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Abstract: Risk management is a popular and important problem in academia and industry. From a
small-scale system, such as city logistics, to a large-scale system, such as the supply chain of a global
industrial or financial system, efficient risk management is required to prevent loss from uncertainty.
In this paper, we assume that risk factors follow the Lévy process, and propose a stylized model,
based on regression, that can estimate the risk of a complicated system under the framework of nest
simulation. Specifically, portfolio risk estimation using the Lévy process is discussed as an example.
The stylized model simplifies the risk factors artificially, and provides useful basis functions to fit the
portfolio loss with little computational effort. Numerical experiments showed the good performance
of the stylized model in estimating risk for the Variance Gamma process and the Normal Inverse
Gaussian process, which are two examples of the Lévy process.
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1. Introduction

Risk management is of great importance for the modern business environment. Risk
estimation or evaluation is always an attractive and challenging problem in management
science. For example, in supply chain management or project management, risk estimation
is always the very first step of the risk management of the system to be analyzed [1–3]. In
the field of finance, risk measures of portfolios, as well as of the financial market, are two
classical, but difficult, topics discussed in financial risk management [4,5].

To the best of our knowledge of related literature on risk measures, several widely
applied frameworks of risk measures are proposed [6–8]. According to the results shown
in [6], some papers try to measure risk by probabilistic or scenario approaches in supply
chain risk management to analyze uncertainty. Similarly, risk measures, like Value-at-Risk
(VaR), Exceedance probability and Expected shortfall (ES), are usually used to measure the
risk of one portfolio or of the financial system [9]. These measures are basically designed
under a related system with uncertainty, which is seen as the source of risk. However,
the measurement of one system’s risk is difficult because there are multiple risk factors
(sources of risk) that affect the whole large system. These risk factors may be propagated,
or amplified, by the system. This makes risk measurement harder in a large system. When
the analytical form of risk measure is out of hand, several estimation methods are proposed
to estimate the risk measures for the system. Basically, the Monte Carlo simulation (MC)
provides a useful tool to estimate risk measure and can be applied by most systems without
specific constraints. So there is a stream of related literature estimating risk under the
framework of the Monte Carlo simulation [10,11]. Usually, MC generates the possible
scenarios of risk factors in the future and calculates potential loss under each scenario.
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Among them, the nested simulation framework, proposed by [12], is purported to simulate
the risk factors between any future time intervals, and evaluates the corresponding loss of
a system to measure the risk. Basically, nested simulation includes the outer simulation,
that generates multiple scenarios of risk factors, and the inner simulation, that generates
and calculates the possible system loss in each scenario. It builds up the framework of risk
estimation for a system. However, it also encounters trouble in a huge system problem
because the required computational effort is too large to obtain reliable results. To solve
this problem, related literature discusses the balance of computational effort between outer
simulation and inner simulation. Furthermore, some papers, such as [12–15], have tried to
improve the estimation efficiency or accuracy.

One marked stage of improvement comes from [16]. This paper considered port-
folio risk estimation in financial engineering and used regression to fit the surface of
portfolio loss, given the risk factors. Several papers proposed related models based on
this framework [17,18]. The risk estimation via regression can relax the computational
requirement by substituting the inner simulation by a pre-trained regression. Of course,
because of the complexity of a system, the performance of risk estimation via regression is
problem-dependent and the selection of basis function is of great importance. Intuitively,
the appropriate selection of basis function becomes harder for complicated portfolios, such
as a portfolio with several derivatives trading in the financial market, because there exists
high non-linearity in this system (portfolio) with respect to risk factors [19,20].

In this paper, we discuss the risk estimation problem under the framework of portfolio
risk management and focus on the basis function selection problem in risk estimation via
regression. Portfolio risk management with a complicated structure (including special
financial products, such as derivatives) can be a good example of the complex systems we
are interested in. Furthermore, we considered a portfolio having risk factors following
the Lévy process, which is a type of more generalized stochastic process that has become
a newly applied modeling perspective in finance and many other fields. Instead of the
polynomial basis function, that is supported by the theory of functional analysis and widely
used in the existing literature, we propose a stylized model that is derived by considering
artificially simplified risk factors, coupled with the closed form of derivative price. We
argue that portfolio loss with simplified risk factors can explain, or cover, the non-linearity
of portfolio loss under the Lévy process in most cases. The simplified loss is easy to derive
and can be selected as the basis function. Finally, we describe the related methods to test
the efficiency of the stylized model and examine the performance of the stylized model in
numerical examples.

This paper is organized as follows. In Section 1, we give a brief introduction of the
background and related literature. The stylized model proposed in this paper is illustrated
in Section 2, including the efficiency testing of the proposed model. Section 3 designs the
numerical example to show the performance of the proposed model. Section 4 concludes
this paper and shows the potential future research.

2. Model Setting

In this paper, we are interested in estimating the risk measures of complicated portfo-
lios. Based on the nested simulation framework in [12], and inspired by [16], we further
propose a stylized model that considers the risk factors following the Lévy process.

2.1. Nested Simulation

Consider a complicated portfolio that may contain multiple financial derivatives,
such as futures, options, etc. We call the underlying assets that affect the price of these
derivatives the risk factors. The vector of risk factors is denoted as ω ∈ Ω and Ω is the
state space of vector of risk factors. The Value Φω(0) is the portfolio value at time 0, which
can be observed in the real world. Let Φω(τ) be the valuation of portfolio at time τ ∈ (0, T]
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and T be the end of the portfolio life period. The portfolio loss between risk horizon 0 to τ
is defined as

Lω(τ) = Φω(0)−Φω(τ). (1)

Then, any risk measure for the portfolio can be defined as a function f of portfolio loss

Risk Measure = E[ f (Lω(τ))]. (2)

We consider risk measures of portfolios with different f commonly used in real
application. For instance, we consider the probability of large loss can be defined as
P(Lω(τ) > q), where q > 0 is a given constant. Then, VaRα is the 1− α quantile of portfolio
loss that is defined as inf{q : P(Lω(τ) > q) ≤ α}. Expected shortfall (ES) is the expectation
of portfolio loss on condition that the event’s portfolio loss exceeds the corresponding VaR,
E(Lω(τ)|Lω(τ) > VaRα).

The risk factors can be observed at time 0 but the loss of portfolio depends on the
dynamics of risk factors in the future, which is unobserved. Usually, Vω(τ) and Vω(0)
cannot be determined analytically, or calculated directly, at times τ and 0, because the value
of this portfolio may be determined by possible payoff in the future. Take the European
call option as the simplest example, wherein an analytical formula for risk factors is not
available following the majority of stochastic processes. Instead of deriving the closed
form of portfolio loss distribution, Monte Carlo simulation [21] provides an useful tool to
generate the possible scenarios of portfolio loss Lω(τ), and estimates the corresponding
risk measures. Based on the framework of Monte Carlo simulation, the nested simulation
framework, proposed by [12], estimates risk measures and is widely applied in financial
engineering and risk management.

Figure 1 shows the structure of nested simulation. It includes the “outer simulation”
and “inner simulation”. The parameters n and m determine the sample size of risk factors
that need to be generated in the “outer simulation” and “inner simulation”, respectively.
The “outer simulation” generates n risk factors at time τ, based on observed risk factors
at time zero. For each set of simulated risk factors in the “outer simulation”, the “inner
simulation” generates the m possible outcomes of the risk factor ω from τ to T. Each
possible outcome of risk factors after time τ can help in evaluating the value of the portfolio
at τ. If the value of the portfolio at time τ is path-dependent, such as the Asian option and
the barrier option, the “inner simulation” may simulate m path of risk factors from time t to
T, instead of possible outcomes of risk factors at time T. Figure 1 only shows the example
that generates the possible realizations of risk factor at time T.

 T0
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)( i

)( n

...
...

t

)(1 Ti

)(Tij

)(Tim

...
...

Outer simulation Inner simulation

Figure 1. Nested Simulation.
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2.2. Stylized Model in Lévy Process

In nested simulation, the dynamics of risk factors considered may be of great impor-
tance. Take the stock options in our portfolio as an example, the classical Black–Scholes (B–S)
model assumes that the underlying stock follows the geometric Brownian motion. Then,
it can show the analytical formula of the European option price by Itó’s lemma. However,
empirical evidence suggests that the B-S model cannot fully describe the statistical properties
of financial time series or risk factor, which is actually a Markov process. The non-Gaussian
character is usually observed in financial time series in the real world and the geometric
Brownian motion can only model fixed volatility instead of stochastic volatility.

Inappropriate assumptions on risk factors absolutely affect the performance of esti-
mated risk measures in real applications. In this paper, we consider a more generalized
assumption on risk factors. We assume that the risk factors, such as stock prices, commodity
prices, interest rate, and foreign exchange rate, follow the Lévy process. Compared with
Geometric Brownian motion, the Lévy process is a more general stochastic process that
also has independent and stationary increments [22]. Based on this assumption, we can
still apply nested simulation to estimate the risk measure with the following procedures.

1. Outer simulation: Given the vector of risk factors ω(0), simulate n risk factors at time
τ from the Lévy process, denoted as the design points.

{ω1(τ), ω2(τ), . . . , ωn(τ)}.

2. Inner simulation: For each ωi(τ), simulate m risk factors at time T from Lévy process,
denoted as

{ωi1(T), ωi2(T), . . . , ωim(T)}.

For each path ωi(τ)→ ωij(T), we calculate the portfolio loss

L̂ij
ω(τ) = Φω(0)− Φ̂ij

ω(τ),

where i = 1, 2, . . . , n and j = 1, 2, . . . , m. For instance, if a portfolio only contains
one European call option and the risk factor is the underlying stock price, we have
Φ̂ij

ω(τ) = e−r(T−τ)(ωij(T) − K)+, where ωij(T) is the jth stock price observation
simulated from the Lévy process, given stock price ωi(τ) at time τ.
The estimated portfolio loss for each path is

L̄i
ω(τ) =

1
m

m

∑
j=1

L̂ij
ω(τ),

where i = 1, 2, . . . , n.
3. Estimate the risk measure in Equation (2) by

Risk Estimator =
1
n

n

∑
i=1

f
(

L̄i
ω(τ)

)
.

Remark 1. In the nested simulation procedures above, we assume that Φω(0) is known, because
the value of the portfolio may be observed in the real market at time 0. One may still need to estimate
it via the Monte Carlo simulation if that is not the case.

The estimation precision of the risk measure above could be determined in two parts:
outer simulation sample size n and inner simulation sample size m. We can obtain a good
estimation of portfolio loss if m is sufficiently large, and a good estimation of risk measure
based on the portfolio loss if n is sufficiently large. The appropriate setting of n is usually
dependent on function f . However, when we consider a portfolio with thousands of
financial products, m becomes too large to reach a good estimation of portfolio loss. To
solve this problem, ref. [16] proposes that one may use regression to fit the portfolio loss,
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then provide a portfolio loss function that can reduce the computational efforts. Specifically,
let a set of real-valued functions Ψ(ω) = (ψ1(ω), ψ2(ω), . . . , ψd(ω)) be the basis function
of the portfolio loss function L(ω), where ω ∈ Ω. We are interested in finding a vector of
coefficient r ∈ Rd such that

L(ω) ≈ Ψ(ω)r + ε(ω) (3)

In general, there are always some generic choices of basis functions Φ(ω), such as
polynomials. Ref. [16] also recommends some selection of basis functions from the payoff
function. In this paper, we propose a stylized model that chooses better basis functions
for portfolios when risk factors follow the Lévy process, instead of Geometric Brownian
Motion (GBM). Take a portfolio with one call option as an example. The vector of risk
factors ω is the stock price at maturity and strike price is K. Let CBS(ω) be the call option
price with underlying stock following the GBM, which can be calculated by the Black–
Scholes model. We can consider the following seven basis functions for comparison:

1. Basis 1: 1, CBS(w) (Stylized model)
2. Basis 2: 1, ω, ω2 (Polynomials)
3. Basis 3: 1, ω, ω2, CBS(w)

4. Basis 4: 1, ω, ω2, ω3

5. Basis 5: 1, ω, ω2, (ω− K)+ (Polynomial + Payoff)
6. Basis 6: 1, ω, ω2, (ω− K)+, (ω− K)2, CBS(w) (Polynomial + Payoff + Stylized model)
7. Basis 7: 1, ω, ω2, (ω− K)+, (ω− K)2, ω3

Basis 1 is called the Stylized model. For constant term, we only choose CBS(ω) as
the basis function. The close form of option price is easy to obtain if we assume that
the underlying stock follows GBM. If we try to match the related features of stock to the
corresponding parameters of GBM, the true option price can be roughly estimated by
CBS(ω). Then one can get the basis function (Basis 1), which is easy to calculate and highly
related to the true option value. Basis 2 and Basis 4 are widely used polynomials. Due to
the non-linearity between stock price and option price, here we consider the higher order
polynomial function instead of one. Values (ω − K)+ and (ω − K)2 in Basis 5 through
to Basis 7 are recommended in [16], that used the payoff function as its basis function,
which also showed good performance in their numerical experiments. It is reasonable that
we set Basis 3 through to Basis 5 in one group and Basis 6 and Basis 7 in another as two
separated groups, because there are the same numbers of basis functions in each group.
Intuitively, the stylized model works well for appropriate parameter setting so that GBM
can roughly approximate the Lévy process. So, we propose the parameter adjustment rule
in the stylized model. That is,

Volatility of stock price follows the Lévy process = Volatility of stock price follows GBM. (4)

Remark 2. Stylized model for general case.
The stylized model is easy to obtain for most of the cases in complicated large portfolios. For

instance, the option prices formula is usually easy to obtain under the GBM framework, such as
the B–S formula for basket option, Asian option, and barrier option. For some other exotic options,
one may simplify the underlying stock from the Lévy process to GBM, as well as option payoff from
exotic options to simple European option. Then, one can obtain the close form of simplified option
price as the basis in the stylized model.

Remark 3. The usefulness and efficiency testing of Stylized Model.
To test the usefulness of the stylized model as the basis function of regression, we designed the

following hypothesis testing with null hypothesis H0 and alternative hypothesis H1,

H0 : r = 0. H1 : r 6= 0. (5)
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Here, one can use Z-test to test the efficiency of the stylized model. For efficiency of the stylized
model, K2 statistics and AIC, BIC can also be used to evaluate goodness of fit. See [23] for details.

3. Numerical Examples

In this section, we describe the four numerical examples we designed to examine
the performance of the stylized model in estimating the risk measure. Still, we assumed
that the underlying assets of financial derivatives follow the Lévy process and used the
European option as the example of derivatives. So the underlying asset price at time t,
denoted as St, is the vector of risk factors in this example. Take the Variance Gamma (VG)
process and the Normal inverse Gaussian (NIG) process as the dynamics of the derivatives’
underlying assets. We considered the following four portfolios in Tables 1 and 2. In each
numerical example, we evaluated the estimation performance of Value-at-Risk (VaR) by
different choices of basis function. VaR of any random variable X given α, denoted as VaRα,
is defined as

Pr{X ≥ VaRα} = α. (6)

Suppose that the initial prices of underlying assets are denoted by S0, risk-free interest
rate r = 2%, and the maturity of all options T = 1. The risk horizon is τ = 0.25 year. There
are 4 portfolios considered and each of them consists of one long European call option with
underlying assets S1 and strike price K1, one short European call option with underlying
assets S2 and strike price K2, and one short call option with underlying assets S3 and strike
price K3. The parameters of options in portfolios are shown in Table 1. The parameters of
underlying assets are shown in Table 2.

Table 1. The parameters setting for underlying assets following the Lévy process.

Initial Asset Price Strike Price T τ r

Portfolio 1 S1 = 100, S2 = 100, S3 = 100 K1 = 95, K2 = 100, K3 = 105 1 0.25 2%
Portfolio 2 S1 = 80, S2 = 90, S3 = 100 K1 = 80, K2 = 90, K3 = 100 1 0.25 2%
Portfolio 3 S1 = 100, S2 = 100, S3 = 100 K1 = 95, K2 = 100, K3 = 105 1 0.25 2%
Portfolio 4 S1 = 100, S2 = 100, S3 = 100 K1 = 95, K2 = 100, K3 = 105 1 0.25 2%

Table 2. The parameters setting of Lévy process for each underlying asset.

Underlying Assets Lévy Process Parameters

Portfolio 1
Asset 1 VG σ = 0.2, ν = 0.3, θ = 0
Asset 2 VG σ = 0.3, ν = 0.3, θ = 0
Asset 3 VG σ = 0.4, ν = 0.3, θ = 0

Portfolio 2
Asset 1 VG σ = 0.2, ν = 0.2, θ = −0.1
Asset 2 VG σ = 0.3, ν = 0.3, θ = 0
Asset 3 VG σ = 0.4, ν = 0.4, θ = 0.1

Portfolio 3
Asset 1 NIG a = 2, β = 0.2, γ = 0.8
Asset 2 NIG a = 3, β = 0.2, γ = 0.8
Asset 3 NIG a = 2, β = 0.3, γ = 0.8

Portfolio 4
Asset 1 NIG a = 10, β = 0.2, γ = 0.03
Asset 2 NIG a = 11, β = 0.3, γ = 0.04
Asset 3 NIG a = 12, β = 0.4, γ = 0.05

Given the parameters setting above, we built our experiments, including the following
two procedures. The first part is the training procedure. Given α, we replicated our
numerical experiment H = 1000 times. For each replication, let M be the number of sample
paths of risk factors we generate in the outer simulation for each replication. Here, we
set M = 500, 5000, 50,000, 100,000, respectively. For inner simulation, we set the number
of simulation paths as m = 1. Therefore, we have M sample paths, or scenarios. So,
the corresponding portfolio loss in i-th scenario, L̂i1

ω , which is the element of L(ω) in
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Equation (3) can be computed. The basis functions Ψ(ω) are selected according to the
description of Basis 1 through to Basis 7. The parameter r can be estimated by ordinary
least square (OLS), given the portfolio loss and basis, denoted as r̂. The second part is the
testing procedure. Set testing sample size N = 10,000; that is, we generated N scenarios for
each replication to calculate basis. Given the r̂, we can estimate the portfolio loss. Then,

the risk measures ˆVaRh
α can be estimated, h = 1, 2, . . . , H. The true values of VaR are not

available in these numerical examples. We used nested simulation to estimate them. The
computational budgets for α = 0.95, 0.99, 0.995 were 106, 107, and 108.

The stylized model assumes that the underlying assets follow the Geometric Brownian
Motion (GBM) with estimated volatility. Here we may have two ways to estimate it in
the numerical examples. Firstly, one can calculate the volatility of the Lévy process to
match the one in GBM. For example, consider the VG process as an example, its variance
σ2

VG = (σ2 + νθ2). The calculation is straightforward for the stochastic process with
independent increment. Alternatively, we can estimate the volatility from the simulated
underlying asset price. This is widely applied in real applications. According to [24], given
n samples of underlying asset price at time T, ωT = {S1

T , S2
T , . . . , Sn

T}, the volatility σGBM
in GBM can be estimated by the following procedure:

σ̂GBM =
s√
T

, s =

√
1

n− 1

n

∑
i=1

(ui − ū)2, ui = ln

(
Si

T
S0

)
.

where ū = ∑n
i=1 ui/n.

For evaluation and comparison of estimation performance using different basis func-
tions, we calculated the relative root mean square error(rRMSE) to show the results in
Tables 3–6. The rRMSE is calculated using the following equation:

rRMSE =

√
∑H

h=1(
ˆVaRh

α −VaRα)2

H ×VaRα
. (7)

Furthermore, we show the box plot of exceedance probability of estimated VaR in
Figures 2–5 for each replication, defined as

Exceedance Probability =
1
N

N

∑
i=1

1{L̂i1
ωT≥VaRα}. (8)

Tables 3–6 show the rRMSE of estimated VaRα, where α = 0.95, 0.99, 0, 995, respectively.
Seven different basis functions were tested in the experiments. In general, the estimation
became harder if α increased, given the fixed sample budget in the training parts for all the
basis functions. So, all the tables show that the rRMSE increased as α increased in most cases.
For comparison, 7 basis functions were divided into three groups with similar lengths. The
rRMSE with the blue color was the best basis, based on the rRMSE of estimated VaR. Group
1 consisted of Basis 1 and Basis 2. Basis 1 is the simplest stylized model that only contains
the first-order term of B–S price. Basis 2 contains both the linear term and the second-order
term of risk factors to capture the high non-linearity of portfolio loss with respect to risk
factor. A basis function with only a linear term of risk factors showed really bad performance
in all settings, so we excluded it. Group 2 consists of Basis 3, Basis 4, and Basis 5. All the
basis functions were designed based on Basis 2 and another different basis function. Basis 3
considers the stylized model. Basis 4 considers the higher order of risk factors. Basis 5 was
designed according to [16]. Inspired by the payoff function of European call option, it tries to
capture the non-linearity by (ST − K)+. Group 3 consists of Basis 6 and Basis 7, in order to
evaluate the estimation performance of higher order basis functions.
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Figure 2. The estimated exceedance probability given the estimated VaR in portfolio 1. Set α = 0.95,
0.99 and 0.995. The three subfigures in the first row correspond to α = 0.95, the three subfigures
in the second row correspond to α = 0.99, and the three subfigures in the third row correspond to
α = 0.995.
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Figure 3. The estimated exceedance probability given the estimated VaR in portfolio 2. Set α =0.95,
0.99 and 0.995. The three subfigures in the first row correspond to α = 0.95, the three subfigures
in the second row correspond to α = 0.99, and the three subfigures in the third row correspond to
α = 0.995.
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Figure 4. The estimated exceedance probability given the estimated VaR in portfolio 3. Set α =0.95,
0.99 and 0.995. The three subfigures in the first row correspond to α = 0.95, the three subfigures
in the second row correspond to α = 0.99, and the three subfigures in the third row correspond to
α = 0.995.
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Figure 5. The estimated exceedance probability given the estimated VaR in portfolio 4. Set α = 0.95,
0.99 and 0.995. The three subfigures in the first row correspond to α = 0.95, the three subfigures
in the second row correspond to α = 0.99, and the three subfigures in the third row correspond to
α = 0.995.
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Table 3. rRMSE of estimated VaR in Portfolio 1.

α
Basis 1

(%)
Basis 2

(%)
Basis 3

(%)
Basis 4

(%)
Basis 5

(%)
Basis 6

(%)
Basis 7

(%)

0.95 0.096 0.286 0.099 0.154 0.088 0.087 0.087
0.99 0.134 0.328 0.127 0.146 0.169 0.130 0.143

0.995 0.163 0.302 0.157 0.163 0.212 0.160 0.172
The rRMSE is calculated by Equation (7). The estimation of VaR is replicated 1000 times for each α. Seven basis
functions were considered.

Table 4. The rRMSE of estimated VaR in Portfolio 2.

α
Basis 1

(%)
Basis 2

(%)
Basis 3

(%)
Basis 4

(%)
Basis 5

(%)
Basis 6

(%)
Basis 7

(%)

0.95 0.099 0.221 0.099 0.187 0.100 0.095 0.099
0.99 0.144 0.345 0.140 0.201 0.177 0.144 0.161

0.995 0.171 0.348 0.169 0.204 0.218 0.174 0.190
The rRMSE is calculated by Equation (7). The estimation of VaR is replicated 1000 times for each α. Seven basis
functions were considered.

Table 5. The rRMSE of estimated VaR in Portfolio 3.

α
Basis 1

(%)
Basis 2

(%)
Basis 3

(%)
Basis 4

(%)
Basis 5

(%)
Basis 6

(%)
Basis 7

(%)

0.95 0.468 0.470 0.183 0.266 0.398 0.204 0.319
0.99 0.331 0.337 0.311 0.355 0.331 0.262 0.267

0.995 0.500 0.410 0.402 0.382 0.392 0.382 0.304
The rRMSE is calculated by Equation (7). The estimation of VaR is replicated 1000 times for each α. Seven basis
functions were considered.

Table 6. The rRMSE of estimated VaR in Portfolio 4.

α
Basis 1

(%)
Basis 2

(%)
Basis 3

(%)
Basis 4

(%)
Basis 5

(%)
Basis 6

(%)
Basis 7

(%)

0.95 0.122 0.389 0.118 0.241 0.121 0.104 0.123
0.99 0.163 0.333 0.168 0.301 0.149 0.147 0.150

0.995 0.190 0.395 0.192 0.311 0.182 0.171 0.185
The rRMSE is calculated by Equation (7). The estimation of VaR is replicated 1000 times for each α. Seven basis
functions were considered.

As these tables show, basis functions with the stylized model (Basis 1, Basis 3 and
Basis 6) performed better than others in most cases. Furthermore, if we compare each
group, the basis function with the stylized model performed better. For comparison among
groups, the basis functions (ST − K)+ (Basis 5 and Basis 7) were worse than the basis
function with the stylized model, but much better than the polynomial basis functions
(Basis 2 and Basis 4). Specifically, the estimation performance was surprisingly good with
only one stylized model (CBS(ST)). Except for portfolio 3, all rRMSEs were around 0.15%.
Meanwhile, little improvement was shown in Basis 3 and Basis 6, compared with Basis 1, in
some portfolios. For example, there was nearly no improvement of Basis 3, compared with
Basis 1, in portfolio 2 with α = 0.95, and 0.004% improvement of Basis 5, compared with
Basis 1. This also shows the efficiency of the stylized model as basis function in regression
Equation (3).

Figures 2–5 represent the estimated exceedance probability, given estimated VaR, in the
four portfolios, respectively. The red line of each box plot is the median of estimated VaR in
H replications. The light blue line is the true exceedance probability. As the training sample
increased from M = 500 to M = 50,000 for α = 0.95, 0.99, and from M = 5000 to M = 100,000
for α = 0.995 we see better estimation results of exceedance probability. Specifically, the
estimation results in Figure 4 fluctuated much more than in Figure 5, because the underlying
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NIG process had larger variance. So, estimating the VaR in portfolio 3 was relatively harder
than in portfolio 4. Similarly, if we compare the median of estimated exceedance probability,
the basis with the stylized model performed better than the others. Still, we did not observe
large improvement from Basis 3 and Basis 5 compared to Basis 1 in most cases.

4. Conclusions

In this paper, we proposed a stylized model that deals with the risk estimation problem
in complicated and large portfolios. The stylized model is based on nested simulation and
regression. Specifically, we considered a complicated portfolio with risk factors following
the Lévy process and used the Black–Scholes formula as the basis function in the stylized
model. The usefulness and efficiency testing are discussed. The numerical results showed
better performance of the stylized model compared with the basis functions inspired by
polynomial basis and the payoff function. In general, the stylized model can be widely
applied to estimate portfolio risk with a limited computational budget. In future research,
one potential field may be to consider a very large portfolio, such as a portfolio with
hundreds of derivatives and assets. Another possible future consideration could be an
alternative portfolio risk estimation procedure, instead of regression, such as the surface
fitting model, including stochastic kriging.
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20. Callot, L.; Caner, M.; Önder, A.Ö.; Ulaşan, E. A nodewise regression approach to estimating large portfolios. J. Bus. Econ. Stat.

2021, 39, 520–531. [CrossRef]
21. Glasserman, P. Monte Carlo Methods in Financial Engineering; Springer: New York, NY, USA, 2004; Volume 53.
22. Schoutens, W. Lévy Processes in Finance: Pricing Financial Derivatives; Wiley Online Library: New York, NY, USA, 2003.
23. Shen, H.; Hong, L.J.; Zhang, X. Enhancing stochastic kriging for queueing simulation with stylized models. IISE Trans. 2018,

50, 943–958. [CrossRef]
24. Hull, J.C. Options, Futures, and Other Derivatives; Pearson Education: New York, NY, USA, 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/937332.937334
http://dx.doi.org/10.1287/mnsc.1110.1330
http://dx.doi.org/10.1287/opre.2017.1591
http://dx.doi.org/10.1287/opre.2015.1419
http://dx.doi.org/10.1287/ijoc.2019.0892
http://dx.doi.org/10.1080/24725854.2020.1869352
http://dx.doi.org/10.1111/1540-6261.00580
http://dx.doi.org/10.1080/07350015.2019.1683018
http://dx.doi.org/10.1080/24725854.2018.1465242

	Introduction
	Model Setting
	Nested Simulation
	Stylized Model in Lévy Process

	Numerical Examples
	Conclusions
	References

