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Abstract: It is hardly realistic to assume that, under all decision circumstances, followers will always
choose a solution that leads to the worst upper-level objective functional value. However, this
generally accepted concept of the pessimistic solution to the ill-posed bilevel programming problems
may lead to the leader’s attitude being more pessimistic vis à vis his anticipation of the follower’s
decision being non-antagonistic. It will result in a wrong pessimistic solution and a greater potential
of cooperation space between the leader and the followers. This paper presents a new concept
of a non-antagonistic pessimistic solution with four numerical examples for bilevel programming
problems from a non-antagonistic point of view. We prove that the objective function value of the
non-antagonistic pessimistic solution generally dominates or is equal to the objective functional
value of the pessimistic solution and the rewarding solution, and the maximum potential space
for leader-follower cooperation can be overestimated in a generally applied pessimistic solution.
Our research extends the concept of the pessimistic solution. It also sheds light on the insights that
the non-antagonistic pessimistic solution can describe the practical potential of cooperation space
between the leader and followers in non-antagonistic circumstances.

Keywords: hierarchical decision-aiding optimization scheme; ill-posed bilevel programming
problem; bilevel non-antagonistic pessimistic solution

MSC: 90-B99

1. Introduction

The bilevel programming problem (BLPP) is a hierarchical non-cooperative optimiza-
tion problem in which upper-level and lower-level players have their own criteria functions,
each controlling corresponding decision variables. The upper-level player is often referred
to as the leader who makes the decision first, while the lower-level player is the follower
who acts accordingly. At the same time, the optimization result of the follower is the
implicit constraint to the leader in attaining its optimality [1]. An ill-posed bilevel problem
(IBPP) refers to the BLPP when multiple lower-level optimal solutions exist for certain
upper-level decision variables. In this type of problem, the upper-level optimality is af-
fected by the uncertain feedback of the lower-level solutions. The traditional optimal
Stackelberg solution, usually defined in non-cooperative environments and for the case
where the follower’s reaction set to the leader’s strategy is a singleton, seems inadequate
for solving IBPPs. Furthermore, most solution methods in the current bilevel optimization
literature are designed for well-posed problems [2–5] or the optimistic and pessimistic
case of ill-posed problems [6–10]. However, assuming that followers will always choose
a solution that leads to the best or worst upper-level objective functional value is hardly
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realistic. Therefore, a proper definition of the optimal solution is crucial for developing the
solution method and approximating the best solution(s) for IBPPs.

In the pessimistic position of IBPP, the leader assumes that the follower can choose
the solution that results in the worst value of the upper-level objective function. However,
in practical problems, assuming that the follower will always choose a solution from the
optimal reaction set that is worse for the leader is unrealistic. Consider, for instance, a
bilevel reservoir operation problem during the flood season, where the flood control bureau
and the power plant manager are the leader and the follower [11]. It is hard to imagine that
the power plant manager would always choose the solution with the highest flood risk,
unless he wanted the plant to be destroyed by the flood. This antagonistic assumption can
lead to a wrong pessimistic solution and an enlarged potential for cooperation between
the leader and the followers. Therefore, there is a gap between research studies and the
application of the pessimistic solution in practice, and the leader’s attitude may be less
pessimistic vis à vis his anticipation of the follower’s decision being fully antagonistic.
While the pessimistic approach can be useful for identifying the worst-case scenario, it
may not accurately reflect the actual behavior of the follower. To address this limitation,
we need to develop new theories and methods that consider the possible positions that
lower-level decisionmakers may take in hierarchical management scenarios.

This paper aims to bridge this gap by proposing a new concept of pessimistic solution
to bilevel programming problems, called the non-antagonistic pessimistic solution, which
considers the scenarios where followers may not always act antagonistically. It is shown
that the objective function value of the non-antagonistic pessimistic solution generally dom-
inates or is equal to that of the pessimistic and rewarding solutions. The non-antagonistic
pessimistic solution can provide a more realistic estimate of the potential for cooperation in
non-antagonistic circumstances.

The remainder of the paper is organized as follows. Section 2 reviews some recent
definitions of BLPP solutions. Section 3 provides the previous definitions of the four
extreme solutions and introduces the new definition for the IBPP solutions together with
the associated properties and proof. It is followed by Section 4 with four examples to
demonstrate the properties of the defined type of bilevel optimal solution. Section 5 is a
discussion of the results. We close this paper with a conclusion in Section 6.

2. Literature Review of the Definitions of BLPPs

The past decades have witnessed a plethora of new definitions for BLPPs from varying
perspectives, such as optimistic and pessimistic solutions, intermediate solutions [12,13],
partial cooperation solutions [14], satisfactory solution(s) [15], viscosity solutions [16], de-
ceiving/ rewarding solutions [17], pseudo-feasible solutions [18], etc. We classify these
research efforts and definitions into two broad categories: (1) definitions for reducing
lower-level decision uncertainties and (2) definitions for improving the feasibility and
existence of the optimal solution. Most of the new definitions fall within the first classes,
where lower-level decision uncertainties may be attributed to the presentence of variables
uncertainty [19], nonunique solutions in single-objective BLPPs [20], preferential uncer-
tainty in multi-objective BLPPs [21] and nonunique Nash equilibrium solutions in BLPPs
with multi-followers [22].

For the first category of definitions, knowing what position the follower might take
in solving the problem becomes important since it determines which solution(s) from
the lower level should be considered at the upper level [23]. To deal with uncertainty
related to lower-level nonunique solutions, we generally use the optimistic and pessimistic
positions in single-objective bilevel optimization under the follower’s full cooperation or
non-cooperation. Lucchetti et al. [24] presented two additional positions, which assume
the follower makes a free choice or the leader is indifferent to the follower’s choice. For
little justification to assume that the follower will only behave in the two extreme ways,
Aboussoror and Loridan [12] first introduced the idea of the intermediate solution of
the strong–weak Stackelberg problem, in which the leader’s optimal choice depends on
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the level of cooperation from the follower. Cao and Leung [14] further proposed the
concept of partial cooperation solution(s) by introducing a cooperation index to describe
the degree of follower cooperation. A deceiving solution is defined for multi-objective
bilevel programming by Alves et al. [17] when the leader makes an optimistic decision,
but the follower’s reaction is the least favorable to the leader. A rewarding solution is
defined when the leader makes a pessimistic decision, but the follower’s reaction is the most
favorable to the leader. In addition to the above solutions, considering the probabilities
of the follower’s decision being in favor or against the interests of the leader, a mean
optimal decision and a moderate solution have been defined by Nie [25] and Alves [17] for
providing the highest expected value of the leader to hedge against preference uncertainty.

For the second category of definitions, the pessimistic solution is the most typical
solution on which the cooperation space between the leader and the follower(s) could
be reasonably specified [26]. The pessimistic problem may have no solution [24] and, in
most cases, lacks lower semi-continuity [27] and is hard to solve [28]. This problem thus
inspired great endeavors in researching the existence of optimal solutions and the stability
of the optimal condition. Loridan and Morgan discussed the existence of solutions in
their research [29,30] and contributions followed by other researchers to generate a stable
and unique solution to the pessimistic bilevel problems [8,27,28,31–33]. Furthermore, to
improve the feasibility and existence of an optimal solution, Shi [34] proposed a refined
optimal solution definition by shifting the upper-level constraints involving the upper and
lower level variables into the lower level. Marsha and Dempe [35] believe that the ideas
based on shifting constraints between upper and lower-level problems violate the modeling
procedure. Audet [36] further argues that this does not solve a wider class of problems, but
rather relaxes the feasible region, allowing for infeasible points to be considered feasible.
Mejia-de-Dios [18] recently defined and proved the existence of pseudo-feasible solutions
in bilevel optimization to warn about the effect and issues related to misleading results in
evolutionary bilevel optimization.

In summary, the pessimistic solution provides a valuable framework for hierarchical
decision-making problems, but its practical application requires a deeper understanding
of the follower’s behaviors. Less emphasis has been paid to the selection of the leader’s
decision considering the non-antagonistic nature of the follower’s behaviors, particularly
the traditional pessimistic solution’s definition results in an overestimated potential of
cooperation space between the leader and the followers. Therefore, the novelty of the
present study is to extend the concept of a pessimistic solution and to provide a more
realistic assessment of the potential for cooperation in non-antagonistic circumstances.

3. The Non-Antagonistic Pessimistic Solution

We consider the following bilevel programming problem, a nested optimization prob-
lem with a hierarchical structure. It consists of two layers of optimization problems with
independent objective functions and constraints, where the upper-level optimality relies
on the optimal solution of the lower level. For both the upper and lower decision makers,
striving for optimality cannot avoid being influenced by the other side’s decision.

min
x

F(x, y)

s.t.


G(x, y) ≤ 0
min

y
f (x, y)

s.t. g(x, y) ≤ 0

, (1)

where F : Rm ×Rn→ R is the upper-level objective function, and f : Rm ×Rn→ R is
the lower-level objective function. x ∈ X ⊂ Rm, y ∈ Y ⊂ Rn are the upper and lower
level decision variables, where X = {x|x ∈ Rm, G(x, y)≤ 0} and Y = {y|y ∈ Rn, g(x, y) ≤ 0}
denote the upper and lower level decision space, and G(x, y) ≤ 0 and g(x, y) ≤ 0 represent
the upper and lower constraints.

Some fundamental definitions and further descriptions are introduced as follows:
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(a) S is defined as the bilevel constraint region where the constraints of the upper and
lower level are both satisfied:

S = {(x, y) |G(x, y) ≤ 0, g(x, y) ≤ 0}; (2)

(b) For each x ∈ X, the optimal solution set of the lower-level problem is defined as M(x).
It is also referred to as the rational reaction set of the lower-level problem:

M(x) = argmin
y
{ f (x, y) | g(x, y) ≤ 0}; (3)

(c) The inducible region includes all points concerning x ∈ S(X) that are bi-level feasible
and lead to the lower-level optimal:

IR = {(x, y) | (x, y) ∈ S, y ∈ M(x)}. (4)

If the follower’s reaction set M(x) contains only one element, there would be only one
optimal solution to the lower-level problem. When M(x) is a set-valued mapping, the opti-
mal solution to the lower problem is not unique. It is the type of IBPP we are discussing in
this article where the existence of multiple optimal solutions might lead to an inappropriate
formulation of the bilevel problem [10]. For the upper level, there is ambiguity about which
lower-level optimal solution should be used in the presence of multiple lower-level optimal
solutions according to this definition, in which the four extreme solutions developed are
optimistic, pessimistic, deceptive, and rewarding solutions.

Definition 1. A pair of
(

xopt, yopt) ∈ IR is the optimistic solution to the following optimistic

bilevel problem (5). Fopt = F
(

xopt, yopt

)
, fopt = f

(
xopt, yopt

)
.

min
x∈X

inf
y∈M(x)

F(x, y). (5)

Problem (5) is the optimistic formulation of IBPP. The leader assumes that a most
cooperative follower will always choose the solution from the reaction set that leads to the
leader’s ideal outcome.

Definition 2. A pair of
(
xpes, ypes) ∈ IR is called the pessimistic solution to the following

pessimistic bilevel problem (6). Fpes = F
(
xpes, ypes

)
, fpes = f

(
xpes, ypes

)
.

min
x∈X

sup
y∈M(x)

F(x, y). (6)

Problem (6) is the pessimistic formulation of the IBPP, also known as the weak Stack-
elberg problem, in which the leader assumes that a most uncooperative follower will
always choose a solution from the reaction set that leads to the leader’s “best-guaranteed
result” [13].

Definition 3 ([17]). The rewarding solution (xrew, yrew) is obtained when the leader makes a
pessimistic decision xrew= xpes, while the follower’s reaction is most favorable to the
leader, i.e., (xrew, yrew) =

(
xpes, yrew

)
, where yrew ∈ argmin

y

{
F
(
xpes, y

)∣∣y ∈ M
(

xpes
)}

.

Frew= F(xrew, yrew), frew= f (xrew, yrew).

Definition 4 ([17]). The deceiving solution is obtained when the leader makes the optimistic decision
xdec = xopt, but the follower’s reaction is the least favorable to the leader, i.e., (xdec, ydec) =

(
xopt, ydec

)
,

where ydec ∈ argmax
y

{
F
(

xopt, y
)∣∣y ∈ M

(
xopt

)}
. Fdec = F(x dec, ydec), fdec = f (xdec, ydec).
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In practice, the assumption of pessimistic problems that the follower always chooses
a solution that yields the worst upper-level objective value under all decision circum-
stances is not realistic. Therefore, we propose the following concept of a non-antagonistic
pessimistic solution.

Assumption 1. The set S is nonempty and compact, and F(x, y), f (x, y) are continuous on S.

Assumption 2. The optimal solution set of the lower-level problem M(x) is nonempty and compact
and is assumed to be the point-to-set mapping and lower semi-continuous with x ∈ X.

Theorem 1 ([8]). Under Assumption 2, a global pessimistic optimal solution exists if the pessimistic
formulation (6) has a feasible solution.

Definition 5. With Assumptions 1 and 2, the non-antagonistic pessimistic bilevel problem is
expressed below. A pair of

(
xnap, ynap

)
is called a non-antagonistic pessimistic solution to the

following problem (7). Fnap= F(xnap, ynap

)
, fnap = f (xnap, ynap

)
.

min
x∈X

inf
y∈M(x)

F(x, y)

s.t. f (x, y) = fpes
. (7)

By making the lower-level objective equal to the value fpes of the lower level of the
pessimistic model and by adding this as a constraint to optimize the upper-level goal, the
leader allows the follower to achieve a specific goal within the nested optimization scheme.
However, under this definition, the leader does not cede decision-making power to the
followers but proactively relinquishes some interests to gain overall control.

Definition 6. Sd is defined as the bilevel constraint region of the problem (7):

Sd = {(x, y) |G(x, y) ≤ 0, g(x, y) ≤ 0, f (x, y) = fpes
}

. (8)

It is clear that Sd ⊆ S. For x ∈ Sd, the inducible region to problem (7) is defined as IRd:

IRd = {(x, y) |(x, y) ∈ Sd, y ∈ M(x)}. (9)

Therefore, the new problem could also be expressed as:

min
x∈Sd

inf
y∈M(x)

F(x, y). (10)

The non-antagonistic pessimistic solution has the following properties:

Theorem 2. The objective function value of the non-antagonistic pessimistic solution
(

Fnap, fnap
)

dominates or is equal to the objective function value of the global pessimistic optimal solution(
Fpes, fpes

)
.

Proof of Theorem 2. According to the definition of the non-antagonistic pessimistic solution,

F(xnap, ynap) = min
x∈Sd

inf
y∈M(x)

F(x, y)

≤ min
x∈Sd

sup
y∈M(x)

F(x, y).

≤ min
x∈X

sup
y∈M(x)

F(x, y)

(11)
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According to the definition of the pessimistic solution,

F(xpes, ypes) = min
x∈X

sup
y∈M(x)

F(x, y). (12)

Thus, F
(

xnap, ynap) ≤F
(

xpes, ypes

)
can be proved, while by definition, f

(
xnap, ynap) = fpes .

Therefore,
(

Fnap, fnap) <
(

Fpes, f pes

)
can be proved. �

Theorem 3. The objective function value of the non-antagonistic pessimistic solution
(

Fnap, f nap

)
dominates or is equal to the objective function value of the rewarding solution (Frew, f rew).

Proof of Theorem 3. With f
(

xrew, yrew) = fpes and f (xnap, ynap) = fpes, f (xrew, yrew) =

f
(

xnap, ynap

)
can be derived. In addition, according to the definition of Sd, xpes ∈ Sd can

be held. Then, we can prove that:

F(xnap, ynap) = min
x∈Sd

inf
y∈M(x)

F(x, y)

≤ min
x∈Sd

inf
y∈M(x)

F(xpes, y)

= inf
y∈M(xpes)

F(xpes, y)

≤ min
y∈M(xpes)

F(xpes, y)

. (13)

According to the definition of the rewarding solution,

F(xrew, yrew) = min
y∈M(xpes)

F(xpes, y). (14)

Therefore, F
(

xnap, ynap) ≤F(xrew, yrew) ,
(

Fnap, f nap) < (Frew, f rew) can be proved. �

Definition 7. We define the maximum potential space for the leader to cooperate with the follower
as PSmax:

PSmax =
∣∣Fpes − Fopt

∣∣, (15)

while the maximum potential space for the leader to cooperate with the follower in a non-antagonistic
situation as PSnap-max:

PSnap-max =
∣∣Fnap − Fopt

∣∣. (16)

Supported by Theorem 2, the maximum potential space for leader–follower coop-
eration in the non-antagonistic situation PSnap-max is less than or equal to that in the
antagonistic position assumed in the pessimistic solution PSmax.

Additionally, we prove that the rewarding solution has the following property:

Theorem 4. The objective function value of the rewarding solution (Frew, f rew) dominates or
equals the objective function value of the global pessimistic optimal solution

(
Fpes, fpes

)
.

Proof of Theorem 4. According to the definition of reaction set mapping, xrew= xpes,
yrew ∈ M(xpes

)
, f (xrew, yrew)= f (xpes, ypes

)
can be held. In addition,

F(xrew, yrew) = min
y∈M(xpes)

F(xpes, y)

≤ sup
y∈M(xpes)

F(xpes, y)

= F(xpes, ypes)

. (17)



Mathematics 2023, 11, 1422 7 of 13

Therefore, F(xrew, yrew) < F
(

xpes, ypes

)
can be proved. �

4. Numerical Examples

In this section, we illustrate the solution properties of the non-antagonistic pessimistic
solution using the four numerical examples. The results of optimistic, pessimistic, reward-
ing, and deceiving solutions are also listed below. First, we consider the following problem:

Example 1.
min

x
F(x, y) = x2 + y1

2

s.t.


0 ≤ x ≤ 4
min

y
f (x, y) = −(x2 + y1 + y2).

s.t. x + y1 + y2 ≤ 4
y1, y2 ≥ 0

(18)

For 0 ≤ x ≤ 4 , the rational reaction set is expressed as below:

M(x) =

{
(y1, y2)

∣∣∣∣∣ 2

∑
i=1

yi = 4− x

}
. (19)

As presented in Figure 1, there exist multiple optimal solutions when adding the constraint
fpes = −6. All highlighted points represent IRd, which have the same lower-level objective value
equal to fpes but different upper-level objective values. Figure 2 describes the upper-level objective
values of the optimistic, pessimistic and non-antagonistic solutions in IRd. Although Fopt= 0 and
Fpes= 8 can be useful in providing the lower and upper best-guaranteed result of the upper-level
objective value, Fnap= 4 has a better upper-level objective value compared to Fpes. PSmax describes
the potential for improvement of the upper-level objective value for the follower to transform their
non-cooperative behavior into cooperative behavior. PSnap-max describes the potential improvement
in the upper-level objective value for the follower to transform their limited antagonistic behavior into
cooperative behavior. In this example, PSmax= 8, PSnap-max= 4, PSnap-max < PSmax indicates
that the traditional pessimistic solution overestimates the leader’s loss due to the follower’s non-
antagonistic behavior, because when the followers reach the optimum, they are more likely to choose
the non-antagonistic solution, which is reciprocal to the leader versus the pessimistic solution.
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Table 1 lists the five types of solutions of Example 1. In this example,
(

Fnap, fnap
)

is
not inferior to

(
Fopt, fopt

)
. It can also be interpreted that if a fully cooperative follower

cannot be observed, the non-antagonistic solution would be the expected result of the
leader’s practical goal. Furthermore, (Frew, frew) has the same value as

(
Fnap, fnap

)
due

to xrew = xnap, while (Fdec, f dec) is dominated by the rest of the optimal solutions. More
discussion about this will be included in the following example.

Table 1. The solutions and optimal values of Example 1.

Example 1 F f x y1 y2

Optimistic solution 0 −4 0 0 4
Pessimistic solution 8 −6 2 2 0
Rewarding solution 4 −6 2 0 2
Deceiving solution 16 −4 0 4 0
Non-antagonistic pessimistic solution 4 −6 2 0 2

Example 2.
min

x
F(x, y) = x1

2 + x2
2 + y1

2 + y2
2

s.t.


0 ≤ x1, x2 ≤ 4
min

y
f (x, y) = −(x1

2 + x2
2 + y1 + y2 + y3).

s.t. x1 + x2 + y1 + y2 + y3 ≤ 4
y1, y2, y3 ≥ 0

(20)

For 0 ≤ x1, x2 ≤ 4 , the rational reaction set is expressed as below:

M(x) =

{
(y1, y2, y3)

∣∣∣∣∣ 3

∑
i=1

yi = 4−
2

∑
i=1

xi

}
. (21)

Table 2 lists the five types of solutions for Example 2. Same as in Example 1,
(

Fnap, fnap
)

is not inferior to
(

Fopt, fopt
)

and dominates
(

Fpes, f pes

)
, PSnap-max= 2.456 <PSmax= 5.333.
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However,
(

Fnap, fnap
)

dominates (Frew, frew) with a better upper-level value in this example. This
is because the rewarding solution fixes the decision of xpes to optimize the upper objective while
the non-antagonistic solution does not constrain the given upper-level variable but to the solution
space IRd , thus resulting in a larger scope for the leader’s decisions and greater possibilities of a
better result.

Table 2. The solutions and optimal values of Example 2.

Example 2 F f x1 x2 y1 y2 y3

Optimistic solution 0 −4 0 0 0 0 4
Pessimistic solution 5.333 −4.889 1.333 1.333 0 1.333 0
Rewarding solution 3.556 −4.889 1.333 1.333 0 0 1.333
Deceiving solution 16 −4 0 0 4 0 0
Non-antagonistic pessimistic solution 2.456 −4.889 1.567 0 0 0 2.433

In addition, (Fdec, f dec) is dominated by the objective function value of the remaining solutions.
In practice, the follower is often not allowed to choose solutions that are fully opposed to the leader,
which brings in the loss of both parties. Therefore, a deceiving solution indicates the loss of leadership
for the leader and can never be an option in hierarchical management.

Example 3.
min

x
F(x, y) = x2 + y2

s.t.


−1 ≤ x ≤ 1
min

y
f (x, y) = xy

s.t. − 1 ≤ y ≤ 1

. (22)

The reaction set of the problem (22) is expressed below:

M(x) =


1, −1 ≤ x < 0
[−1, 1], x = 0
−1, 0 < x ≤ 1

. (23)

In Table 3,
(

Fnap, fnap
)

and
(

Fopt, fopt
)

are the same as (Frew, frew) and dominate
(

Fpes, f pes

)
.

because M(xnap) = M(xopt) = M(xrew
)
= M(0) and the non-antagonistic pessimistic, optimistic,

and rewarding solutions have the same optimal upper-level objective value at x = 0. In addition,
(Fdec, f dec) is the same as

(
Fpes, f pes

)
in this example due to M(xdec) = M(xpes) = M(0) and

max
y∈M(0)

F(0, y) = sup
y∈M(0)

F(0, y) = 1. However, xdec and xpes being the same is not often the

case. Similarly, PSnap-max= 0 <PSmax = 1. When PSnap-max = 0, there is no potential space for
the follower to cooperate with the leader. Therefore, the leader will not accept the pessimistic and
deceiving solution.

Table 3. The solutions and optimal values of Example 3.

Example 3 F f x y

Optimistic solution 0 0 0 0
Pessimistic solution 1 0 0 −1 or 1
Rewarding solution 0 0 0 0
Deceiving solution 1 0 0 −1 or 1
Non-antagonistic pessimistic solution 0 0 0 0
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Example 4 ([24]).
min

x
F(x, y) = 1/2(1− x) + xy

s.t.


0 ≤ x ≤ 1
min

y
f (x, y) = (x− 1)y

s.t. 0 ≤ y ≤ 1

. (24)

The reaction set of problem (24) is expressed below:

M(x) =
{

1, 0 ≤ x < 1
[0, 1], x = 1

. (25)

As shown in Table 4,
(

Fnap, fnap
)

is not inferior to
(

Fopt, fopt
)
. However, the

(
Fnap, fnap

)
,(

Fpes, f pes

)
and (Frew, frew) in this example are the same due to xnap = xpes = xrew = 0, and

M(0) is a single point set. Fnap = Fpes results in PSnap-max = PSmax= 0.5. The leader’s practical
expectation for the objective value should be Fnap = 0.5 instead of Fopt = 0, considering the
non-antagonistic behavior of the follower.

Table 4. The solutions and optimal values of Example 4.

Example 4 F f x y

Optimistic solution 0 0 1 0
Pessimistic solution 0.5 −1 0 1
Rewarding solution 0.5 −1 0 1
Deceiving solution 1 0 1 1
Non-antagonistic pessimistic solution 0.5 −1 0 1

From the above results: (1) if xrew = xnap, the rewarding solution and the non-
antagonistic pessimistic solution are the same; (2) if fnap = fopt, the non-antagonistic
pessimistic solution and the optimistic optimal solution share the same values; (3) if
xpes = xnap and M

(
xpes

)
= M

(
xnap

)
, the pessimistic solution and the non-antagonistic

pessimistic solution are identical.

5. Discussion

Compared to the pessimistic solution, the non-antagonistic pessimistic solution ob-
tains better upper-level objective values in three examples, except that the special case
of Example 4 has the same upper value. It implies that the traditional pessimistic solu-
tion overestimates the leader’s loss due to the follower’s non-antagonistic behavior. For
instance, in Example 1, PSnap-max = 4, PSmax = 8. In the pessimistic assumption, the po-
tential improvement of the leader’s goal when the follower cooperates with the leader is
doubled. Similar to Example 1, the cooperation potential between the leader and follower
is 1.17 times overestimated in Example 2.

Furthermore, compared to the rewarding solution, the non-antagonistic pessimistic so-
lution can achieve a better upper-level objective value in Example 2 while being equal to the
rewarding solution in the rest of the examples. In Example 2, Fnap = 2.456,
Frew = 3.556 and fnap = frew = −4.889. By constraining the solution space IRd instead of
the given upper-level variable (1.333, 1.333), it searches from a larger scope for the leader’s
decisions and improves the optimization result with the upper-level decision (1.567, 0).
This indicates that the non-antagonistic pessimistic solution is not one of the extreme
solutions, like the rewarding solution.

In addition, the non-antagonistic pessimistic solution is non-inferior to the optimistic
solution in Examples 1, 2, and 4 and is identical to the optimistic solution in Example 3.
For instance, in Example 4, the

(
Fnap, fnap) = (0.5, − 1) and the

(
Fopt, fopt) = (0, 0) . It

also indicates that the non-antagonistic solution would be the best guaranteed result of the
leader’s goal when the most obedient or rebellious follower cannot be expected in practice.
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In general, the non-antagonistic pessimistic solution can be a better solution than
the pessimistic and rewarding solution in terms of the upper-level objective value, while
the deceiving solution can never become a good option considering the non-antagonistic
decision-making process, for it overlooks the dominant position of the leader. We can
also conclude that if a certain profit for the follower can be guaranteed, the leader may
have the potential to adjust the strategy to receive cooperative feedback from the follower
and achieve an overall optimized result versus an extremely pessimistic one. Moreover,
this development of a non-antagonistic pessimistic solution definition corresponds to the
behavioral characterization of the decisionmakers in realistic hierarchical management.
Compared to the traditional optimistic and pessimistic solution, it can be more applicable
to approach the optimal solutions in practice.

However, solving the non-antagonistic pessimistic solution relies on the pessimistic
solution, which can be difficult to approximate for some complex engineering problems
without continuous objectives and compact solution space. This will not be discussed here.

6. Conclusions

This paper proposes a new IBPP pessimistic solution concept that differs from the previ-
ous pessimistic solution with radical and non-practical assumptions. The non-antagonistic
pessimistic solution does not aim to seek extreme solutions where the follower uncondition-
ally complies with or goes against the leader. Instead, it provides a practical, management-
oriented solution scope for decision making. It also validates the existence of a rational
option for the leader to strive for maximum collaboration within a non-cooperative and
non-antagonistic bilevel optimization scheme. Compared to the pessimistic optimal solu-
tions, the non-antagonistic pessimistic solution could represent a more realistic loss of the
leader, marred by uncertain follower feedback in the non-antagonistic bilevel games. In
fairness to the non-antagonistic pessimistic solution, it was never intended as a surrogate
definition for IBPP solutions but simply as a necessary definition under non-antagonistic
bilevel games to avoid over/underestimating the largest potential space for the leader to
cooperate with the follower.

A more nuanced understanding and description of the follower’s position is helpful
to practically identify the worst-case scenario and to better understand the cooperation
potential between the leader and follower. Future research could explore new solution
definitions that arise from decision uncertainty considering followers’ preferences and
non-preference-related factors. Future research could also develop new theories and
methods that consider the possible positions that lower-level decisionmakers can take
in hierarchical management scenarios. On the other hand, further investigation of the
potential for stakeholder cooperation in practical situations is needed. For instance, during
flood seasons, examining the potential for collaboration between the control bureau and
the power plant manager can help provide insight into the gap between research studies
and systematical applications in practice. However, approximating the non-antagonistic
pessimistic solution requires a strong constraint, which can result in large computational
efforts in practical management problems. Therefore, efficient algorithms are also expected
to be developed in the future.
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