different structures, both models capture similar features that are also consistent
with previous brain science findings. Moreover, by integrating the knowledge from brain
science with the interpretability analysis results in the learning process, we propose a new
model that achieves better recognition accuracy than the compared active model. In the
future, we will seek to propose a more effective emotion classification model based on the
interpretability method.
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