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Abstract: As the number of COVID-19 cases increases, the long-COVID symptoms become the focus
of clinical attention. Based on the statistical analysis of long-COVID symptoms in European and
Chinese populations, this study proposes the path module correlation coefficient, which can estimate
the correlation between two modules in a network, to evaluate the correlation between SARS-CoV-2
infection and long-COVID symptoms, providing a theoretical support for analyzing the frequency
of long-COVID symptoms in European and Chinese populations. The path module correlation
coefficients between specific COVID-19-related genes in the European and Chinese populations
and genes that may induce long-COVID symptoms were calculated. The results showed that the
path module correlation coefficients were completely consistent with the frequency of long-COVID
symptoms in the Chinese population, but slightly different in the European population. Furthermore,
the cathepsin C (CTSC) gene was found to be a potential COVID-19-related gene by a path module
correlation coefficient correction rate. Our study can help to explore other long-COVID symptoms that
have not yet been discovered and provide a new perspective to research this syndrome. Meanwhile,
the path module correlation coefficient correction rate can help to find more species-specific genes
related to COVID-19 in the future.

Keywords: COVID-19; long COVID symptoms; path module correlation coefficient; path module
correlation coefficient correction rate

MSC: 92C42

1. Introduction

COVID-19 caused by SARS-CoV-2 has greatly affected people’s lives. SARS-CoV-2,
a coronavirus coated with RNA, shares 79% of its genome sequence with SARS-CoV, which
caused the outbreak of SARS in Guangdong, China, in 2002 and 2003, and uses angiotensin-
converting enzyme 2 (ACE2) as a receptor into human cells [1]. As of 9 December 2022, the
cumulative number of confirmed cases of COVID-19 in the world had frighteningly reached
640 million, with 6.6 million cumulative deaths. Patients infected with COVID-19 usually
have fever, sore throat, diarrhea, cough and other symptoms, and the severity of some
symptoms is also related to patient age and gender [2]. In addition, infection with COVID-19
may also cause some other concurrent diseases, such as Guillain–Barre syndrome, systemic
pneumonia, cerebellar syndrome, etc. [3–5]. Many scholars have researched COVID-19
from several aspects. In terms of COVID-19 pathology, some genes were found to be
associated with COVID-19 infection, such as ACE2, HAL-B, DPP4 [6–8]. Dmitry et al. [9]
developed a calibrated mathematical model of the antiviral immune response to SARS-CoV-
2 infection. They considered multiple immune reaction components in a single calibrated
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mathematical model which allowed them to address some fundamental issues related to the
pathogenesis of COVID-19. In terms of treatment, hydroxychloroquine and N. sativa seeds
maybe helpful to cure COVID-19, but their mechanism of action is not clear [10,11]. In terms
of prevention, the locational Hoover index, mean-field models and the susceptible-infected-
recovered-deaths model have been used to analyze the transmission and prevention of
COVID-19 [12,13]. The Verhulst’s, Gompertz’s, and SIR models were used to predict the
future of the COVID-19 pandemic, using as observed data, the daily cases in the past [14].

Although many people have been cured by treatment after infection, some are not
cured in the true sense. A large part of people with a history of COVID-19 infection show
various tissue, organ and even systemic symptoms, such as fatigue, shortness of breath,
cognitive dysfunction, etc., which affect their daily life [15]. This condition with these
symptoms of recovery associated with COVID-19 infection is known as long COVID. Long
COVID is characterized by common symptoms present for much longer than expected and
lasting effects of the infection in people who have recovered from COVID-19 [16]. Post-
acute sequelae of COVID-19, ongoing COVID-19, chronic COVID syndrome, long-haul
COVID, and post-COVID-19 are some other terms for long COVID [17]. On 13 September
2022, the WHO reported that modelling data from the Institute for Health Metrics and
Evaluation (IHME) at the University of Washington School of Medicine in the United
States showed that in 2020 and 2021, nearly 145 million people worldwide had at least one
long-COVID symptom. The long-COVID symptoms not only affect normal life, but also
can be persistent and recurrent [18]. Although research on COVID-19 is being conducted
in depth and has proposed many treatment options, the long-COVID symptoms are not
well known [19].

At present, most studies of long-COVID symptoms are based on the statistical data
obtained from adults with confirmed SARS-CoV-2 infection [20,21]. The long-COVID
symptoms are correlated with the severity of the COVID-19 infection, the time passed since
the last vaccination, variants of SARS-CoV-2 and even the gender [22,23]. In Europe, fatigue,
dyspnea, joint pain and chest pain are the four symptoms with the highest frequency, and
fatigue symptoms account for 53.1% if all symptoms. In contrast, in China, fatigue/muscle
weakness is the most common symptom, accounting for 63% of all symptoms, followed
by sleeping difficulty and anxiety/depression [24]. In terms of pathophysiology, some
specialists studied the long-COVID symptoms by radiology and found lung damage may
be responsible for persistent dyspnea and cough in long COVID [25,26]. Some specialists
found evidence of the neurotropism and replication capacity of SARS-CoV-2 in neurons
in the human brain [27,28]. Since neurons rarely regenerate, the resulting brainstem
dysfunction may be long-lasting, leading to neurological and cardiorespiratory sequelae
that might underlie long COVID [29]. Some other specialists think SARS-CoV-2 may
dysregulate the host immune response, allowing previously harbored pathogens, such as
human herpes virus 6 (HHV-6) and human herpes virus 7 (HHV-7), to reactivate, which
leads to long COVID [28,30]. In some detailed studies, Russell et al. [31] suggested that
the reported long-COVID symptoms can be directly attributed to the dysregulation and
chronic activation of cytokine signaling. They found SARS-CoV-2 directly upregulates
p38 MAPK genes, potentiates the p38 pathway and blocks p38 MAPK inhibitors, which
results in worsening inflammation and disease progression. Rupert [32] proposed that
SARS-CoV-2 specifically binds to the membrane Receptor for Advanced Glycation End
Products (mRAGE) and Toll Like Receptor 4 (TLR4) and that the pathological positive
feedback that sustains the TLR4/RAGE loop is probably the fundamental immunological
dysregulation responsible for long COVID. However, the above studies on long COVID
were mostly based on retrospective or prospective observational analyses, and theoretical
studies of long COVID internal induction mechanisms based on gene regulations are few.
COVID-19 has been confirmed to be related to multiple genes, such as ACE2, TMPRSS2,
etc. [24,33]. Long-COVID symptoms may be induced by mutation of some genes caused
by COVID-19. Therefore, genetic analysis would enable people to find the mechanism
supporting the emergence of long-COVID symptoms.
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In this work, a path module correlation coefficient based on a human gene interac-
tion network is proposed to measure the correlation between long-COVID symptoms and
COVID-19. Firstly, we derived all the gene interaction relationships discovered so far from
the NCBI and screened out human gene interaction relationships to obtain the largest
connected component (LCC) of the human gene interaction network. Then, according
to a previous paper [34], we obtained specific COVID-19-related genes (SCRGs) in the
European and Chinese populations and identified the long-COVID symptom-inducing
genes (LCSIGs) in Europe and China mentioned in the paper [24] from the NCBI. Then,
we calculated the path module correlation coefficient between COVID-19 and each long-
COVID symptom based on the path length between SCRGs and LCSIGs and the maximum
of shortest paths between nodes within each LCSIGs. We found that the ranks of these cor-
relation coefficients were basically consistent with the frequency of long-COVID symptoms,
and only the coefficient of dyspnea for the European population was slightly different.
These results provide a theoretical support at the genetic level for the high frequency of
long-COVID symptoms in Europe and China. In order to obtain potential European SCRGs,
we identified the gene CTSC from Chinese SCRGs through a path module correlation
coefficient correction rate. Then, we combined this gene with the European SCRGs to calcu-
late the path module correlation coefficients and showed that the results improved. This
suggests that there may be undiscovered European population-specific COVID-19 related
genes. This study provides a feasible direction for finding SCRGs in different populations
in the future. Figure 1 shows a graphical abstract of this work.
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2. Materials and Methods
2.1. Data Collection

We obtained the gene interaction relations file from the NCBI database (https://ftp.
ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz, accessed on 17 November 2022). Each
line in the file represents an interaction; the information includes the species, gene ID,
interaction information, etc., which is supported by the literature. A total of 19,912 genes
and 781,952 interactions were obtained by screening human–human gene interactions.

In a previous paper [34], the gene symbols of SCRGs in the European and Chinese
populations were provided. We searched the gene IDs corresponding to these genes
in the NCBI and matched them with the above-mentioned interaction relationships for
subsequent analysis. There were 13 SCRGs in the European population, and 6 SCRGs in
the Chinese population. Figure 2 shows the two networks of the SCRGs in the European
and Chinese populations with first neighbors. The two networks include 541 nodes and
439 nodes respectively. We can see several hub nodes are present in the SCRGs. Though
the SCRGs are not many, the networks of SCRGs with first neighbors are not small. In
particular, we did not include in the analysis some widely known COVID-19-related genes
such as ACE2, because these genes may exert similar effects in different races, which would
not be helpful for our follow-up analysis of long-COVID symptoms in different races.
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In a previous paper [24], survey results of long-COVID symptoms in patients in Europe
and China were presented. In the survey results for Europe, fatigue (53.1%), dyspnea
(43.4%), joint pain (27.3%) and chest pain (21.7%) were the most common symptoms.
Fatigue/muscle weakness (63%) was the most common symptom in China, followed by
sleeping difficulty (26%) and anxiety/depression (23%). We used symptoms as keywords
from NCBI to search for LCSIGs.

2.2. Path Module Correlation Coefficient

In order to measure the correlation between two modules in a complex network, we
constructed a path module correlation coefficient based on the path length between nodes
in the network. In a connected undirected network G, a path can be found between any
two nodes in the network. The node set is defined as N = {n1,n2, . . . nN}, and the set of
edges is defined as E = {e1,e2 . . . eE}. There were two modules in the network, which means
two subsets of node sets, defined as N1 = {n11,n12, . . . ,n1N} and N2 = {n21,n22 . . . n2N}. The
network diameter D is defined as the maximum value of the shortest path between any
two nodes in the network, calculated as follows [35]:

D = max
i,j∈N

dij (1)

where dij represents the shortest path between node i and node j. The path module
correlation coefficient of the two network modules N1 and N2 is calculated as follows:

1. Take one node from each of the two modules, calculate the shortest path to obtain
n1N ∗ n2N shortest paths. These shortest path is s1, s2 . . . , ss, in total, s different path
values, and the frequency of these different path values can be calculated as follows:

pi =
mi

n1N ∗ n2N
, i = 1, 2, . . . , s (2)

where mi represents the counts of path si.

2. Multiply the network diameter minus the shortest path value by the corresponding
frequency to obtain the degree of correlation between modules, as follows:

cN1,N2 =
s

∑
i=1

(D− si) ∗ pi (3)

3. Calculate the maximum values D1 and D2 of the shortest paths between nodes in the
two modules. Then, the path module correlation coefficient of the two modules is
calculated as follows:

CN1,N2 = cN1,N2 ∗ (D−D1) ∗ (D−D2)/D2 (4)

The path module correlation coefficient integrates the degree of proximity between
modules and the degree of tightness within modules to obtain the degree of correlation
between two modules. The theoretical range of the path module correlation coefficient
is [0, D], with 0 indicating that there is no correlation between two modules. The larger
the correlation coefficient, the stronger the correlation between the two modules. In fact,
the probability that the path module correlation coefficient is 0 or D is very small. When
the network is fixed, the path module correlation coefficient of two modules is certain.
The Spearman’s rank correlation coefficient uses data ranks to calculate the correlation
coefficient [36]. Similar to the Spearman’s rank correlation coefficient idea, the path module
correlation coefficient was used to research the magnitude of correlation between the
SCRGs and the LCSIGs and obtain a rank to explain the different frequency of long-COVID
symptoms.

2.3. Path Module Correlation Coefficient Correction Rate

If a node is added to the N1 module, the path module correlation coefficient correction
rate is calculated according to the following process:
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1. Think of the added node as a separate module N3. In particular, the maximum shortest
path within a module that contains only one node is 0. Calculate the path module
correlation coefficient CN3,N2 between the modules N3 and N2.

2. The path module correlation coefficient correction rate δ after adding nodes is calcu-
lated as follows:

δ =
CN3,N2 − CN1,N2

CN1,N2

(5)

3. Results

As for the frequency of long-COVID symptoms in the European and Chinese popula-
tions previously described [24], we decided to measure the correlation between COVID-19
and different long-COVID symptoms from the perspective of gene networks by calculating
the path module correlation coefficients between SCRGs and LCSIGs in Europe and China.
Furthermore, a theoretical support is provided by this study for the frequency of long
COVID symptoms in different ethnic groups. Considering the inconsistency between the
path module correlation coefficient and the frequency, we decided to identify the poten-
tial SCRGs targeting specific populations through the path module correlation coefficient
correction rate.

3.1. Construction of the Human Gene Interaction Network

We obtained the gene interactions discovered so far from the NCBI database to ex-
amine human–human gene interactions and identified 781,952 interactions, involving
19,912 human genes in total. The 19,912 genes were taken as nodes, and the interactions
between the genes were taken as edges. An undirected gene interaction network was con-
structed, in which the LCC contained 19,906 nodes and 781,946 edges. Figure 3 shows the
degree distribution of the LCC. It can be seen that the degree distribution of this network
met the power law distribution.
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Figure 3. Degree distribution of the LCC. The horizontal coordinate represents the number of genes,
the vertical coordinate represents the frequency of the degrees, and the horizontal and vertical
coordinates are expressed as double logarithmic coordinates.

3.2. Correlation Analysis between COVID-19 and Long-COVID Symptoms

From a previous paper [34], we obtained SCRGs in the European and Chinese pop-
ulations, and considered them as the two modules of the LCC, denoting them as No and
Nc respectively. Genes that may induce fatigue, dyspnea, joint pain, chest pain, muscle
weakness, sleep difficulties, anxiety, depression from the NCBI and considered as modules
of the LCC, were termed Nfa, Ndy, Njp, Ncp, Nmu, Nsd, Nan, Nde, respectively. Table 1 shows
the number of genes contained in these modules.
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Table 1. Number of genes of each module.

Modules Number of Genes

No 13
Nc 6
Nfa 107
Ndy 14
Njp 14
Ncp 31
Nmu 4
Nsd 12
Nan 260
Nde 575

After obtaining the gene modules of COVID-19 and long-COVID symptoms, we
calculated the path module correlation coefficients between the SCRGs modules and the
LCSIGs modules in the European and Chinese populations. First, the path length and
frequency of the SCRGs and LCSIGs were calculated, and the results are presented in
Table A1. In Figure 4, we can see that the maximum length of the path between the SCRGs
and the LCSIGs in both Europe and China was not more than 5, and in most cases it was
2 or 3, shorter than the network radius, indicating that these long-COVID symptoms are
still closely related to COVID-19 at the genetic level. Then, we calculated the maximum
value of the shortest path between genes in the SCRGs module and genes in the LCSIGs
module. According to the results in Table 2, we can see that the maximum value of the
shortest path in most modules was 3 or 4, and only the value of the anxiety and depression
gene modules reached 5 and 6, indicating that the gene connection in most modules was
also relatively strong, while the results for the anxiety and depression gene modules could
be due to the large number of genes contained in these modules.

Mathematics 2023, 11, 1368 9 of 15 
 

 

  

(a) (b) 

Figure 4. (a) Path values and proportions of COVID-19 genes and different symptom genes in Eu-

rope. (b) Path values and frequencies of COVID-19 genes and different symptom genes in China. 

The x-axis represents the different path values, the y-axis represents the proportion of the path val-

ues. The maximum length of the path between the SCRGs and the LCSIGs in both Europe and China 

was not more than 5, and most path values were 2 and 3, indicating that these long-COVID symp-

toms are closely related to COVID-19 at the genetic level. 

Table 2. Maximum value of the shortest path in each module. The maximum value of the shortest 

paths in most modules was 3 or 4, and only the value of the anxiety and depression gene modules 

reached 5 and 6, indicating that the gene connection in most modules was relatively strong. 

Modules Maximum Value of the Shortest Path 

No 4 

Nc 3 

Nfa 4 

Ndy 4 

Njp 4 

Ncp 4 

Nmu 3 

Nsd 3 

Nan 5 

Nde 6 

Table 3. (a). Path module correlation coefficient between the European SCRGs module and the cor-

responding LCSIGs module. The rank of the path module correlation coefficient calculated by us is 

basically consistent with the rank of the long-COVID symptoms frequency described in the paper 

[24], except for the symptom of dyspnea. (b). Path module association coefficient between the Chi-

nese SCRGs module and the corresponding LCSIGs module. The path module correlation coeffi-

cients of combined fatigue and muscle weakness symptoms genes and the COVID-19 genes and 

combined anxiety and depression symptoms genes and the COVID-19 genes were determined. The 

rank of the path module correlation coefficients is completely consistent with the rank of the long-

COVID symptoms’ frequency described in the paper [24]. 

(a) 

Coefficient Value Rank Symptom frequency (%) 

CNo,Nfa 0.7825 1 53.1 

CNo,Ndy 0.7720 4 43.4 

CNo,Njp 0.7730 2 27.3 

CNo,Ncp 0.7725 3 21.7 

(b) 

Coefficient Value Rank Symptom frequency (%) 

CNc,Nfa/CNc,Nmu 2.4813 1 63 

CNc,Nsd 1.4512 2 26 

Figure 4. (a) Path values and proportions of COVID-19 genes and different symptom genes in Europe.
(b) Path values and frequencies of COVID-19 genes and different symptom genes in China. The
x-axis represents the different path values, the y-axis represents the proportion of the path values.
The maximum length of the path between the SCRGs and the LCSIGs in both Europe and China was
not more than 5, and most path values were 2 and 3, indicating that these long-COVID symptoms are
closely related to COVID-19 at the genetic level.
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Table 2. Maximum value of the shortest path in each module. The maximum value of the shortest
paths in most modules was 3 or 4, and only the value of the anxiety and depression gene modules
reached 5 and 6, indicating that the gene connection in most modules was relatively strong.

Modules Maximum Value of the Shortest Path

No 4
Nc 3
Nfa 4
Ndy 4
Njp 4
Ncp 4
Nmu 3
Nsd 3
Nan 5
Nde 6

Finally, according to steps 2 and 3 in Section 2.2, the path module correlation coeffi-
cients between the European and the Chinese SCRGs modules and the LCSIGs modules
were calculated. Table 3a shows the path module correlation coefficients between the
European SCRGs modules and the corresponding LCSIGs modules, and Table 3b shows
the Chinese results. We intercepted four decimal places, which is enough to obtain an
accurate rank of the path module correlation coefficients. The final columns in Tables 3a,b
report some statistical data about the frequency of long-COVID symptoms, as previously
indicated [24]. Although the values in Table 3a are close, their small difference may become
a large correlation difference for a large network; meanwhile, our focus was on the rank.
It was found for the European results, that the rank of the path module correlation coeffi-
cient calculated by us is basically consistent with the rank of the long-COVID symptoms
frequency previously described [24], except for the symptom of dyspnea. The correlation
coefficient between fatigue symptom genes and COVID-19 genes was the largest. Previous
research [24] concluded that the frequency of fatigue symptoms in the European population
was the highest. The second correlation coefficient was that for the correlation between
joint pain symptom genes and COVID-19 genes, followed by the correlation coefficient
between chest pain symptom genes and COVID-19 genes. As for the results of the Chinese
population, the frequencies of fatigue and muscle weakness symptoms, as well as those
of anxiety and depression symptoms were combined in the paper [24]. The path module
correlation coefficients of combined fatigue and muscle weakness symptoms genes and
COVID-19 genes were determined, as well as those of combined anxiety and depression
symptoms genes and COVID-19 genes. The results showed the path module correlation
coefficient of fatigue/muscle weakness and COVID-19 was greater than that of sleep diffi-
culty symptoms and anxiety/depression symptoms, which is completely consistent with
the rank of long-COVID symptoms’ frequency described in the paper [24]. Therefore,
according to our results, the path module correlation coefficient proposed by us indicates
a long-COVID inducement mechanism operating at the gene level.

As for the path module correlation coefficient value, we performed some experiments.
We randomly selected two modules, each including 10 nodes, from the gene interaction net-
work and calculated the path module correlation coefficient between them. Then, two mod-
ules including 50, 100, 150, 200 nodes were randomly selected for the same operation. Each
experiment was repeated fifty times. Table 4 shows the results of the distribution frequency
of the path module correlation coefficients. We can see that all of the coefficients fell into
the [0.1, 1.5) interval, most coefficients fell into the [0.3, 0.9) interval, and a small number of
coefficients fell into the [0.9, 1.5) interval. Therefore, the path module correlation coefficients
we calculated are reasonable.
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Table 3. (a). Path module correlation coefficient between the European SCRGs module and the
corresponding LCSIGs module. The rank of the path module correlation coefficient calculated by
us is basically consistent with the rank of the long-COVID symptoms frequency described in the
paper [24], except for the symptom of dyspnea. (b). Path module association coefficient between
the Chinese SCRGs module and the corresponding LCSIGs module. The path module correlation
coefficients of combined fatigue and muscle weakness symptoms genes and the COVID-19 genes
and combined anxiety and depression symptoms genes and the COVID-19 genes were determined.
The rank of the path module correlation coefficients is completely consistent with the rank of the
long-COVID symptoms’ frequency described in the paper [24].

(a)

Coefficient Value Rank Symptom Frequency (%)

CNo,Nfa 0.7825 1 53.1
CNo,Ndy 0.7720 4 43.4
CNo,Njp 0.7730 2 27.3
CNo,Ncp 0.7725 3 21.7

(b)

Coefficient Value Rank Symptom Frequency (%)

CNc,Nfa/CNc,Nmu 2.4813 1 63
CNc,Nsd 1.4512 2 26

CNc,Nan/CNc,Nde 1.0616 3 23

Table 4. Distribution frequency of the path module correlation coefficients between two modules
including 10, 50, 100, 150, 200 nodes. All of the coefficients fall into the [0.1, 1.5) interval, most coeffi-
cients fell into the [0.3, 0.9) interval, and a small number of coefficients fell into the [0.9, 1.5) interval.

Distribution Interval Frequency (%)

[0, 0.1) 0
[0.1, 0.3) 4.8
[0.3, 0.5) 42.4
[0.5, 0.7) 23.6
[0.7, 0.9) 17.2
[0.9, 1.1) 8.8
[1.1, 1.3) 0
[1.3, 1.5) 3.2

For comparison, we also used a random walk algorithm with restart to evaluate the
association between long-COVID symptoms and COVID-19. The random walk with restart
is defined by the following Equation [37]:

→
r l = cW̃

→
r l + (1− c)

→
e l (6)

where
→
r l is the correlation score between the start node i and the other nodes, W̃ represents

the standardization of the network connection matrix, c is the probability of restart,
→
e l is

a unit vector of n ∗ 1, the ith element is 1, the remaining elements are 0, n is the number
of nodes in the network. For a long-COVID symptom, we took each symptom gene as
the starting point of migration, calculated the correlation scores between the symptom
genes and the COVID-19 genes, and calculated the average value as the correlation score
between the long-COVID symptom and COVID-19. Due to the large number of network
nodes, we adopted an iterative method to solve the problem. As can be seen in the Figure 5,
the correlation scores tended to converge at the 9th step. For a clear comparison, Figure 5
shows only the results of the last five steps. We can see that the rank of the correlation scores
between COVID-19 and long-COVID symptoms in both Europe and China obtained by the
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random walk algorithm with restart were inconsistent with the frequency of symptoms
reported in the paper [24]. The final correlation scores are presented in Table A2. We further
demonstrated that the path module correlation coefficient proposed by us has theoretical
support for determining the occurrence probability of long-COVID symptoms.
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Figure 5. (a) Correlation scores between COVID-19 and long-COVID symptoms in Europe. (b) Cor-
relation scores between COVID-19 and long-COVID symptoms in China. The x-axis represents the
iteration times, and the y-axis represents the correlation scores. The rank of the correlation scores
between COVID-19 and long-COVID symptoms in both Europe and China obtained by the random
walk algorithm with restart are inconsistent with the frequency of symptoms reported in the paper [24].

3.3. Potential European Population-Specific COVID-19-Related Genes

As can be seen from the results in Table 3a, the path module correlation coefficient
between the dyspnea symptom gene and the COVID-19 genes for the European population
was smaller than that of joint pain and chest pain, which is inconsistent with the frequency
of dyspnea symptoms. The reason may be the specific COVID-19-related genes found in the
European population were not complete. We therefore mined potential European SCRGs
based on a path module correlation coefficient correction rate. Based on the discovered
SCRGs in the Chinese population, we explored whether there are SCRGs targeting the
European population. Algorithm 1 is as follows:

Algorithm 1

1. for gene in Nc:
2. No1 = {No,gene}
3. for symptom in {fa,dy,jp,cp}:
4. compute δsymptom,CNo1,N f a ,CNo1,Ndy ,CNo1,Njp ,CNo1,Ncp

5. if δdy > δjp > δcp and CNo1,N f a ≥ CNo1,Ndy ≥ CNo1,Njp ≥ CNo1,Ncp :
6. output gene

According to Algorithm 1, the gene CTSC was obtained. Table 5 shows the path mod-
ule correlation coefficient between the new module No1, which contained the gene CTSC,
and the gene modules of fatigue, dyspnea and other symptoms. Although the values did
not change much from Table 3a, in terms of rank, the path module correlation coefficients
between No1 and the long-COVID symptom gene modules were more consistent with the
frequency of the long-COVID symptoms than before, indicating that CTSC may be a poten-
tial European SCRG. Of course, there may be other potential genes to be discovered. This
also provides a feasible direction for the future search for SCRGs in different populations.
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Table 5. Path module correlation coefficients between the new module No1 and the modules
Nfa,Ndy,Njp and Ncp. Compared with the results in Table 3a, the results in this table are more
in line with the reality.

Coefficient Value Rank

CNo1,Nfa 0.784 1
CNo1,Ndy 0.774 2
CNo1,Njp 0.774 2
CNo1,Ncp 0.773 3

4. Discussion

According to the results of IHME, nearly 145 million people have experienced long
COVID; therefore, research on the inducement mechanism of long COVID and the devel-
opment of effective prevention and therapeutic measures have become an urgent problem.
Fatigue, dyspnea, cough, headache, brain fog, loss of smell and taste disorders are common
long-COVID symptoms. Many studies on long-COVID symptoms were conducted only to
obtain some statistical data from symptom reports or return visits of patients and did not
considered in depth the internal correlation between these symptoms and COVID-19 from
the perspective of genes [38,39]. Therefore, we hoped to obtain such internal correlation by
analyzing human gene networks.

Traditional correlation coefficients such as the Pearson correlation coefficient, Spear-
man correlation coefficient and Kendall correlation coefficient are often used to measure
the correlation of two variables X and Y. In order to measure the correlation between two
modules in a complex network, the tightness of nodes within modules and the tightness
of nodes between modules should be considered together, and traditional correlation
coefficients seem useless. The tightness of nodes can be estimated by the path length;
so, we construct a path module correlation coefficient based on the path length between
nodes in the network. In this study, the correlation between COVID-19 and long-COVID
symptoms was evaluated by the path module correlation coefficient at the gene level. The
path module correlation coefficient combined the internal and inter-module tightness of
gene modules related to COVID-19 that may induce long-COVID symptoms. We calcu-
lated the path module correlation coefficient between the SCRGs modules and the LCSIGs
modules in European and Chinese populations. The results showed that the rank of the
path module correlation coefficients was consistent with the rank of the frequency of long-
COVID symptoms in Chinese patients as well as in European patients, except for dyspnea,
which indicated that the path module correlation coefficient proposed by us has a certain
theoretical validity for determining the frequency of long-COVID symptoms. Moreover,
the results also showed that the fatigue symptom had different path module correlation
coefficients calculated in relation to SCRGs in the two races, indicating that the occurrence
of long-COVID symptoms may be related to race.

We considered that the path module correlation coefficients for Europe were not
completely consistent with the rank of the long-COVID symptoms’ frequency in European
patients, possibly due to the incomplete discovery of SCRGs in the European population.
Because of the validity of the SCRGs for the Chinese population, we tried to understand
whether a gene can be added to the SCRGs for the European population, so that the
path module correlation coefficients between the new SCRGs modules in the European
population and the LSCRGs modules of the corresponding long-COVID symptoms become
more representative of the real situation. We screened the desired target gene based on the
path module correlation coefficient correction rate, and the result showed that the gene
CTSC satisfied our expectations. Although it could not be determined whether the gene
is an SCRG in the European population, the addition of this gene could make the rank of
the path module correlation coefficients more close to the actual situation, suggesting the
presence of potential European population-specific COVID-19-related genes.



Mathematics 2023, 11, 1368 12 of 14

Our research provides a mechanism for the emergence of long COVID. In the diagnosis
and treatment of long COVID, the path module correlation coefficient can help to estimate
whether a disease symptom is a long-COVID symptom and bring it to clinical attention.
Meanwhile, the path module correlation coefficient can be also used in precision medicine.
Doctors can diagnose this syndrome in individual patient based on unique gene sequencing
data. The path module correlation coefficient correction rate can help to explore the
potential SCRGs that are strongly related to the LSCRGs according to simple and easily
available representation data, such as the frequency of long-COVID symptoms. In future
work, a promising research line is to further investigate long-COVID symptoms to identify
still unknown ones by the path module correlation coefficient, so that some preventive
measure can be taken. Furthermore, our work can be extended to construct more efficient
models and find more potential COVID-19-related genes in the entire range of human genes.

Author Contributions: Data curation, Z.M.; Methodology, Z.Y.; Visualization, Z.M.; Writing—original
draft, Z.L.; Writing—review & editing, B.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (Grant: 2021ZD0201302),
the Key R&D Program of Guangdong Province, China (Grant: 2021B0101420003), the National Natural
Science Foundation of China (Grant: 12201025), the National Natural Science Foundation of China
(Grant: U20B2053).

Data Availability Statement: The experiment data are available at https://ftp.ncbi.nlm.nih.gov/
gene/GeneRIF/interactions.gz, accessed on 17 November 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. (a). Path values and proportions of COVID-19 genes and different symptom genes in
Europe. (b). Path values and frequencies of COVID-19 genes and different symptom genes in China.

(a)

1 2 3 4

fatigue 6/1391 445/1391 845/1391 95/1391
dyspnea 0 45/182 129/182 8/182
joint pain 0 52/182 116/182 14/182
chest pain 0 106/403 274/403 23/403

(b)

1 2 3 4 5
fatigue 6/642 254/642 378/642 4/642 0
muscle

weakness 0 7/24 17/24 0 0

sleep
difficulties 2/72 28/72 42/72 0 0

anxiety 9/1560 527/1560 994/1560 30/1560 0
depression 13/3450 1132/3450 2129/3450 74/3450 3/3450

https://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz
https://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz
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Table A2. (a). Correlation scores between COVID-19 and long-COVID symptoms in Europe. (b). Corre-
lation scores between COVID-19 and long-COVID symptoms in China.

(a)

Correlation Scores Value

ro-fa 0.000136
ro-dy 0.000033
ro-jp 0.000081
ro-cp 0.000035

(b)

Coefficient Value

rc-fa 0.000152
rc-mu 0.000076
rc-sd 0.000095
rc-an 0.000241
rc-de 0.000181
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