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Abstract: In this paper, a multi-objective allocation and scheduling of wind turbines and electric
vehicle parking lots are performed in an IEEE 33-bus radial distribution network to reach the
minimum annual costs of power loss, purchased grid energy, wind energy, PHEV energy, battery
degradation cost, and network voltage deviations. Decision variables, such as the site and size of
wind turbines and electric parking lots in the distribution system, are found using an improved
golden jackal optimization (IGJO) algorithm based on Rosenbrock’s direct rotational (RDR) strategy.
The results showed that the IGJO finds the optimal solution with a lower convergence tolerance
and a better (lower) objective function value compared to conventional GJO, the artificial electric
field algorithm (AEFA), particle swarm optimization (PSO), and manta ray foraging optimization
(MRFO) methods. The results showed that using the proposed method based on the IGJO, the
energy loss cost, grid energy cost, and network voltage deviations were reduced by 29.76%, 65.86%,
and 18.63%, respectively, compared to the base network. Moreover, the statistical analysis results
proved their superiority compared to the conventional GJO, AEFA, PSO, and MRFO algorithms.
Moreover, considering vehicles battery degradation costs, the losses cost, grid energy cost, and
network voltage deviations have been reduced by 3.28%, 1.07%, and 4.32%, respectively, compared
to the case without battery degradation costs. In addition, the results showed that the decrease in
electric vehicle availability causes increasing losses for grid energy costs and weakens the network
voltage profile, and vice versa.

Keywords: radial distribution network; wind energy; electric parking lots; battery degradation cost;
improved golden jackal optimization; rosenbrock’s direct rotational strategy

MSC: 68T20; 68W50; 68W20; 97D50

1. Introduction

Progress and the development of sustainable energy can be realized with proper
preservation and maintenance of the environment. For this reason, clean emission-free
power generation units are in demand for the upcoming years. Industry relies on energy
and what has fueled international concerns in the field of energy are the limited resources
of fossil fuels [1]. Electricity production via renewable energy is among the acceptable
solutions to save nature and the environment. One of the energy sources of interest is
wind energy [2]. Simple and cheap to access as well as the minimal environmental impacts
of wind energy sources, which are one of the cleanest sources of energy, have caused

Mathematics 2023, 11, 1415. https://doi.org/10.3390/math11061415 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061415
https://doi.org/10.3390/math11061415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7717-9393
https://orcid.org/0000-0001-5865-1533
https://orcid.org/0000-0003-0793-3308
https://doi.org/10.3390/math11061415
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061415?type=check_update&version=1


Mathematics 2023, 11, 1415 2 of 23

the designers of power networks to pay special attention to this source of energy [2].
That being said, however, the transportation sector is also looking to substitute internal
combustion cars with electric vehicles (EVs) [3]. Due to the limited capacity of electric
vehicles, they cannot affect the power network alone. Therefore, in this situation, electric
parking lots have been provided to affect the characteristics of the network by placing
several electric vehicles in them and by providing the ability to connect to the power
network (V2G) [3,4]. Distribution networks are the final link in the electric energy supply
chain for consumers. Therefore, the economic and technical efficiency of these networks
as much as possible guarantees a stable and reliable future in the electricity industry. In
this regard, it will be very important to examine the role of electric parking [3,4]. For the
greater effectiveness of electric vehicles as well as renewable energy sources in distribution
networks and management of vehicle charging and discharging, various objectives are
proposed, including reducing costs, reducing power losses, and improving the voltage
profile in distribution networks [3,4]. On the other hand, the allocation of wind energy
resources and electric parking lots in the distribution network without technical scheduling
and optimal sizing leads to economic problems for the parking investor and technical
problems for the operator of the distribution network [4,5]. To overcome the non-linear
nature of the problems related to the placement and sizing of wind energy sources as well as
the electric parking lots in the distribution network, the use of meta-heuristic algorithms is
considered [6,7]. Therefore, using a powerful optimization algorithm to solve the problem
can be very useful.

In the following, some important studies relating to EV parking lots in the distribution
network have been reviewed. In [8], the optimal siting of multiple energy resources based
on HOMER software is discussed to design parking lots with the aim of minimizing the
lifetime cost and the pollutant emissions. In [9], a multi-objective method is presented to
allocate electric parking lots in the distribution system using a genetic algorithm (GA) to
reduce power losses and increase the profitability of these types of parking lots. In [10],
the combined tabu search—greedy random adaptive search—is presented for locating
and optimizing the size of electric parking lots and their charging patterns with the aim
of minimizing the operating cost. In [11], determining the optimal location and size of
electric parking lots in the distribution system is developed to minimize power loss and
improve the energy supply capability of subscribers. In [12], the location and optimal size
of electric parking lots in the distribution system have been determined by evaluating
the economic indices and the interaction between the owner of the parking lot and the
operator of the distribution system. In [13], the scheduling of electrical parking lots in
the distribution network in India is developed to reduce power loss using a hybrid GA-
PSO algorithm. In [14], optimal planning of a hybrid energy system, including electric
parking and photovoltaic energy sources, has been implemented using the BAT algorithm
to minimize network costs. In [15], the optimal allocation of photovoltaic energy resources
along with electric parking lots in the radial distribution system is presented to deal with
power loss based on an optimization algorithm named technique for order preference by
similarity to an ideal solution (TOPSIS). In [16], the optimal allocation of electric parking lots
in the distribution network to decrease power loss and voltage variations of the network
buses is presented by adopting GA and PSO algorithms. In [17], the optimal energy
management of electric parking is developed by determining the optimal charging and
discharging schedule of EVs while considering the energy cost. In [18], the scheduling of
EV parking lots is presented with the aim of increasing the profitability of the parking lot
owner. In [19], the optimal allocation of EV parking lots for charging electric vehicles to
maximize energy costs is developed based on the fuzzy PSO. In [20], the optimal planning
of electric parking lots in the power network has been investigated to maximize the income
and decrease power loss, as well as deal with voltage deviations. In [21], optimal siting
and sizing of electric parking lots in the radial distribution network are discussed using the
combined harmony search-learning algorithm.
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According to the literature review, it can be seen that most of the studies conducted to
determine the optimal place and scale of energy sources, where optimal energy schedul-
ing of parking lots is concerned, are based on meta-heuristic algorithms, and many of
these methods have complex structures and adjustable control parameters. There are
many adjustments, which is one of the challenges of these solvers to reach early and local
optimal convergence. On the other hand, some studies have presented a complex math-
ematical structure of the system model as well as a meta-heuristic method that requires
a large amount of data. Compared to analytical algorithms, meta-heuristic algorithms
have easier implementation, fewer control parameters, and a higher response speed [22,23].
Additionally, the interaction effect of integrated wind energy with electric vehicle parking
scheduling, considering the availability of EVs, on the cost imposed by power loss, the cost
due to purchasing network power, and the voltage profile of the electrical network has not
been well addressed. Therefore, based on the investigations, it is necessary to provide an
improved meta-heuristic framework with effective optimization power against premature
convergence conditions for the multi-objective placement and scheduling of wind energy
sources and EV parking lots in the electricity distribution system.

The present research focuses on the multi-objective siting and scheduling of wind
turbines and electric parking lots in the 33-bus distribution system to minimize the cost
imposed by energy loss, main grid energy cost, wind energy cost, PHEVs’ energy cost,
and battery degradation cost, in addition to improving the network voltage profile using
an improved meta-heuristic algorithm. The wind turbine is installed in such a way that,
in interaction with the parking lots, it achieves the best value of each of the objectives
presented in the problem’s objective function. The decision variables include the optimal
placement and scaling of wind turbines and PHEVs in the distribution system, which are
optimally found by adopting a novel metaheuristic algorithm called the improved golden
jackal optimization (IGJO) algorithm. The common golden jackal optimization (GJO)
algorithm is an algorithm based on biological swarm intelligence that is presented based
on the hunting behavior of golden jackals. The traditional GJO [24] suffers from issues
in the form of imbalance between exploration and exploitation as well as getting caught
in premature convergence. In this study, to improve the performance of the traditional
GJO against these problems, Rosenbrock’s direct rotational (RDR) method [25,26] is used.
A comparison is conducted between the performance of the IGJO when applied to solve
the problem and that of the commonly used GJO, PSO, AEFA, and MRFO. Moreover, due
to the importance of vehicle availability in parking lots, their effectiveness in solving the
problem and each of the objectives has been examined.

The contributions of the paper are presented below:

• Multi-objective allocation and scheduling of wind energy and electric parking lots at
the distribution level to find the optimal installation point and size of the equipment,
considering battery degradation cost.

• Providing a multi-objective function, including the minimization of energy loss costs,
main grid energy costs, wind energy costs, and PHEV energy costs, in addition to
improving the network voltage profile.

• Evaluating the impact of vehicle availability on problem solving and the objectives of
energy losses, main grid energy cost, and network voltage profile.

• Providing an improved golden jackal optimization algorithm based on Rosenbrock’s
direct rotation strategy by creating a balance between the exploration and exploitation
phases and effective performance in the case of premature convergence.

• Superiority of the proposed improved meta-heuristic method over GJO, AEFA, PSO,
and MRFO in problem solving.

Section 2 describes the objective function of the problem and its constraints during the
optimization process. Section 3 presents the proposed improved meta-heuristic method
of golden jackal optimization based on Rosenbrock’s direct rotation and explains how it
works. In Section 4, a simulation report using different meta-heuristic algorithms and the
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evaluation of the effect of EV availability in parking lots are presented. In Section 5, the
findings of the paper are concluded and future work is suggested.

2. Problem Formulation
2.1. Objective Function

The allocation and scheduling of wind turbines and EV parking lots is a multi-objective
optimization problem to minimize the costs of power loss, energy purchased from the main
grid, wind power, charging and discharging PHEV energy, battery degradation, and bus
minimization voltage variations. The formulation is stated as follows:

FOF = ϕ1 ×
(

COF
Loss/COF

Loss,max

)
+ ϕ2 ×

(
COF

Grid/COF
Grid,max

)
+ ϕ3 ×

(
COF

WT/COF
WT,max

)
+ϕ4 ×

(
COF

PHEVs/COF
PHEVs,max

)
+ ϕ5 ×

(
VOF

VD/VOF
VD,max

)
+ ϕ6 ×

(
COF

Deg/COF
Deg,max

) (1)

where, COF
Loss, COF

Grid, COF
WT , COF

PHEVs, VOF
VD, and COF

Deg refer to the energy loss cost, grid energy
cost, wind energy cost, PHEVs’ energy cost, network bus voltage deviations, and bat-
tery degradation cost, respectively. COF

Loss,max, COF
Grid,max, COF

WT,max, COF
PHEVs,max, VOF

VD,max, and
COF

Deg,max, respectively, represent the upper limits of energy loss cost, grid energy cost, wind
energy cost budget, PHEV energy cost budget, network bus voltage deviations, and the
maximum cost of battery degradation. ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 and ϕ6, respectively, refer to the
weight of inertia of the objective functions is the costs of power loss, network energy, wind
energy, PHEV energy, the voltage deviations of the buses, and battery degradation cost,
and the relationship | ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6| = 1 is established.

By implementing the power flow of the basic network (without using electric parking
lots and renewable energy sources), the values of power losses cost, the cost of power
purchased from the main network, as well as the total amount of voltage deviations
of the network buses are obtained, which represent the maximum values of the cost of
power losses, the cost of power purchased from the main network, and total voltage
deviations. Additionally, the maximum cost of electric parking lots and wind energy
sources is considered the maximum budget for these costs. Based on the maximum capacity
selected for parking lots and wind energy resources, naturally, the maximum budget for
the cost of electric parking lots and also the cost of wind power has been determined. After
determining the maximum values of each part of the general objective function, Equation (1)
has been normalized using the method of weighted coefficients. Considering the number
of five objectives and the total value of the weight coefficients, which should be equal to 1,
the weight of each objective is considered 0.2.

• Cost of energy losses

The network power loss can be defined as the product of power loss on the network
lines at the cost of each kW loss for the simulation period as follows [27–30].

COF
Loss = CLoss·

H

∑
h=1

Nbranch

∑
i=1

Ri × |Ii(h)|2 (2)

CLoss shows the cost per kW of power losses, Nbranch is the number of distribution
network lines, Ri is the ohmic resistance of line i, Ii(h) denotes the current of line i at time
h, and H is the duration of the simulation period (8760 h).

• Cost of main grid energy

The cost due to energy purchased from the main grid is calculated based on the
product of the power received from the network and the cost of each kW of network power
as follows [22,23].

COF
Grid = CGrid·

H

∑
h=1

EGrid(h) (3)
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where CGrid and EGrid(h) represent the price of each kW of network power and the energy
received from the network at time h, respectively.

• Cost of wind energy

In the following, the cost related to wind turbine power is modeled. This power is
based on the output power of the turbine (taking into account the cut-in, cut-out, and rated
wind speed, as well as the rated power of the turbine), and the cost per kW of wind turbine
output power is formulated below [31–33].

COF
WT = CWT ·

H

∑
h=1

PWT(h) (4)

PWT(h) =


0 ; v < vci, v > vco

PWT−Nominal ×
(

v(h)−vci
vr−vci

)
; vci ≤ v < vr

PWT−Nominal ; vr ≤ v ≤ vco

(5)

where CWT represents the cost per kW of wind power and PWT shows the power generated
by wind turbines. vci, vco, and vr are the cut-in, cu-out, and rated wind speeds, respectively.
PWT-Nominal represents the rated power of the wind turbine.

• Cost of PHEVs cost

The energy cost of PHEVs (COF
PHEVs) is defined as below based on the charging and

discharging energy of electric parking lots [22,23].

COF
PHEVs = CPHEVs·

H

∑
h=1

PPHEVs(h) (6)

PPHEVs(h) = PDischarge(h)− PCharge(h) (7)

where CPHEVs is the cost per kWh of PHEVs energy, PPHEVs(h) refers to the PHEVs
power at time h, and PCharge(h) and PDischarge(h) are the charge and discharge energy of
PHEVs, respectively.

• Voltage deviations of the network

Another objective considered is the minimization of network bus voltage deviations,
which is defined as follows [34]:

VOF
VD =

√√√√ 1
Nbus

×
Nbus

∑
i=1

(vi − vp)
2 (8)

vp =
1

Nbus
×

Nbus

∑
i=1

vi (9)

where Nbus is the number of distribution network buses, vi is the voltage of bus i, and vp is
the reference voltage (1 p.u.).

• Cost of vehicles battery degradation cost

The battery degradation cost is presented by [35]

COF
Deg,max =

Cinv × DOD× SOCPHEVs × ∆h
NCL

(10)

where Cin represents the investment cost of the battery, ∆h is the time interval (1 h). The
depth of discharge (DOD) of the battery pack is calculated as follows [35]:
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DOD =
SOCPHEVs,max − SOCPHEVs

SOCPHEVs,max
(11)

The cycle life of the battery can be expressed by Equation (11):

NCL = χ× DODσ (12)

where χ and σ represent the specific parameters of the battery, which are 1331 and
−1.825 [35] for lithium ion batteries, respectively.

2.2. Constraints

The objective function defined in the multi-objective placement and scheduling of wind
turbines and electric parking lots in the distribution network must satisfy the following
constraint [22,23,27–30].

• Power balance

H

∑
h=1

PWT(h) +
H

∑
h=1

PGrid(h) +
H

∑
h=1

PPHEVs(h)−
H

∑
h=1

PLoss(h)−
H

∑
h=1

PLoad(h) = 0 (13)

H

∑
h=1

QWT(h) +
H

∑
h=1

QGrid(h) +
H

∑
h=1

QPHEVs(h)−
H

∑
h=1

QLoss(h)−
H

∑
h=1

QLoad(h) = 0 (14)

where PWT(h) and QWT(h) show the active and reactive power output of the wind turbine,
PGrid(h) and QGrid(h) express the active and reactive power received from the network,
PPHEVs(h) and QPHEVs(h) are the active and reactive power of PHEVs, PLoss(h) and QLoss(h)
refer to the active and reactive losses of the network at time h, and PLoad(h) and QLoad(h) are
the active and reactive load demand of the network at time h.

• Voltage constraint

The bus voltages during problem solving should not exceed the allowed range [27–31].

VNetwork
min ≤ VNetwork ≤ VNetwork

max , V = [V1 V2 . . . VNbus ] (15)

where, VNetwork
min and VNetwork

max are the lower and upper limit values of the voltage, respec-
tively, and V refers to the vector of network bus voltage.

• Flow of lines

The current value of each of the network lines during problem solving should not
exceed its allowed range [27–31].

ILine
min ≤ ILine ≤ ILine

max , I = [I1 I2 . . . INbranch ] (16)

where ILine
min and ILine

max are the lower and upper limit values of voltage, respectively, and I
refers to the vector of network line current.

• Battery capacity of PHEVs

The state of charge (SOC) of the PHEVs battery units at any time h must obey the
following inequality:

SOCPHEVs,min ≤ SOCPHEVs(h) ≤ SOCPHEVs,max (17)

where SOCPHEVs,min and SOCPHEVs,max are the lower and upper limits of the battery bank
SOC, respectively.



Mathematics 2023, 11, 1415 7 of 23

The SOCPHEVs value is defined as follows [22,23]:

SOCPHEVs(h) = SOCPHEVs(h− 1) + Pcharge(h)·ξ(h)− Pdischarge(h)·τ(h) (18)

ξ(h) + τ(h) ≤ 1 (19)

ξ(h) =
{

1, charge state o f batteries
0 discharge state o f batteries

(20)

τ(h) =
{

1, discharge state o f batteries
0 charge state o f batteries

(21)

where, SOCPHEVs(h) and SOCPHEVs(h − 1) are the battery SOC at time h and h − 1,
respectively. ξ(h) and τ(h) have different values at different hours based on the charging
and discharging states of the battery (0 or 1), which are included in Equation (18).

3. Proposed Optimization Method
3.1. Golden Jackal Optimization (GJO)

GJO imitates biological swarm intelligence, which is modeled according to the hunting
behavior of golden jackals. The hunt relies on three phases: (a) discovering the prey, (b) be-
sieging and stimulating, and (c) attacking the prey [24]. In the following, the mathematical
model of the GJO algorithm is formulated.

3.1.1. Search Model

During the first phase, the random position of the prey is defined as the following
matrix [24]: 

Y1,1 Y1,j
Y2,1 Y2,j

· · · · · · Y1,n
· · · · · · Y2,n

...
...

...
...

YN,1 YN,j

...
...

...
...

...
...

. . . . . . YN,n

 (22)

where N represents the number of prey populations and n refers to the dimensions.

3.1.2. Exploration Stage

Due to the inherent ability of jackals to follow the prey, it is not easy to catch the prey.
Therefore, the jackals will be waiting to catch another prey. The hunting behavior can be
defined by the following equations (|E| > 1) [24]:

Y1(t) = YM(t)− E·|YM(t)− rl·Prey(t)| (23)

Y2(t) = YFM(t)− E·|YFM(t)− rl·Prey(t)| (24)

t represents the current iteration of the algorithm, YM(t) and YFM(t) represent the locations
of the male and female jackals, Prey(t) represents the hunting position vector, and Y1(t) and
Y2(t) determine the locations of jackals, of course, in an updated form.

The escape energy of prey (E) will be calculated by [24]:

E = E1·E0, E0 = 2·r− 1 (25)

E1 = c1·(1−
t
T
) (26)
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where E0 represents a random number between−1 and 1, T refers to the maximum number
of iterations, c1 represents a fixed number with a value of 1.5, and E1 refers to the reduction
in the prey’s energy [24].

In Equations (20) and (21), |YM(t)− rl·Prey(t)| refers to the distance between the
jackal and the prey and “rl” represents the vector of random numbers determined based on
the Le’vy flight function (LF) [24]:

rl =
5·LF(y)

100
(27)

LF(y) =
µ·σ

100·
∣∣∣∣v( 1

β )
∣∣∣∣ , σ =

{
Γ(1 + β)· sin(πβ

2 )

Γ( 1+β
2 )·β·(2β−1)

} 1
β

(28)

where v represents values in the interval (0, 1) randomly and β represents a fixed number
with a considered value of 1.5 [24].

Y(t + 1) =
Y1(t) + Y2(t)

2
(29)

Y(t + 1) represents the updated location of the prey relative to jackals.

3.1.3. Exploitation (Besieging and Swallowing Prey)

The escape energy of prey is reduced by harassment by golden jackals. The behavior
of jackals when besieging their prey and swallowing it can be modeled here (|E| ≤ 1) [24]:

Y1(t) = YM(t)− E·|rl·YM(t)− Prey(t)| (30)

Y2(t) = YFM(t)− E·|rl·YFM(t)− Prey(t)| (31)

3.1.4. Transition from Exploration Stage to Exploitation and Convergence

In the GJO algorithm, it is used to transfer the exploration phase to exploiting the
volatile energy of the prey. As the prey escapes, its energy decreases drastically. With this
in mind, the escape energy of prey is modeled. The initial energy E0 is indiscriminately
deviated between −1 and 1 in each iteration. Once it decreases from 0 to −1, it means
that the prey is in danger, and if it increases from 0 to 1, that means the prey’s ability
is enhanced. The escape energy of prey decreases with increasing repetitions. When
|E| > 1 , pairs of jackals explore different parts of the search space to discover prey. When
|E| < 1 , attacking the prey forms the exploitation stage. In the GJO, the search starts by
considering a population of selected solutions. As the algorithm continues, the prey’s
location is estimated using a pair of jackals. Each candidate’s response updates its position
relative to the jackal pair. By reducing E1 from 1.5 to 0, exploration and exploitation stages
are provided. In condition E > 1, the pair of jackals deviate from the prey, and in condition
E < 1, they reach the prey. Finally, upon meeting the convergence conditions, the GJO
algorithm stops.

The GJO pseudo-code is shown in Algorithm 1.
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Algorithm 1. Pseudo-code of the GJO

Inputs: The population size N and maximum number of iterations T
Outputs: Prey’s position and its fitness value
Set the random prey population Yi (i = 1, 2, . . . , N)
While (t < T)

Calculate the fitness values of prey
Y1 = best prey individual (location of the male jackal)
Y2 = second best prey individual (location of the female jackal)
for (each of the preys)

Update the escaping energy “E” based on (4) and (6)
Update “rl” based on (6) and (7)
If (|E| ≤ 1) (Exploration phase)
Update the prey’s location based on (2), (3), and (8)
If (|E| > 1) (Exploitation phase)
Update the prey’s location based on (8), (9), and (10)

end for
t = t + 1

end while
return Y1

3.2. Overiew of Improved GJO (IGJO)

The traditional GJO algorithm has problems in the form of imbalance between ex-
ploration and exploitation, as well as getting caught in premature convergence. In this
article, to improve the performance of the traditional GJO algorithm against these problems,
Rosenbrock’s direct rotational (RDR) method [25,26] is used.

In the present case, the current phase is finished and the identification basis is checked
to calculate the overall effect of successful phases in each of the dimensions [29]. The
orthonormal basis has been updated as follows [25,26]:

xk+1 − xk+ =
n

∑
i=1

λi·di (32)

In the equation below, a set of instructions is provided. λi represents the number
of successful variables and xk+1 − xk+ represents the point with the most useful search
direction. Therefore, it is placed in the corrected search direction [25,26].

pi =


di, λi = 0

n
∑

j=0
λj·dj λi 6= 0 (33)

Next, the search results based on the Gram–Schmidt normalization process are up-
dated as the following equation [25,26].

qi =


pi, i = 1

pi −
i−1
∑

j=1

qT
j ·pi

qT
j ·qj

i ≥ 2 (34)

The modified and normalized search guidelines are defined as follows [25,26].

di =
qi
‖qi‖

, i = 1, 2, 3, . . . , n· (35)

After updating the local search, this method performs the search operation until the
convergence condition of the algorithm is met in the new opposite direction.
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3.3. Implementation of the IGJO

Figure 1 illustrates the flowchart of IGJO implementation in solving the problem. The
procedures for siting and scheduling wind turbines and electric parking lots according to
the IGJO approach in the distribution system are also presented below.
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Step 1. Application of distribution system data such as wind speed data, electric parking
lots, network lines, and algorithm data including population, iteration, and repetition.
Step 2. Implementation of network load flow for the base network for a short term of 24 h
and calculation of energy loss cost, grid energy cost, and network bus voltage deviations.
Step 3. The initial population of golden jackals is created randomly in the GJO algorithm.
Each golden jackal randomly chooses several decision variables within the allowed bound-
ary of the search space. The vector of decision variables includes the locations and capacities
of wind turbines and electric parking lots.
Step 4. The load flow is performed and the objective function values (Equation (1)) are
calculated considering the limitations of the problem (Equations (13)–(21)) for the set of
variables selected in step 3. The variable set that leads to the minimized objective function
will be the optimal solution.
Step 5. The population of golden jackals in the algorithm is updated by GJO and new
variables are randomly chosen for the population.
Step 6. The load flow is performed and the objective function (Equation (1)) is computed for
the new variables of step 5 by satisfying the constraints of the problem (Equations (13)–(21)).
The variable set that minimizes the objective function will be the optimal solution at this
stage and if the objective function value becomes lower than the previous solution, it is
replaced with it.
Step 7. The population of the algorithm is updated based on Rosenbrock’s direct rotation,
and by applying the load flow, the value of the objective function (Equation (1)) is found
for new random variables. Provided that the new solution is better, it replaces the one
obtained in step 6.
Step 8. The convergence condition of the optimization algorithm is checked. If the mini-
mum value of the objective function is reached, the algorithm goes to step 9, but if it isn’t,
it goes to step 3.
Step 9. The algorithm is stopped and the set of optimal variables is saved.

4. Simulation Results and Discussion
4.1. The Studied System

The proposed methodology based on IGJO was tested on a 33-bus distribution system.
The schematic of this distribution network is depicted in Figure 2. The active and reactive
power demands of the network are 3.72 MW and 2.3 MVAr, respectively. The percentage of
network peak load during 24 h is shown in Figure 3. In this study, a wind turbine with a
peak capacity of 3000 kW is used, and the changes in wind speed during 24 h are shown in
Figure 4. The technical and economic data of the equipment are listed in Table 1. In this
study, the number of eight electric parking lots with a maximum capacity of five hundred
vehicles is considered, and the optimization program determines how many parking lots
and how many vehicles to install in the network. The battery capacity of each electric
vehicle is 5 kWh, the V2G dispatch time is 3570 h per year, the penalty fee for each kWh
of energy loss is $0.06, and the cost of purchasing each kWh of main grid energy is $0.1.
In this study, the backward–forward power flow method is used to analyze the network
characteristics. In this study, the performance of the IGJO algorithm in finding a solution to
the problem of multi-objective siting and scheduling of wind turbines and EV parking lots
in the distribution system has been compared with the traditional methods of GJO, AEFA,
PSO, and MRFO. The control variables for different algorithms are given in Table 2. Note
that the control parameters of the traditional GJO, AEFA, PSO, and MRFO methods are the
values provided by their authors in reference papers. Based on the authors’ experience, the
population, maximum iteration, and independent executions of each algorithm are 50, 200,
and 25, respectively.
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Table 1. Technical-economic data on wind turbines, electric parking, and network.

Parameters Values

CLoss ($/kWh) 0.06
CGrid ($/kWh) 0.1
CWT ($/kWh) 0.15

CPHEV ($/kWh) 0.1
vci (m/s) 3
vr (m/s) 13
vco (m/s) 20

VNetwork
min (p.u.) 0.95

VNetwork
max (p.u.) 1.05

SOCPHEVs,min (kWh) 1
SOCPHEVs,max (kWh) 5 kWh

Table 2. Control parameters for different algorithms.

Algorithm Parameter Value

AEFA K0 500
α 30

GJO c1 1.5
β 1.5

C1 2
C2 2

PSO Inertia weight Linearly reduction from 0.9 to 0.1
MRFO S 2

4.2. Results without Battery Degradation Cost

Simulation results relating to the multi-objective allocation and scheduling of wind
turbines and electric parking lots in the distribution system are provided to minimize energy
loss costs, main grid energy costs, wind energy costs, and PHEV energy costs, in addition
to improving the network voltage profile. Figure 5 illustrates the convergence curve of
various algorithms used to solve the problem. According to Figure 5, the IGJO algorithm
is able to achieve a lower objective function value with a lower convergence tolerance.
It can be seen that the conventional GJO is trapped in the local optimum and could not
converge to a lower objective function value such as the IGJO method. Therefore, the IGJO
has obtained the optimal solution in comparison with the GJO, AEFA, PSO, and MRFO
algorithms, in which the value of the objective function is the lowest. The most preferred
(optimal) solution obtained by different algorithms in terms of siting and sizing of wind
turbines and electric parking lots in the 33-bus distribution system is presented in Table 3.
The IGJO installed 2941 kW of wind power in bus 6 and considered the number of five
electric parking spaces in buses 7, 14, 21, 24, and 29 with the numbers of 80, 404, 41, 96, and
47 electric vehicles, respectively. Table 4 lists the numerical results of solving the problem.
The values of the objective function obtained by the traditional GJO, AEFA, PSO, MRFO,
and the proposed IGJO are 0.62739, 0.62979, 0.62722, 0.62679, and 0.62577, respectively, and
the proposed improved algorithm obtains a lower (better) value. In addition, based on the
results of the statistical analysis shown in Table 5, the IGJO algorithm has been confirmed to
achieve the best index values during 25 independent executions of each algorithm. Based
on the results of Table 4, compared to other methods, the IGJO achieved lower amounts
of energy loss cost and main grid energy cost and also obtained lower voltage deviations,
which indicates a further enhancement in the voltage profile. The power loss cost, network
energy cost, and voltage deviations by IGJO are obtained at USD 37,596, USD 1,530,300,
and 0.0140 p.u., respectively, and the percentage reduction in each objective is higher
compared to other methods. Therefore, the proposed methodology has reduced the costs
imposed by power loss, energy purchased from the power system, and voltage variations
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in the 33-bus system compared to the basic state of the network by 29.76%, 65.86%, and
18.80%, respectively.
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Figure 5. The convergence process of different algorithms in the allocation and scheduling of WT
and PHEVs in the distribution network.

Table 3. The optimal solution using different algorithms.

Item/Algorithm IGJO AEFA GJO PSO MRFO

WT Location
@Bus/Peak size (kW) @6/2941 @6/2454 @8/2996 @6/2354 @8/1913

PHEV Location
@Bus/Size

@7/80,
@14/404,
@21/41,
@24/96,
@29/47

@8/369,
@14/120,
@24/405

@7/116,
@8/200,
@21/200,
@25/138,
@29/266

@14/500,
@21/500

@7/243,
@29/272,
@31/342,
@32/361

Table 4. The results of WT and PHEV scheduling in the distribution network using different algorithms.

Item/Algorithm Base
Network IGJO AEFA GJO PSO MRFO

Cost of energy losses ($) 53,531 37,596 43,200 37,740 37,714 37,696
Reduction in CELoss (%) – 29.76 19.29 29.50 29.55 29.58
Cost of grid energy ($) 4,482,550 1,530,300 1,855,297 1,566,600 1,561,680 1,553,800
Reduction in CEGrid (%) – 65.86 58.61 65.05 65.16 65.33
Voltage deviation (p.u.) 0.0173 0.0140 0.0154 0.0141 0.0141 0.0141

Reduction in VD (%) – 18.80 10.58 18.63 18.63 18.63
Cost of PHEVs ($) – 620,356 819,491 824,610 841,017 885,450

Cost of WT ($) – 959,070 800,301 977,362 767,358 623,874
OF – 0.62577 0.62979 0.62739 0.62722 0.62679

Table 5. The results of a statistic analysis of different algorithms.

Item/Algorithm IGJO AEFA GJO PSO MRFO

Best 0.62577 0.62979 0.62739 0.62722 0.62679
Worst 0.62654 0.63254 0.62964 0.62851 0.62702
Mean 0.62615 0.63152 0.62873 0.62784 0.62696

Std 0.02212 0.04837 0.04652 0.03628 0.03845

The power variation curve of the wind turbine, with a peak power of 2941 kW obtained
by the IGJO, is shown in Figure 6. Based on the best solution presented in Table 1, the power
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loss, the power purchased from the upstream grid, and the minimum voltage changes in
the 33-bus network during 24 h, as well as the network voltage profile curve, are presented
in Figures 7–10. According to Figure 7, network power losses with the optimal and multi-
objective scheduling of wind turbines and electric parking lots based on the IGJO, especially
during the peak hours of the network between 12:00 and 22:00, compared to the basic state
of the network, are significantly reduced (down 29.76%). Based on Figure 8, the power
purchase from the power system has also decreased (65.86 percent decrease) when wind
energy and EV parking lots operate optimally compared to without this equipments. Based
on Figures 9 and 10, it can be seen that the optimal and multi-objective scheduling of wind
energy and electric parking lots in the network has a positive effect on the network voltage
and has improved the voltage profile of the 33-base network (18.80% improvement). The
results show the reduction in the dependence of the distribution network based on optimal
and multi-objective allocation and scheduling of wind energy and electric parking lots on
the upstream grid.
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4.3. Results with Battery Degradation Cost

In this condition, based on the trial-and-error method, the weighted coefficients of the
cost of losses and voltage deviations are equal to 0.2, and the other objective functions are
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considered to be 0.15. In Figure 11, the convergence process of the WT allocation and PHEV
scheduling in the distribution network considering battery degradation cost is depicted,
and it can be seen that the optimal solution has been achieved with a high convergence
speed in iteration 28.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 24 
 

 

 
Figure 10. Voltage profile of a 33-bus distribution network with and without WT and PHEVs using 
the IGJO. 

4.3. Results with Battery Degradation Cost 
In this condition, based on the trial-and-error method, the weighted coefficients of 

the cost of losses and voltage deviations are equal to 0.2, and the other objective functions 
are considered to be 0.15. In Figure 11, the convergence process of the WT allocation and 
PHEV scheduling in the distribution network considering battery degradation cost is 
depicted, and it can be seen that the optimal solution has been achieved with a high 
convergence speed in iteration 28. 

 
Figure 11. Convergence process of IGJO in allocation and scheduling of WT and PHEVs in the dis-
tribution network considering battery degradation cost. 

The simulation results of the optimal solution and also the multi-objective allocation 
of WT and PHEV scheduling without and with consideration of battery degradation cost 
are presented and compared in Tables 6 and 7, respectively. Based on the results of the 
optimal solution in Table 6, it can be seen that in the case of not considering the cost of 
battery degradation, the optimization program has installed more wind power in bus 6 of 
the network. On the other hand, the optimization program has determined an amount of 
764 kWh of the power capacity of the parking lots when considering the cost of battery 
degradation and 668 kWh when not including the cost of battery degradation. Therefore, 
taking into account the cost of battery degradation has increased the cost of parking lots 
and energy sources while reducing power loss and the cost of buying one from the main 
network. Additionally, the results have shown an improvement in the network voltage 
profile, considering the cost of battery degradation. 

Figure 11. Convergence process of IGJO in allocation and scheduling of WT and PHEVs in the
distribution network considering battery degradation cost.

The simulation results of the optimal solution and also the multi-objective allocation
of WT and PHEV scheduling without and with consideration of battery degradation
cost are presented and compared in Tables 6 and 7, respectively. Based on the results
of the optimal solution in Table 6, it can be seen that in the case of not considering the
cost of battery degradation, the optimization program has installed more wind power in
bus 6 of the network. On the other hand, the optimization program has determined an
amount of 764 kWh of the power capacity of the parking lots when considering the cost
of battery degradation and 668 kWh when not including the cost of battery degradation.
Therefore, taking into account the cost of battery degradation has increased the cost of
parking lots and energy sources while reducing power loss and the cost of buying one from
the main network. Additionally, the results have shown an improvement in the network
voltage profile, considering the cost of battery degradation.

Table 6. The optimal solution without and with battery degradation cost.

Item/Algorithm Without Degradation Cost With Degradation Cost

WT location @bus/peak size (kW) @6/2941 @6/3000

PHEV location @bus/size @7/80, @14/404, @21/41,
@24/96, @29/47 @14/441, @32/323,

Taking into account the cost of battery degradation, the values of power loss cost,
network energy cost, and network voltage deviations have been reduced by 3.28%, 1.07%,
and 4.32%, respectively, compared to the case without battery wear degradation.

Figure 12 shows the power changes of the wind source over 24 h. In addition, the
curve of changes in power losses and power purchased from the main network during 24 h
is shown in Figures 13 and 14. It can be seen that by considering the cost of battery wear as
a part of the objective function of the problem, it has reduced the power loss as well as the
power purchased from the main grid at different hours.
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Table 7. The results of WT and PHEV scheduling in the distribution network without and with
battery degradation cost.

Item/Algorithm Base Network Without
Degradation Cost

With Degradation
Cost

Cost of energy losses
($) 53,531 37,596 35,840

Reduction in CELoss
(%) – 29.76 33.04

Cost of grid energy
($) 4,482,550 1,530,300 1,482,307

Reduction in CEGrid
(%) – 65.86 66.93

Voltage deviation
(p.u.) 0.0173 0.0140 0.0133

Reduction in VD (%) – 18.80 23.12
Cost of PHEVs ($) – 620,356 635,739

Cost of WT ($) – 959,070 1,032,572
Cost of battery
degradation ($) – – 9607

OF – 0.62577 0.4811
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The curve of minimum network voltage changes during 24 h as well as the network
voltage profile are presented in Figures 15 and 16, respectively. The results show that by
considering the cost of battery degradation, the voltage conditions have improved and the
amount of voltage deviations compared to the state without considering the cost of battery
degradation is reduced.
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4.4. The impact of PHEVs’ Availability

In the last section, the reports on simulating the multi-objective siting and scheduling
of wind turbines and electric parking lots in the distribution network, considering 100%
availability for installed vehicles using the IGJO algorithm, are given. In this section, the
results of considering different availability levels of electric vehicles from 100% to 10% in
solving the problem of the imposed cost of power loss, upstream grid energy, and network
voltage variations are presented according to Table 8. As is observed, the cost of power
loss per year, the cost of upstream grid energy per year, and network voltage deviations
have increased (decreased) with the decrease (increase) in the availability of vehicles. For
example, for availability of 100%, 50%, and 10%, the cost of energy losses is obtained at USD
37,596, USD 46,044, and USD 49,603, respectively; the cost of main grid energy is achieved
at USD 1,530,300, USD 1,911,643, and USD 2,106,993, respectively; and the network voltage
deviations are obtained at 0.0140 p.u., 0.0161 p.u., and 0.0172 p.u., respectively.

Table 8. The impact of PHEVs’ availability on costs of losses, grid energy, and voltage deviation.

Availability Item/Algorithm IGJO

100% Cost of Power Loss ($) 37,596
Cost of Grid Energy ($) 1,530,300
Voltage deviation (p.u.) 0.0140

90% Cost of power loss ($) 38,895
Cost of grid energy ($) 1,668,950
Voltage deviation (p.u.) 0.0142

80% Cost of power loss ($) 39,314
Cost of grid energy ($) 1,722,149
Voltage deviation (p.u.) 0.0144

70% Cost of power loss ($) 42,465
Cost of grid energy ($) 1,817,067
Voltage deviation (p.u.) 0.0148

60% Cost of power loss ($) 44,576
Cost of grid energy ($) 1,853,514
Voltage deviation (p.u.) 0.0155

50% Cost of power loss ($) 46,044
Cost of grid energy ($) 1,911,643
Voltage deviation (p.u.) 0.0161

40% Cost of power loss ($) 47,196
Cost of grid energy ($) 1,945,643
Voltage deviation (p.u.) 0.0162

30% Cost of power loss ($) 47,892
Cost of grid energy ($) 2,004,643
Voltage deviation (p.u.) 0.0165

20% Cost of power loss ($) 48,734
Cost of grid energy ($) 2,067,610
Voltage deviation (p.u.) 0.0167

10% Cost of power loss ($) 49,603
Cost of grid energy ($) 2,106,993
Voltage deviation (p.u.) 0.0172

4.5. Comparison with Previous Studies

In this section, the performance of the proposed method in wind resource allocation
and scheduling the parking lots in the 33-bus distribution network using the IGJO is
compared with that of ref. [36]. In [36], the optimal planning of parking lots and capacitors
is performed using the quantum-behaved and Gaussian dragonfly algorithm (QGDA). The
performance of the proposed method is compared with ref. [36] using the QGDA, PSO,
and BBO in achieving the highest percentage of power loss reduction in the distribution
network in Table 9. The results showed that the proposed methodology of planning
electric parking lots and allocating wind resources in the network had achieved a higher
percentage reduction in power losses than the QGDA, PSO, and BBO. Therefore, the
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proposed methodology-based IGJO has shown better performance in reducing network
power losses.

Table 9. Comparison of proposed methodology with previous studies.

Item/Algorithm IGJO QGDA1 [36] QGDA2 [36] BBO2 [36] PSO2 [36]

Reduction in
energy losses (%) 33.04 25.61 31.09 29.47 15.59

QGDA1: Only PHEVs, QGDA2: PHEVs + Capacitor, BBO2 and PSO2: PHEVs + Capacitor.

5. Conclusions

The present study addressed the optimal multi-objective siting and scheduling of
wind turbines and electric parking lots in the 33-bus distribution system to minimize the
costs imposed by power loss, main grid energy, wind energy, battery degradation, and
PHEVs during a year, in addition to network voltage profile enhancement using IGJO’s
improved meta-heuristic method based on Rosenbrock’s direct rotational strategy. The
optimal places and scales of the wind turbines and EV parking lots were determined based
on the IGJO. The simulation results showed that the methodology relying on the IGJO
was able to find the optimal solution with the best statistical evaluation criteria and also
the greatest improvement in various objectives compared to the traditional GJO, AEFA,
PSO, and MRFO algorithms. The proposed methodology based on the IGJO has reduced
the costs of energy losses and purchased energy from the power system and the voltage
deviations of the 33-bus network compared to the basic state of the network by 29.76%,
65.86%, and 18.80%, respectively, which indicates its superior performance was confirmed
in comparison to other methods. Moreover, considering the battery degradation cost, the
energy losses cost, the grid energy cost, and voltage deviations of the distribution network
are decreased by 3.28%, 1.07%, and 4.32%, respectively, in comparison to the case without
battery degradation. The results showed that with the reduction (increase) in car availability
in parking lots, the cost of energy losses and network energy increased (decreased), and the
network voltage profile was also weakened (strengthened). By changing the availability
from 100% to 10%, the cost resulting from power loss, the cost due to upstream grid energy,
and network voltage deviations have increased by 31.94%, 37.68%, and 22.86%, respectively.
Allocation and multi-objective scheduling of wind turbines and electric parking lots in
an unbalanced distribution network to improve power quality indices are suggested for
future work.
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