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Abstract: Inverse problems for a 3D model of electrostatics, which arise when developing technologies
for designing electric cloaking and shielding devices, are studied. It is assumed that the devices
being designed to consist of a finite number of concentric spherical layers filled with homogeneous
anisotropic or isotropic media. A mathematical technique for solving these problems has been
developed. It is based on the formulation of cloaking or shielding problems in the form of inverse
problems for the electrostatic model under consideration, reducing the latter problems to finite-
dimensional extremum problems, and finding their solutions using one of the global minimization
methods. Using the developed technology, the inverse problems are replaced by control problems, in
which the role of controls is played by the permittivities of separate layers composing the device being
designed. To solve them, a numerical algorithm based on the particle swarm optimization method is
proposed. Important properties of optimal solutions are established, one of which is the bang-bang
property. It is shown on the base of the computational experiments that cloaking and shielding
devices designed using the developed algorithm have the simplicity of technical implementation and
the highest performance in the class of devices under consideration.

Keywords: inverse problems; electrostatic cloaking; optimization method; particle swarm
optimization method; bang-bang property

MSC: 35Q93; 78A46; 65N21

1. Introduction

In recent years, a new direction in electromagnetism has been intensively develop-
ing, associated with the development of design technologies for devices for electrical or
magnetic cloaking of material bodies. The first works in this area (see [1–6]) are devoted to
the study of cloaking problems using the transformation optics method, developed in [7],
or the scattering cancellation technology proposed in [8]. An approximate scheme for
designing magnetic cloaking devices based on the concept of an anti-magnet was proposed
in [9].

Another direction in magnetic and electrical cloaking is associated with using for
cloaking radially anisotropic cylindrical or spherical shells (see, e.g., [10–14]). In [12] it is
shown when studying the 2D electrostatic cloaking problem that a high cloaking effect can
be achieved even for a single-layer cylindrical shell, but in the case of a small diameter of
the body being cloaked, and/or with a very high anisotropy ratio. In recent papers [13,14],
it is shown without using the approximation of the smallness of the body being cloaked,
that a high cloaking effect in the case of a multilayer cloaking shell can be achieved due to a
large number of layers filled with anisotropic media with different dielectric permittivities.

It should be noted a series of works [15–20], devoted to the development of efficient nu-
merical algorithms for solving problems of magnetic and dc electric cloaking, based on the
use of an optimization method for solving inverse problems, to the class of which cloaking
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problems belong. The mentioned papers used cylindrical and spherical shells composed of
a finite number of layers filled with homogeneous isotropic media as cloaking devices.

The optimization method was first proposed in the fundamental works of the out-
standing Soviet mathematician A.N. Tikhonov in the 1960s (see, e.g., [21,22]) while creating
his famous regularization method for solving ill-posed problems, which include inverse
problems. After that, the optimization method began to be widely used when solving
inverse problems for differential equations encountered in electromagnetism, acoustics,
hydrodynamics, and other areas of mathematical physics [23].

In accordance with the optimization method, inverse problems are reduced to ex-
tremum problems of minimizing special cost functionals, which are called Tikhonov
functionals. To minimize such functionals, iterative methods and, in particular, gradi-
ent methods are usually used. But it should be noted that in the case of coefficient inverse
problems the Tikhonov functionals are non-convex. It is well known that for such function-
als gradient methods can converge to a local minimum, which can be very different from
the global minimum.

To overcome this shortcoming, special methods have been developed. We note among
them the stationary point clustering method (see, for example, Kokurin [24]) and the
Klibanov’s convexification method (see [25–28]). The last method is based on the funda-
mentally new idea of so-called convexification. Its goal is to avoid the phenomenon of
multiple local minima of conventional least squares cost functionals. This idea of con-
vexification has roots in [29], where Carleman estimates were introduced in the field of
inverse problems for the first time. However, while the goal of [29](and many follow-up
publications of a number of authors) was to prove uniqueness theorems, the recent works of
Klibanov and his research team (see e.g., [28]) focus on applications of Carleman estimates
to numerical methods for coefficient inverse problems by constructing globally strictly
convex Tikhonov-like functionals.

An alternative approach to minimizing the Tikhonov functionals is to use one of
the methods of global, structural, or topological optimization. For designing cloaks,
shields, concentrators, and other special devices used to control physical fields, the ap-
proaches based on these methods were used in Dede et al. [30], Peralta et al. [31–33],
Fachinotti et al. [34], Fujii et al. [35,36], Alekseev et al. [16–19,37–39], Michaloglou and
Tsitsas [40,41]. We also note the works [42–45], devoted to the optimization analysis of
close inverse problems arising in electromagnetism and acoustics theory.

The analysis of inverse extremum problems, to which inverse problems are reduced
as a result of applying the optimization method, allows us to establish important new
properties that are inherent precisely to solutions of extremum problems. One such property
is the so-called bang-bang property (see [46]) (which we will discuss and use later when
analyzing the results of numerical experiments). As it will be shown below, the use of this
property will make it possible to obtain solutions to the problems under consideration that
have a simple technical implementation. In addition, the use of the bang-bang property
allows us to significantly simplify the numerical algorithms developed by us for solving
the problems of designing cloaks, shields, and other special devices.

In this paper, we will consider a fairly general physical scenario, when a multilayer
shell with anisotropic (in the general case) layers is used for shielding or cloaking from
an electrostatic field. Just as in [18,19], to solve the problems of designing shielding or
cloaking devices under consideration, we will develop a numerical algorithm based on the
optimization method for solving inverse problems using the particle swarm optimization
method (PSO) (see [47]) as a numerical optimization method.

Using the proposed algorithm we will show with the help of computational experi-
ments that the high performance of the cloaks and shields being designed can be achieved
using both single-layer anisotropic shells with a high anisotropy ratio and multilayer
isotropic shells. In addition, we will establish for the case of an isotropic scenario that the
optimal solutions to the shielding and cloaking problems possess the bang-bang property.
Based on this fact, we will conclude that the designed shielding and cloaking devices,
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which correspond to the optimal solutions constructed in this work, have high performance
and ease of technical implementation.

The paper is organized as follows. In Section 2 the direct problem of electrostatics,
which corresponds to the scenario of placing a cloaking shell into free space is formulated,
analytical properties of its solution are studied and exact statements of inverse problems of
designing cloaking and shielding devices are presented. In Section 3, the mentioned inverse
problems are reduced to finite-dimensional extremum problems, for the solution of which
a numerical algorithm based on the particle swarm optimization method is developed.
Section 4 describes some important properties of the optimal solutions obtained using the
developed algorithm and discusses the simulation results. Conclusions are summarized in
Section 5.

2. Statement of Direct and Inverse Problems of Electrostatics in 3D Space

We start with the formulation of the direct problem of electrostatics, considered in the
entire space R3 filled with a homogeneous isotropic medium with a constant permittivity
ε0 > 0. It is assumed that a constant electric field Ea = −gradUa is given in R3 which
corresponds to the electric potential Ua described in spherical coordinates r, θ, ϕ by the
formula Ua(r, θ) = −Ea(r/b) cos θ, where Ea = const, b = const. Let us further assume
that an object filled with a medium whose (relative) permittivity ε differs from ε0 is placed
into the space. Then the field Ua changes and takes the form U = Ua + Us. Here Us is the
perturbation of the field Ua caused by the placing of an object into R3, which we will call
the scattered electrostatic response of the object.

To find the response Us, it is necessary to formulate a direct problem of electrostatics
corresponding to the considered scenario of placing an object into R3. For concreteness,
we assume below that the role of the placed object is played by the pair (Ω, ε). Here Ω
is a spherical layer described in spherical coordinates r, θ, ϕ by equation Ω = {x ∈ R3 :
a < r = |x| < b}, where a and b are the inner and outer radii of the layer (see Figure 1),
while ε is the permittivity of the medium filling Ω. The permittivity ε is assumed to be the
diagonal in spherical coordinates r, θ, ϕ tensor, i.e. ε = diag(εr, εt, εt). Here εr (or εt) is the
radial (or tangential) component of the tensor ε. (We assume that the last two components
of the tensor ε are the same and equal to εt).

 

𝐄a = −grad𝑈𝑎 

𝑎 𝑅1 

Figure 1. Schematic representation of an externally applied electric field Ea and the multilayer
spherical shell (Ω, ε), immersed in free space.
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We assume that the medium occupying the region Ω is piecewise homogeneous in the
sense that the region Ω can be divided into a finite number M of elementary spherical layers

Ωm = {Rm−1 < r = |x| < Rm}, m = 1, M, R0 = a, RM = b (1)

of the same width d = (b− a)/M. Each of them is filled with a homogeneous anisotropic
(generally) medium, the constant permittivity of which is described by the diagonal in
spherical coordinates tensor εm = diag(εrm, εtm, εtm), m = 1, M. Here εrm (or εtm) is the
radial or tangential component of the tensor εm. This partition of the domain Ω into parts
Ωm corresponds to the global radial and tangential permittivities εr and εt of the original
global tensor ε ≡ diag(εr, εt, εt) of the domain Ω defined by the formulas

εr(x) =
M

∑
m=1

εrmχm(x), x ∈ Ω,

εt(x) =
M

∑
m=1

εtmχm(x), x ∈ Ω. (2)

Here χm is the characteristic function of the elementary layer Ωm, equal to one in Ωm
and zero outside Ωm.

Below, to describe a piecewise homogeneous medium filling Ω, we will use the vector
e = (er1, et1; . . . ; erM, etM), composed of components εrm, εtm of permittivity tensors εm of
separate layers Ωm, m = 1, M, while a pair (Ω, e) will be referred to as the electrical shell.
The medium filling the region Ω will be called admissible if the following condition of
the positivity of all components: εrm > 0, εtm > 0, m = 1, M is satisfied. It stems from the
physical meaning of the radial and tangential components εrm and εtm, m = 1, M.

In addition to the sets (1), we define the following sets (see Figure 1)

Ω0 = {x ∈ R3 : |x| < a} and ΩM+1 = {x ∈ R3 : |x| > b}

and denote by Um the restriction U|Ωm of the total field U = Ua + Us to the subdomain
Ωm, m = 0, M + 1. Taking into account this notation, the direct problem of finding the total
field U = Ua + Us or, what is the same, finding the electrostatic response Us is reduced
to finding all M + 2 fields Um in the regions Ωm, m = 0, M + 1 by solving the following
electric transmission problem:

∆U0 = 0 in Ω0, ∆UM+1 = 0 in ΩM+1, (3)

div(εmgradUm) = 0 in Ωm, m = 1, M, (4)

gradUm × n− gradUm+1 × n = 0 at r = Rm, m = 1, M, (5)

ε0
∂U0

∂r
= εr1

∂U1

∂r
at r = R0, (6)

εrm
∂Um

∂r
= εr(m+1)

∂Um+1

∂r
at r = Rm, m = 1, M, (7)

εrM
∂UM

∂r
= ε0

∂UM+1

∂r
at r = RM, (8)

U0(x) = O(1) as r = |x| → 0, UM+1(x)→ Ua(x) as r → ∞, (9)

considered in the entire space R3. Here the conditions (5)–(7), where n is the unit vector of
the normal outward to Ω, follow from the fundamental laws of continuity of the tangential
component of the electric field vector E = −gradU and the normal component of the
electric displacement vector D = ε0εE in the absence of surface charges at the dielectric
discontinuities r = Rm, m = 0, M, where ε0 is an electrical constant [48]. The conditions (9)
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have the meaning of the standard boundedness conditions for the solution as r → 0 and
the condition at infinity (r → ∞).

Arguing as in [49], one can show that the solution U = (U0, U1, . . . , UM+1) of the
problem (3)–(9) exists and is unique. Moreover, using the method of separation of variables
the fields U0, U1,. . . ,UM+1 can be expressed explicitly as

U0(r, θ) = α0

( r
b

)
cosθ in Ω0, (10)

Um(r, θ) =

(
αm

( r
b

)νm
+ βm

(
b
r

)νm+1
)

cosθ in Ωm, m = 1, M, (11)

UM+1(r, θ) =

(
−Ea

( r
b

)
+ βM+1

( r
b

)−2
)

cos θ in ΩM+1. (12)

Here α0, α1, β1,. . . ,αM,βM, βM+1 are some coefficients, νm is medium anisotropy
coefficient in the subdomain Ωm, determined by the formula

νm = (1/2)× (
√

1 + 8× (εtm/εrm)− 1). (13)

It is easy to check that all the functions Um, m = 0, M + 1, defined in (10)–(12), satisfy
all equations in (3), (4) and conditions (9) for any values of the coefficients αm, βm. It
remains to choose them so that the transmission boundary conditions (5)–(8) are satisfied.

Substituting (11), (12) into (5)–(8), we arrive at the following system of 2M + 2 linear
algebraic equations with respect to 2M + 2 unknown coefficients α0, αm, βm, βM+1, m =
1, M:

α0 − α1

(
b

R0

)1−ν1

− β1

(
b

R0

)ν1+2
= 0,

εiα0 − α1εr1ν1

(
b

R0

)1−ν1

+ β1εr1(ν1 + 1)
(

b
R0

)ν1+2
= 0,

αm + βm

(
b

Rm

)2νm+1
− αm+1 − βm+1

(
b

Rm

)2νm+1+1
= 0,

αmεrmνm − βmεrm(νm + 1)
(

b
Rm

)2νm+1
− αm+1εr(m+1)νm+1+

+βm+1εr(m+1)(νm+1 + 1)
(

b
Rm

)2νm+1+1
= 0, m = 1, M− 1,

αM + βM − βM+1 = −Ea, αMεrMνM − βMεrM(νM + 1) + 2εeβM+1 = −εeEa. (14)

Solving the system (14) and substituting the found values α0, αm, βm, βM+1 into
(10)–(12), we can find the corresponding fields U0 in Ω0, Um in Ωm, m = 1, M, and UM+1
in ΩM+1 forming the desired solution of the problem (3)–(9), and to investigate their
properties depending on the values of the main parameters–the radial and tangential
components εrm and εtm of tensors εm, m = 1, M.

Now, we can formulate coefficient inverse problems for the electrostatic model un-
der consideration, which arises when designing devices that serve for electric cloak-
ing or shielding. To this end, denote by U[e] = (U0[e], U1[e], . . . , UM+1[e]), where
e = (εr1, εt1; . . . ; εrM, εtM), the solution of the problem (3)–(9) corresponding to the permit-
tivity tensors εm in Ωm and to the constant permittivity ε0 in Ω0 and ΩM+1. Let BR be a ball
of sufficiently large radius R containing Ω inside it. We set Ωe = ΩM+1 ∩ BR (see Figure 2).
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𝐄a = −grad𝑈𝑎 

𝑎 𝑅1 

𝐵𝑅  

Figure 2. Schematic representation of a ball BR containing the multilayer spherical shell (Ω, ε).

Now we can formulate the following two inverse problems. The first inverse problem,
called the electric cloaking problem, is to find the permittivity vector e = (εr1, εt1; . . . ; εrM, εtM)
based on the following two conditions:

∇U0[e] = 0, i.e. U0[e] = const in Ω0, UM+1[e] = Ua in Ωe. (15)

The second condition in (15) is equivalent to the condition Us = 0 in Ωe, which, by
virtue of the unique continuation principle [50] for the harmonic in ΩM+1 function Us, is
equivalent to condition Us = 0 in ΩM+1. In the case when the vector e is found from the
fulfillment of only the first condition in (15), we will refer to the corresponding inverse
problem as an internal cloaking problem or a shielding problem.

One should also add the condition of the positivity of all components of the vector e to
the conditions in (15). It is clear that the exact solutions of the inverse problems formulated
above may not exist, so in the next section, we will replace the inverse problems with
approximate formulations using the optimization method. As a result, finite-dimensional
extremum problems will be obtained, for the numerical solution of which we will apply
the particle swarm optimization method (see [47]).

3. Application of the Optimization Method

In accordance with the optimization method (see [21,39]), we replace the inverse
problems of electric cloaking and shielding formulated above with the corresponding
extremum problems. To this end, we introduce into consideration two cost functionals
corresponding to the first or second condition in (15):

Ji(e) =
‖∇U0[e]‖L2(Ω0)

‖∇Ua‖L2(Ω0)
, Je(e) =

‖UM+1[e]‖L2(Ωe)

‖Ua‖L2(Ωe)
. (16)

Here, in particular,

‖Ua‖2
L2(Ωe)

=
∫

Ωe
|Ua|2dx, ‖∇Ua‖2

L2(Ω0)
=
∫

Ω0

|∇Ua|2dx,

‖UM+1[e]‖2
L2(Ωe)

=
∫

Ωe
|UM+1|2dx, ‖∇U0[e]‖2

L2(Ω0)
=
∫

Ω0

|∇U0[e]|2dx. (17)
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In addition, to obtain regularized solutions to the problems under consideration, we
define the following bounded set in the space R2M:

K = {e = (εr1, εt1; . . . ; εrM, εtM) ∈ R2M : 0 < εmin ≤ εrm, εtm ≤ εmax}, (18)

which below will play the role of a set of controls in the general anisotropic case. From the
definition (18) of the set K it follows that each of its elements e ≡ (εr1, εt1; . . . ; εrM, εtM) ∈ K
corresponds to a cloaking (or shielding) device in the form of a spherical material shell
(Ω, e) filled with an admissible piecewise inhomogeneous anisotropic medium described
by the vector e. In other words, the set K can be considered as the digital twin of the set
of all admissible piecewise homogeneous media filling the domain Ω. In the special case
corresponding to the isotropic scenario, when εrm = εtm = εm > 0 for all m = 1, M, the set
(18) transforms into the set

K = {e = (ε1, ε2, . . . , εM) ∈ RM : 0 < εmin < εm < εmax, m = 1, M}. (19)

The set (19) will play the role of a set of controls when solving the problems of
designing isotropic cloaking and shielding devices.

Below we will consider the following two finite-dimensional extremum problems:

Ji(e)→ inf, e ∈ K, (20)

J(e) ≡ 0.5[Ji(e) + Je(e)]→ inf, e ∈ K, (21)

which are optimization analogs of the inverse problems formulated above.
Recall that the ability of the designed shell (Ω, e) to cloak material objects is character-

ized by cloaking performance. Arguing as in [18,19], it is easy to show that the cloaking
performance of the shell (Ω, e) is related to the value J(e) by an inverse relationship: the
smaller the value J(e), i.e. the smaller the error in fulfilling both conditions in (15), the
higher the cloaking performance of the shell (Ω, e) and vice versa. Similarly, the smaller
Ji(e), the higher the shielding performance of the shell (Ω, e). It follows that the problem
(20) (or (21)) is aimed at finding the shell (Ω, e) that has the highest shielding (or cloaking)
performance in the class of devices corresponding to the set K defined in (19) (or in (18)).

Denote by eopt the minimizer (optimal solution) of problem (21). If the condition
J(eopt) = 0 is also satisfied, then this means according to (16) and (21) that eopt is an exact
solution of the cloaking problem. However, such a situation for the cloaking problem can
arise only in exceptional cases [37]. Therefore, our main goal when solving the problem (21)
will be to find such parameters of the desired shell in the form of a vector eopt ∈ K for which
J(eopt) takes on a rather small value having the order 10−n, n = 4, 5, . . . , which corresponds
to a high cloaking performance. A similar situation takes place for the shielding problem
(20), and the smaller the value Ji(eopt) for the minimizer eopt ∈ K of problem (20), the
higher the shielding performance of the designed shell (Ω, eopt).

It follows from (16), (17) that the functionals Ji and Je have the meaning of the Tikhonov
functionals corresponding to the first or second condition in (15). Gradient methods have
been developed to minimize such functionals. But, as already mentioned above, their
application is complicated by the fact that the solutions obtained using gradient methods
can describe a local minimum, which can differ greatly from the desired global minimum.
Another disadvantage of gradient methods is the fact that the solution obtained with their
help is difficult to implement in practice.

Global minimization methods and, in particular, the particle swarm optimization method
(PSO) are free from these shortcomings. They showed its high efficiency in [18,19,37], devoted
to the development of numerical algorithms for solving magnetic and thermal cloaking
problems based on the optimization method.

For the numerical solution of problems (20) and (21), we apply an algorithm based
on the particle swarm optimization method. A detailed description of the main steps of
this algorithm as applied to magnetic cloaking problems can be found in [18,19]. From a
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computational point of view, it is important that all mean-square integral norms included
in (16), (17), as well as the values Ji(e) and Je(e), can be calculated explicitly. Indeed, using
the representations (10) and (12) of the fields U0 and UM+1, and reasoning as in [19], it is
easy to show that for any vector e = (εr1, εt1, . . . , εrM, εtM) ∈ K values Ji(e) and Je(e) are
determined by

Ji(e) =
α0

Ea
, Je(e) =

βM+1

Ea

√
5R5

M(R− RM)

R
(

R5 − R5
M
) . (22)

Here α0 and βM+1 are the first and last components of the solution (α0, α1, β1, . . . , βM+1)
of the system (14) corresponding to the tensor permittivities εm = diag(εrm, εtm), m = 1, M
of anisotropic media in layers Ωm whose components εrm, εtm make up the vector e =
(εr1, εt1, . . . , εrM, εtM).

From (22) follows that the calculation of the values Ji(e) and Je(e) for a vector e ∈ K
(that describes the position of the particle, which is the main element in the particle swarm
optimization method [47]), consists of two stages. First we find the two components α0 and
βM+1 of the solution (α0, α1, β1, . . . , βM+1) of the system (14) corresponding to the given
components εr1, εt1,. . . , εrM, εtM of the tensor permittivities ε1, . . . , εM of the media filling
Ω. Next, we substitute the found values α0 and βM+1 into (22) and calculate the desired
values Ji(e) and Je(e) with the required degree of accuracy. The subsequent application of
the particle swarm optimization method is carried out according to the scheme outlined
in detail in [18]. The result of applying the algorithm described above to solve problem
(21) (or problem (20)) is an approximate optimal solution eopt = (ε

opt
r1 , ε

opt
t1 ; . . . ; ε

opt
rM, ε

opt
tM) of

problem (21) (or problem (20)) and the value J(eopt) (or Ji(eopt)) describing the cloaking (or
shielding) performance of the designed shell (Ω, eopt). We emphasize that, due to the ill-
conditionedness of the system (14) for large M, setting its coefficients, finding the solution,
as well as all other calculations were performed with a fairly high accuracy provided by
the rules of the Wolfram Mathematica package.

4. Simulation Results and Discussion

Let us discuss here the results of the numerical solution to the problems of designing
electric cloaking and shielding devices under consideration using PSO. All computational
experiments were carried out for the following initial data:

a = 0.035 m, b = 0.05 m, ε0 = 1. (23)

The external field was a constant field Ea = −gradUa, where Ua = −Ea(r/b) cos θ for
Ea = 1 V/M. The purpose of numerical experiments was to study the dependence of the
properties of solutions to problems (20) and (21) on the number of layers M of the shell being
designed, as well as on the choice of the control set K in (18 ) or in (19), and, in particular,
on the value εmax/εmin, called the contrast of media with permittivities εmax and εmin. In
the case of a homogeneous anisotropic medium with parameters (εmin, εmax), instead of
contrast, we will use the concept of the degree of anisotropy ν, which is determined by the
contrast εmax/εmin by the formula

ν = 0.5× (
√

1 + 8× (εmax/εmin)− 1) (24)

similar (13). For convenience, we divide the set of all computational experiments into
two groups: the first group corresponds to the shielding and cloaking problems for the
anisotropic scenario, while the second group corresponds to the purely isotropic one.

Our first test relates to solving the extremum problem (20) using the PSO for the case
of a fully anisotropic multilayer shell (Ω, e) for the following pair of values εmin and εmax:

εmin = 0.02 and εmax = 2. (25)
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For contrast of data (25) we have εmax/εmin = 100, which corresponds to a small
anisotropy coefficient ν equalled to 13.65 due to (24).

Optimization analysis for various values of M = 1, 16 showed that the optimal values
(ε

opt
rm , ε

opt
tm ), m = 1, M, of permittivities of each layer, found using PSO, coincide with the

pair (εmin, εmax) defined in (25), for any M = 1, 16. Hence the corresponding minimizer
eopt of the problem (20) corresponding to the pair (25) has the form

eopt = (εmin, εmax; εmin, εmax; . . . ; εmin, εmax), (26)

while the value Ji(eopt) which has the meaning of the inverse of the shielding performance
of the shell (Ω, eopt), equals to 6.340× 10−3. This means that all layers of the designed
multilayer shell (Ω, eopt) must be filled with the same anisotropic medium with permittivi-
ties ε

opt
rm = 0.02 and ε

opt
tm = 2, m = 1, M. In other words, the cloaking shell designed with

the help of PSO is a single anisotropic sample for which the global permittivities ε
opt
r , ε

opt
t

determined by the formulas (2) and the minimum value Ji(eopt) are given for any number
of layers M = 1.16 by the relations

ε
opt
r = εmin, ε

opt
t = εmax in Ω, Ji(eopt) = 6.340× 10−3. (27)

The value Ji(eopt) in (27) corresponds to the low shielding performance of the de-
signed anisotropic shell (Ω, eopt). Thus, the solution of the problem (20) in the case of the
anisotropic scenario for the first pair of parameters εmin = 0.02 and εmax = 2 does not
provide a high shielding performance (we explain this by the smallness of the anisotropy co-
efficient ν = 13.65 of the shield (Ω, eopt)), nor the simplicity of its technical implementation
due to the anisotropy of the medium filling Ω.

To increase the shielding performance of the shell being designed, the contrast of the
pair (εmin, εmax) should be increased. This can be seen from the analysis of the results of
computational experiments for the second pair

εmin = 0.02 and εmax = 16 (28)

with contrast εmax/εmin = 800, which due to (24) corresponds to the anisotropy degree
ν = 39.50.

As shown by the optimization analysis, the optimal values of permittivities of all
layers, found using PSO, again coincide in each layer with a new pair (εmin, εmax) for any
M = 1, 16; besides, we have J(eopt) = 1.032× 10−6, where eopt is given by (26), (28). This
corresponds to filling all layers of the designed shell with the same anisotropic medium, so
that the global permittivities ε

opt
r , ε

opt
t and the minimum value Ji(eopt) for all M = 1, 16 are

given by
ε

opt
r = εmin, ε

opt
t = εmax in Ω, Ji(eopt) = 1.032× 10−6. (29)

The value Ji(eopt) in (29) corresponds to the high shielding performance of the de-
signed anisotropic shell (Ω, eopt). Thus, the solution of the problem (20) for the case of the
anisotropic scenario when using the second pair (28) of parameters (εmin, εmax) provides a
high shielding performance due to the high anisotropy coefficient ν = 39.50 of the shield
(Ωeopt). But it does not ensure the simplicity of its technical implementation due to the
anisotropy of the designed shielding device.

Similar results hold for the cloaking problem. To verify the validity of this fact, the
particle swarm optimization method must be applied to solve the extremum problem (21)
corresponding to the design of an anisotropic cloaking shell for the case of the first and
second pairs (25) and (28) of parameters εmin and εmax.
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Optimization analysis with the help of PSO for the first pair (25) led to results that
are similar for all values of M = 1, 16 to the results obtained when solving the shielding
problem (20), namely:

ε
opt
r = εmin, ε

opt
t = εmax in Ω, J(eopt) = 3.364× 10−3. (30)

Here eopt is given by (25), (26), and the single difference between (30) and (27) is
that instead of Ji(eopt), the value J(eopt) is used in (30). Thus, the found optimal solution
eopt of the cloaking problem, which again has the form (26), (25), corresponds to a single
anisotropic sample with global permittivities ε

opt
r = 0.02, ε

opt
t = 2 and the minimum value

J(eopt) = 3.364× 10−3, which corresponds to low cloaking performance of the optimal
cloak (Ω, eopt).

To increase the cloaking performance of the shell being designed, the contrast of the
pair (εmin, εmax) should be increased, for example, by choosing the second pair (28). As the
optimization analysis showed, the optimal values of the permittivities of all layers, found
using the PSO for the second pair (28) of the parameters εmin and εmax, again coincide in
each layer with the mentioned pair (εmin, εmax) for any M = 1, 16. The latter corresponds
to filling all layers of the designed shell with the same anisotropic medium with global
permittivities ε

opt
r = 0.02 and ε

opt
t = 16. Besides, we have J(eopt) = 4.635× 10−5 for each

M = 1, 16, where eopt is given by (26), (28). This value J(eopt) corresponds to the high
performance of the designed anisotropic cloaking shell. Thus, the solution of the problem
(21) for the anisotropic scenario for the second pair (28) of parameters (εmin, εmax) provides
a high cloaking performance due to the high degree of anisotropy with ν = 39.50 of the
cloak (Ω, eopt), but it does not ensure the simplicity of its technical implementation due to
the anisotropy of the designed cloak.

Let us now discuss the results of computational experiments for tests of the second
group, corresponding to the M-layered isotropic shell schematically represented in Figure 3.
Remind that in this case the set of controls is defined by the formula (19), while as the lower
and upper bounds (εmin, εmax) of the set K we will use one of the following pairs:

1) (0.02, 2), 2) (0.02, 16), 3) (0.02, 50). (31)

Note that all the values included in (31), except for εmin = 0.02, correspond to the
permittivities of widespread materials. In fact, the value εmax = 2 describes the permittivity
of polypropylene, εmax = 16 describes the permittivity of germanium, and εmax = 50
describes the permittivity of certain grades of capacitor ceramics, known as tikond.

 

a b 

Ω1 
Ω0 

Ω2 

Ω𝑀−1 
Ω𝑀 

… 

Figure 3. Schematic of a layered spherical isotropic shell consisting of M layers filling with alternat-
ing materials.
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Our optimization analysis of the shielding problem (20) showed for pairs in (31),
as well as for all other pairs used, that, the optimal solutions eopt ≡ (ε

opt
1 , ε

opt
2 , . . . , ε

opt
M )

obtained with the help of PSO for the case of the isotropic scenario, have two important
properties. They are similar to the properties established in [18,19] for optimal solutions of
shielding problems for magnetostatic models. The first property is that an analog of the
so-called bang-bang property (see [46]) holds for the optimal solution. According to this
property, each component ε

opt
m , m = 1, M, of the optimal solution eopt takes one of the two

values εmin or εmax, which are the boundaries of the set K defined in (19).
Moreover, the components ε

opt
m of the optimal solution eopt are strictly alternated, i.e.,

one of the following two relations is satisfied:

ε
opt
1 = ε

opt
3 = · · · = ε

opt
M−1 = εmin, ε

opt
2 = ε

opt
4 = · · · = ε

opt
M = εmax (32)

or
ε

opt
2 = ε

opt
4 = · · · = ε

opt
M−1 = εmin, ε

opt
1 = ε

opt
1 = · · · = ε

opt
M = εmax, (33)

corresponding to the so-called alternating design scheme of the 1st or 2nd type (see [19]).
The second important property is that for any number of layers M, the minimum value

Jopt
i = Ji(eopt) decreases and, consequently, the shielding performance of the designed

shell (Ω, eopt) increases with increasing the contrast εmax/εmin.
A clear confirmation of these properties are presented in Table 1 and Figures 4 and 5.

Table 1 presents the results of solving the problem (20) for the third pair in (31) in the form
of optimal values ε

opt
1 , ε

opt
2 ,εopt

M−1, ε
opt
M of permittivities of the first two and last two layers

and values Ji(eopt), Je(eopt), J(eopt) of the functionals Ji, Je, J for the optimal solution eopt

of problem (20). Figure 4 shows the dependence of the minimum value Jopt
i ≡ Ji(eopt)

on the number of layers M for three different pairs (εmin, εmax) given in (31). Figure 5a
schematically shows the structure of the six-layer shield designed by solving problem (20)
using PSO for the first pair (εmin, εmax) in (31) at M = 6. Figure 5b,c are analogs of Figure 5a
for the second and third pairs in (31).
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Figure 4. Three graphs of the dependence of the minimum value Jopt
i = Ji(eopt) of the cost functional

Ji corresponding to the shielding problem on the number of isotropic layers M for three different
pairs (εmin, εmax) given in (31).
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Shielding problem Cloaking problem 

a 
 

 

d 
 

 
  Layer A – 𝜺𝒎𝒊𝒏 = 𝟎. 𝟎𝟐  

 Layer B – 𝜺𝒎𝒂𝒙 = 𝟐  

 Layer E – 𝜺𝒎𝒊𝒏  ≤ 𝜺 ≤ 𝜺𝒎𝒊𝒏  

b 
 

 

e 
 

 
  Layer A – 𝜺𝒎𝒊𝒏 = 𝟎. 𝟎𝟐  

 Layer C – 𝜺𝒎𝒂𝒙 = 𝟏𝟔  

 Layer E – 𝜺𝒎𝒊𝒏  ≤ 𝜺 ≤ 𝜺𝒎𝒊𝒏  

c 
 

 

f 
 

 
  Layer A – 𝜺𝒎𝒊𝒏 = 𝟎. 𝟎𝟐  

 Layer D – 𝜺𝒎𝒂𝒙 = 𝟓𝟎  

 Layer E – 𝜺𝒎𝒊𝒏  ≤ 𝜺 ≤ 𝜺𝒎𝒊𝒏  

Figure 5. Schematic of optimal six-layered isotropic shells obtained when solving shielding (a–c) or
cloaking (d–f) problems for three different pairs (εmin, εmax) given in (31) [the first pair—(a,d); the
second pair—(b,e); the third pair—(c,f)].

Table 1. Results of solving shielding problem for εmin = 0.02, εmax = 50; Ra = 0.035, Rb = 0.050,
R = 0.1, Contrast= 2500.

M ε
opt
1 ε

opt
2 ε

opt
M−1 ε

opt
M Ji(eopt) Je(eopt) J(eopt)

2 50 0.02 1.419× 10−2 1.188 × 10−1 6.654 × 10−2

4 50 0.02 50 0.02 1.234 × 10−3 9.634 × 10−2 4.879 × 10−2

6 50 0.02 50 0.02 2.700 × 10−4 7.774 × 10−2 3.900 × 10−2

8 50 0.02 50 0.02 9.897 × 10−5 6.272 × 10−2 3.140 × 10−2

10 50 0.02 50 0.02 4.983 × 10−5 5.064 × 10−2 2.534 × 10−2

12 50 0.02 50 0.02 3.075 × 10−5 4.089 × 10−2 2.046 × 10−2

14 50 0.02 50 0.02 2.171 × 10−5 3.296 × 10−2 1.649 × 10−2

16 50 0.02 50 0.02 1.679 × 10−5 2.643 × 10−2 1.322 × 10−2

Analysis of Table 1 shows that the values ε
opt
1 , ε

opt
2 , ε

opt
M−1, ε

opt
M exactly satisfy the relation

(33). The same is true for other values of ε
opt
m due to the bang-bang property. In addition,

as M increases from 2 to 16, the value Ji(eopt) decreases from 1.419×10−2 to 1.679×10−5,
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which corresponds to a sufficiently high shielding performance of the optimal shell (Ω, eopt).
At the same time, the values Je(eopt) and J(eopt) given in the last two columns of Table 1
are relatively large, since it is the functional Ji(e) that we are minimizing when solving the
shielding problem. From Figure 4, in turn, it follows that the higher the contrast εmax/εmin,
the lower in Figure 4 is a graph of the function Jopt

i = Jopt
i (M) describing the dependence

of Jopt
i on M, and hence the higher the shielding performance of the corresponding shield

(Ω, eopt). An analysis of Figure 5a–c shows that each of the designed shields (Ω, eopt)
exactly satisfies the alternating design rule: in its structure, it consists of two alternating
materials A and B with permittivities εA = εmin and εB = εmax, where the pair (εmin, εmax)
takes one of three values in (31).

Let us now turn to the cloaking problem (21). Our optimization analysis using PSO
showed that the above-mentioned two properties hold for their optimal solutions, but with
two differences. The first is that these properties are satisfied under the additional condition.

εminεmax ≤ ε2
0 (34)

to the boundaries εmin and εmax of the set K in (19). The second difference is that the alter-
nating design relations (32) or (33) hold for all components ε

opt
m of the optimal solution eopt,

except for the last one ε
opt
M , which can take an intermediate value between εmin and εmax.

A clear confirmation of these properties are Table 2 and Figures 5 and 6. Table 2
presents the results of solving the problem (21) for the third pair in (31) in the form of the
first two and last two optimal components ε

opt
1 , ε

opt
2 , ε

opt
M−1, ε

opt
M of the vector eopt and values

Ji(eopt), Je(eopt), J(eopt) of functionals Ji, Je, J for the optimal solution eopt of problem
(21). Figure 5d schematically shows the structure of a six-layer cloak designed by solving
problem (20) using PSO for the first pair (εmin, εmax) in (31) at M = 6. Figure 5e,f are
analogs of Figure 5d for the second and third pairs in (31). Figure 6 shows the dependence
of the minimum value Jopt = J(eopt) on the number of layers M for three different pairs
(εmin, εmax) given in (31).

Table 2. Results of solving cloaking problem for εmin = 0.02, εmax = 50; Ra = 0.035, Rb = 0.050,
R = 0.1, Contrast = 2500.

M ε
opt
1 ε

opt
2 ε

opt
M−1 ε

opt
M Ji(eopt) Je(eopt) J(eopt)

2 50 0.184 8.699 × 10−2 3.022 × 10−11 4.349 × 10−2

4 50 0.02 50 0.092 3.836 × 10−3 3.149 × 10−11 1.918 × 10−3

6 50 0.02 50 0.064 5.962 × 10−4 2.189 × 10−12 2.981 × 10−4

8 50 0.02 50 0.051 1.771 × 10−4 2.120 × 10−12 8.859 × 10−5

10 50 0.02 50 0.043 7.742 × 10−5 1.392 × 10−12 3.871 × 10−5

12 50 0.02 50 0.037 4.318 × 10−5 1.961 × 10−13 2.159 × 10−5

14 50 0.02 50 0.034 2.827 × 10−5 5.942 × 10−14 1.413 × 10−5

16 50 0.02 50 0.031 2.063 × 10−5 2.722 × 10−14 1.031 × 10−5

From Table 2 follows that as M increases from 2 to 16, the value J(eopt) decreases from
4.349× 10−2 to 1.031× 10−5, which corresponds to a sufficiently high cloaking performance
of the optimal shell (Ω, eopt). In this case, the optimal values ε

opt
1 , ε

opt
2 , ε

opt
M−1, as well as

the intermediate values ε
opt
m , 2 < m < M− 1, obey the alternating design property in (33),

while the optimal value ε
opt
M of the last component εM decreases from 0.184 to 0.031 as M

changes from 2 to 16. From Figure 6 follows that the higher the contrast εmax/εmin, the
lower in Figure 6 is the graph of the function Jopt = Jopt(M), and consequently, the higher
the cloaking performance of the corresponding shell (Ω, eopt).
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Figure 6. Three graphs of the dependence of the minimum value Jopt ≡ J(eopt) of the cost functional
J corresponding to the cloaking problem on the number of isotropic layers M for three different pairs
(εmin, εmax) given in (31).

An analysis of Figure 5 shows that each of the three cloaks located on the right side of
Figure 5 differs from the corresponding shield located on the left side of Figure 5, only by
the value ε

opt
M of the permittivity of the last layer. If for the shield we have ε

opt
M = εmax, in

accordance with the alternating design rule, while for the cloak the last permittivity ε
opt
M

takes some intermediate value from the interval [εmin, εmax]. This is precisely the peculiarly
of the cloaking problem and its main difference from the shielding problem.

On the one hand, due to this fact, the cloaking performance strongly depends on the
permittivity ε

opt
M of the last layer. On the other hand, this makes it possible to significantly

simplify the solution to the cloaking problem. Indeed, since, by the bang-bang property,
the first M− 1 layers consist of alternating materials with permittivities εmax and εmin, then
to find the desired optimal solution, there is no need to solve the general M-dimensional
problem (21), but it is sufficient to solve the corresponding one-parameter extremum
problem with respect to the last control.

Just on this principle the generalization of the alternating design rule, called in [18] the
almost alternating design rule, is based. This design rule is to choose alternating values εmax

and εmin as the first M− 1 components ε
opt
m of the optimal solution eopt while the last one

ε
opt
M is found by solving the corresponding one-dimensional control problem with respect

to last component εM. We emphasize that the use of the almost alternating design rule,
instead of the alternating design rule, for designing cloaking shells leads to a significant
increase in the cloaking performance of the cloak designed in this way. This can be verified
by comparing the last columns of Tables 1 and 2 containing the values J(eopt) found using
the alternate design and almost alternate design strategies, respectively. This comparison,
for example, for M = 6 shows that J(eopt) = 3.900× 10−2 in the case of Table 1, which
corresponds to low cloaking performance, while for Table 2 J(eopt) = 2.981× 10−4, which
corresponds to high cloaking performance. As M increases, this difference is getting greater.
The latter confirms the high efficiency of using the almost alternating design rule when
solving the cloaking problem.

In the case when the found value ε
opt
M does not correspond to any extended material, a

purely technical difficulty arises associated with the creation of this material. However, this
difficulty is not fundamental in view of the great successes achieved to date in the creation
of metamaterials with desired dielectric properties. Another way to get rid of this difficulty,
proposed in [37] for thermal cloaking problems is to choose the value ε̃

opt
M in the vicinity

of ε
opt
M , corresponding to the available natural or engineering material, and to replace ε

opt
M

with the value ε̃
opt
M .

We emphasize that the algorithm developed in this work has high accuracy, efficiency,
and universality. The latter means that it can be used to solve design problems for various
special devices, including energy concentrators, illusion devices, etc., both for models
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of electrostatics, magnetostatics, and for models of static fields of a different physical
nature. With some natural changes, the developed algorithm can be extended to the case of
electromagnetic cloaking using some results from [51] (namely, regarding dynamical motion
under the action of various unsteady restoring and perturbation torques). Another possible
generalization of the obtained results, motivated by the recently published article [52],
refers to the study of the behavior of multilayer (three-layer) spherical celestial bodies.

5. Conclusions

Inverse problems for a 3D electrostatic model which arise when developing technolo-
gies for designing electric cloaking and shielding devices were considered. It is assumed
that the devices being designed to consist of a finite number of concentric spherical lay-
ers filled with homogeneous anisotropic or isotropic media. A mathematical technology
for solving these problems based on the use of an optimization method for studying in-
verse problems has been developed. The quantities inverse to the cloaking or shielding
performances of the shells being designed were chosen as the cost functionals under mini-
mization. The material parameters of spherical shells played the role of control parameters
in the formulated extremum problems. To find the desired controls, an efficient numerical
algorithm based on the particle swarm optimization method was proposed. Using the
developed algorithm, a series of computational experiments were carried out to solve the
problems of designing shielding and cloaking devices in a wide range of changes of the
main parameters included in the electrostatics model used.

The performed optimization analysis showed that the high performance of the de-
signed cloaking and shielding devices can be achieved using both single-layer anisotropic
shells with a high anisotropy coefficient and multilayer isotropic shells consisting of sev-
eral isotropic spherical layers Ωm, m = 1, M, each of which is filled with a homogeneous
medium with a certain constant permittivity εm > 0. The values of the indicated permittivi-
ties εm of all layers are found using the developed numerical algorithm based on PSO.

In the case of isotropic shells, the constructed optimal solutions eopt ≡ (ε
opt
1 , ε

opt
2 , . . . , ε

opt
M )

possess the bang-bang property, according to which, for any number of layers M, each
component ε

opt
m of the optimal solution eopt (except for the last component ε

opt
M in cloaking

problem) takes one of the two values εmin and εmax, which are the boundaries of the
control set K in (19). This allows us to make an important conclusion that the optimization
algorithm developed in the paper allows us to construct optimal solutions to the shielding
and cloaking problems, which, with an appropriate choice of the control set K, correspond
to highly efficient shielding and cloaking shells that possess the simplicity of technical
implementation.
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