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Abstract: It has been increasingly obvious in recent decades that fractional calculus (FC) plays a
key role in many disciplines of applied sciences. Fractional partial differential equations (FPDEs)
accurately model various natural physical phenomena and many engineering problems. For this
reason, the analytical and numerical solutions to these issues are seriously considered, and different
approaches and techniques have been presented to address them. In this work, the FC is applied
to solve and analyze the time-fractional heat transfer equation as well as the nonlinear fractional
porous media equation with cubic nonlinearity. The idea of solving these equations is based on
the combination of the Yang transformation (YT), the homotopy perturbation method (HPM), and
the Adomian decomposition method (ADM). These combinations give rise to two novel method-
ologies, known as the homotopy perturbation transform method (HPTM) and the Yang tranform
decomposition method (YTDM). The obtained results show the significance of the accuracy of the
suggested approaches. Solutions in various fractional orders are found and discussed. It is noted that
solutions at various fractional orders lead to an integer-order solution. The application of the current
methodologies to other nonlinear fractional issues in other branches of applied science is supported
by their straightforward and efficient process. In addition, the proposed solution methods can help
many plasma physics researchers in interpreting the theoretical and practical results.

Keywords: Yang transformation; fractional porous media; fractional heat transfer equation; homo-
topy perturbation method; Adomian decomposition method

MSC: 26A33; 34k37; 37M10; 42A38

1. Introduction

Fractional calculus (FC) has a significant advantage when it comes to simulating phys-
ical problems with whole-memory effects. In applied mathematics, fractional derivatives
are a useful tool for relating non-integer-order derivatives as well as integrals. Numerous
studies have been conducted in many fields of science, physics, and engineering concerning
this branch due to its importance in modeling many realistic problems. In reality, the novel
features of this distinguished branch appear in several disciplines, including fluid dynam-
ics, chemistry, applied mathematics, physics of plasma, astrophysics, mathematical biology,
control theory, image processing, controlled thermonuclear fusion, and many other fields.
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Fractional-order integrals and derivatives have become a significant new mathematical
tool that helps in solving many problems that arise in engineering, physics, and nature.
Podlubny [1] provided comprehensive details on arbitrary-order differential equations
(DEs). A great book on the basics and details of FC and DEs was written by Miller and
Ross [2]. There are also many research works on this very important topic in modeling
several nonlinear phenomena in physics, especially the physics of plasmas. Singh [3] inves-
tigated a fractional-order blood alcohol model. Caputo presented the basic characteristics of
the FC [4]. The topic of singular kernels connected to fractional derivatives was studied by
Caputo, and Fabrizio [5]. New aspects of fractional derivatives were explained by Caputo,
and Fabrizio [4].

Both nonlinear ordinary DEs (ODEs) and partial DEs (PDEs) are primarily applied to
describe most physical phenomena, either simple or complex, that appear in reality [6–8]
via mathematical modeling, such as many nonlinear phenomena that have been studied
and analyzed in different models of plasma physics [9–14]. The mathematical modeling
of numerous natural processes benefits greatly from the use of nonlinear fractional DEs
(NLFDEs). The essential feature of fractional derivatives is their nonlocality, which empha-
sizes how the future state arises from both current and all previous states [15–17]. The inves-
tigation of nonlinear ODEs is an essential way of determining the behavior of the system,
which has attracted the interest of many researchers (including scientists and engineers).
Fractional PDEs are significant mathematical models that accurately represent a variety of
complex processes in numerous scientific disciplines, such as fractional diffusion equations
occurring in oil pollution [18], fractional Fornberg–Whitham equations [19], fractional
Helmholtz equations [20], local fractional modified Zakharov–Kuznetsov (mZK) equa-
tions [21], fractional local damped wave and dissipative equations [22], fractional nonlinear
Boussinesq Equations [23], time-fractional Navier–Stokes equations [24], fractional third-
order Burgers and Korteweg–De Vries (KdV) equations [25], nonlinear Schrodinger (NLS)
equations [26], Maxwell’s equations [27], fractional advection–dispersion equations [27],
time-fractional Fisher’s equations [28], nonlinear biological predator–prey population sys-
tems [29], fractional-order Kaup–Kupershmidt equations [30], and fractional-order Gardner
and Cahn–Hilliard equations [31].

Mathematicians have constructed many numerical and analytical strategies for solv-
ing and analyzing integer order DEs and FPDEs because of the aforementioned applica-
tions [32–36]. For example, Mehdi Dehghan et al., in [37], applied the homotopy analysis
method (HAM) for solving the fractional KdV, Burgers, BBM–Burgers, coupled KdV, cubic
Boussinesq, and Boussinesq-like equations. Mohamed et al. [38] applied Elzaki Trans-
formation HPM (ETHPM) to determine a series form of solutions of different NLFDEs.
Similarly, Mounirah Areshi et al. [39] applied the variational iteration transform method
(VITM) to solve fractional-order Newell–Whitehead–Segel equations. An optimal HAM
has been applied by Randhir Singh [40] to solve non-isothermal reaction–diffusion model
equations with a spherical catalyst. With the help of the modified trial equation method,
Hasan Bulut and Yusuf Pandir [41] solved the time-fractional Sharma–Tasso–Olever (STO)
equation. Sheng Zhang et al. [42] used the modified extended Fan sub-equation technique
to solve the (3+1)-dimensional Kadomstev–Petviashvili (KP) equation. Analytic results
of the fractional-order diffusion equation have been investigated by applying the Yang
transformation (YT) decomposition technique [43]. Furthermore, the numerical solutions
of the multi-dimensional time-fractional telegraphic equation have been analyzed and
discussed using the reduced differential transform method [44]. Moreover, Azzh Saad
Alshehry et al. [45] developed natural transformation based on the decomposition method
for analyzing a fractional Kuramoto–Sivashinsky equation.

In nonlinear flow studies concerning heat and mass transfer, diffusion, porous media
flow, biology, and viscosity, as well as other related subjects, boundary-layer theory is
a crucial component; for example, the porous media equation, sometimes known as a
nonlinear heat equation, commonly exists, and more effort is needed to analyze them
via simplified mathematical approaches [46–49]. Current research aims to present novel
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methods for solving the fractional porous media equation and the non-linear time-fractional
heat transfer equation that features cubic non-linearity using the combination between YT,
HPM, and ADM. Adomian introduced the ADM in 1980 as a powerful tool for resolving
differential equations describing physical phenomena [50]. ADM is additionally altered
using the YT. As a result, the Yang transformation decomposition method (YTDM), a novel
technique, has been constructed.

The fundamental elements of both YT and ADM are included in the YTDM. This
method is useful and effective for analyzing PDEs of initial and boundary value problems.
He [51,52] created HPM by combining conventional homotopy and perturbation to address
a variety of physical issues. It is important to note that the HPM is applied without
any discretization, restricted assumptions, or transformation and is error-free concerning
rounding. Due to the challenges raised by the nonlinear variables, the YT is completely
unable to handle nonlinear equations. The well-known YT method is paired with the
homotopy perturbation approach to develop a highly efficient method known as the
homotopy perturbation transform method (HPTM) for dealing with numerous nonlinear
issues. The advantages of the proposed techniques are their capability of combining two
powerful approaches for obtaining exact and approximate analytical solutions to nonlinear
equations. It is important to keep in mind that the suggested methods can perform better in
general as they need less computational work than the alternative methods while keeping
a high level of numerical precision; the size reduction amounts to an improvement in the
performance of the approaches.

The following summarises this work’s structure: In Section 2, we present a few
fundamental elements of calculus theory. In Sections 3 and 4, the general solution is
obtained using the HPTM and YTDM algorithms, and Section 5 provides the convergence
analysis of these suggested techniques. In Section 6, we demonstrate the reliability and
efficacy of both strategies. In Section 7, the conclusion is presented.

2. Preliminary Concepts

Definition 1. The The Caputo definition of order ς is described as [39,53]

Dς
ϑζ(ß) =

1
Γ(ı− ς)

∫ ß

0
(ß− )ı−ς−1ζ(ı)()d, ı− 1 < ς ≤ ı, ı ∈ N. (1)

Definition 2. YT is defined by [43,54]

Y{ζ(ß)} = M(u) =
∫ ∞

0
e
−ß
u ζ(ß)dß, ß > 0, (2)

and its inverse reads

Y−1{M(u)} = ζ(ß). (3)

Definition 3. The YT inverse reads [43,54]

Y−1[Y(u)] = ζ(ß) =
1

2πι

∫ ς+ι∞

ς−ι∞
ζ

(
1
u

)
eußudu = Σ residues o f ζ

(
1
u

)
eußu.

Definition 4. The derivative of fractional order in YT reads [43,54]

Y{ζς(ß)} = M(u)
uς
−

n−1

∑
ı=0

ζ ı(0)
uς−(ı+1)

, n− 1 < ς ≤ n. (4)
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3. Fundamental Plan of HPTM

To discuss the main plan of the suggested scheme, we examine the following FPDE
related to the Caputo derivative:

Dς
ßζ(χ, ß) =M1[χ]ζ(χ, ß) +N1[χ]ζ(χ, ß), 0 < ς ≤ 1, (5)

with initial solution
ζ(χ, 0) = ξ(χ).

Here, Dς
ß = ∂ς

∂ßς denotes the fractional derivative in a Caputo manner, and M1[χ] and
N1[χ] represent the general differential operators.

Applying the YT, we obtain

Y[Dς
ßζ(χ, ß)] = Y[M1[χ]ζ(χ, ß) +N1[χ]ζ(χ, ß)], (6)

1
uς
{M(u)− uζ(χ, 0)} = Y[M1[χ]ζ(χ, ß) +N1[χ]ζ(χ, ß)]. (7)

The simplified form reads

M(u) = uζ(χ, 0) + uςY[M1[χ]ζ(χ, ß) +N1[χ]ζ(χ, ß)]. (8)

By employing the inverse of YT, we have

ζ(χ, ß) = ζ(χ, 0) + Y−1[uςY[M1[χ]ζ(χ, ß) +N1[χ]ζ(χ, ß)]]. (9)

In terms of HPM, the basic solution in a power series reads

ζ(χ, ß) =
∞

∑
ı=0

εıζı(χ, ß). (10)

with homotopy parameter ε ∈ [0, 1].
The nonlinear term reads

N1[χ]ζ(χ, ß) =
∞

∑
ı=0

εıHı(ζ). (11)

Accordingly, the following polynomials are obtained

Hı(ζ0, ζ1, . . . , ζn) =
1

Γ(n + 1)
Dı

ε

[
N1

(
∞

∑
ı=0

εiζi

)]
ε=0

, (12)

where Dı
ε = ∂ı

∂εı .
Substituting Equations (10) and (11) into Equation (9), we obtain

∞

∑
ı=0

εıζı(χ, ß) = ζ(χ, 0) + ε×
(

Y−1

[
uςY{M1

∞

∑
ı=0

εıζı(χ, ß) +
∞

∑
ı=0

εı Hı(ζ)}
])

. (13)

Equating similar coefficients of ε in the above equation, we have
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ε0 : ζ0(χ, ß) = ζ(χ, 0),

ε1 : ζ1(χ, ß) = Y−1[uςY(M1[χ]ζ0(χ, ß) + H0(ζ))],

ε2 : ζ2(χ, ß) = Y−1[uςY(M1[χ]ζ1(χ, ß) + H1(ζ))],

.

.

.

εı : ζı(χ, ß) = Y−1[uςY(M1[χ]ζı−1(χ, ß) + Hı−1(ζ))],

ı > 0, ı ∈ N.

(14)

Finally, we approximate the analytical solution in the following series form:

ζ(χ, ß) = lim
M→∞

M

∑
ı=1

ζı(χ, ß). (15)

4. The Fundamental Idea of the YTDM

The principal scheme of the current approach is based on studying the FPDE associated
with the Caputo derivative as follows:

Dς
ßζ(χ, ß) =M1(χ, ß) +N1(χ, ß), 0 < ς ≤ 1, (16)

with initial source
ζ(χ, 0) = ξ(χ).

Here, the fractional derivative in the Caputo manner is denoted by Dς
ß = ∂ς

∂ßς , and the
general differential operators are represented byM1 and N1.

Applying the YT, we obtain

Y[Dς
ßζ(χ, ß)] = Y[M1(χ, ß) +N1(χ, ß)],

1
uς
{M(u)− uζ(χ, 0)} = Y[M1(χ, ß) +N1(χ, ß)].

(17)

The simplified form reads

M(u) = uζ(χ, 0) + uςY[M1(χ, ß) +N1(χ, ß)], (18)

By employing the inverse of the YT, we obtain

ζ(χ, ß) = ζ(χ, 0) + Y−1[uςY[M1(χ, ß) +N1(χ, ß)]. (19)

The series form solution of ζ(χ, ß) reads

ζ(χ, ß) =
∞

∑
m=0

ζm(χ, ß). (20)

In Equation (19), the nonlinear term is put in as

N1(χ, ß) =
∞

∑
m=0
Am(ζ). (21)

with

Am

(
ζ0, ζ1, ζ2, · · · , ζm

)
=

1
m!

[
∂m

∂`m

{
N1

(
∞

∑
m=0

`mζm

)}]
`=0

, m = 0, 1, 2, · · · (22)
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The substitution of Equations (20) and (21) into Equation (19) yields

∞

∑
m=0

ζm(χ, ß) = ζ(χ, 0) + Y−1uς

[
Y

{
M1

(
∞

∑
m=0

ζm(χ, ß)

)
+

∞

∑
m=0
Am(ζ)

}]
. (23)

Similarly,
ζ0(χ, ß) = ζ(χ, 0), (24)

ζ1(χ, ß) = Y−1[uςY{M1(ζ0) +A0}],

Generally, for m ≥ 1, we obtain

ζm+1(χ, ß) = Y−1[uςY{M1(ζm) +Am}].

5. Convergence Analysis

In this part, the suggested techniques of convergence analysis are discussed

Theorem 1. Suppose that the exact solution to Equation (5) is G(χ, ß), and let G(χ, ß), Gn(χ, ß) ∈
H and α ∈ (0, 1), where H represents the Hilbert space. The obtained solution ∑∞

q=0 Gq(χ, ß)
converges G(χ, ß) if Gq(χ, ß) ≤ Gq−1(χ, ß) ∀q > A, i.e., for any ω > 0∃A > 0, such that
||Gq+n(χ, ß)|| ≤ β, ∀m, n ∈ N.

Proof. We take a sequence of ∑∞
q=0 Gq(χ, ß).

C0(χ, ß) =G0(χ, ß),

C1(χ, ß) =G0(χ, ß) + G1(χ, ß),

C2(χ, ß) =G0(χ, ß) + G1(χ, ß) + G2(χ, ß),

C3(χ, ß) =G0(χ, ß) + G1(χ, ß) + G2(χ, ß) + G3(χ, ß),
...

Cq(χ, ß) =G0(χ, ß) + G1(χ, ß) + G2(χ, ß) + · · ·+ Gq(χ, ß),

(25)

We must demonstrate that Cq(χ, ß) forms a “Cauchy sequence” in order to achieve the
desired outcome. Additionally, let us take

||Cq+1(χ, ß)− Cq(χ, ß)|| = ||Gq+1(χ, ß)|| ≤ α||Gq(χ, ß)|| ≤ α2||Gq−1(χ, ß)|| ≤ α3||Gq−2(χ, ß)|| · · ·
≤ αq+1||G0(χ, ß)||.

(26)

For q, n ∈ N, we have

||Cq(χ, ß)− Cn(χ, ß)|| =||Gq+n(χ, ß)|| = ||Cq(χ, ß)− Cq−1(χ, ß) + (Cq−1(χ, ß)− Cq−2(χ, ß))

+ (Cq−2(χ, ß)− Cq−3(χ, ß)) + · · ·+ (Cn+1(χ, ß)− Cn(χ, ß))||
≤||Cq(χ, ß)− Cq−1(χ, ß)||+ ||(Cq−1(χ, ß)− Cq−2(χ, ß))||
+ ||(Cq−2(χ, ß)− Cq−3(χ, ß))||+ · · ·+ ||(Cn+1(χ, ß)− Cn(χ, ß))||
≤αq||G0(χ, ß)||+ αq−1||G0(χ, ß)||+ · · ·+ αq+1||G0(χ, ß)||
=||G0(χ, ß)||(αq + αq−1 + αq+1)

=||G0(χ, ß)||1− αq−n

1− αq+1 αn+1.

(27)

As 0 < α < 1, and G0(χ, ß) are bound, we take β = 1− α/(1− αq−n)αn+1||G0(χ, ß)||, and
we obtain

||Gq+n(χ, ß)|| ≤ β, ∀q, n ∈ N. (28)
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Hence, {Gq(χ, ß)}∞
q=0 makes a “Cauchy sequence” in H. It proves that the sequence

{Gq(χ, ß)}∞
q=0 is a convergent sequence with the limit limq→∞ Gq(χ, ß) = G(χ, ß) for

∃G(χ, ß) ∈ H, which completes the proof.

Theorem 2. Let us assume that ∑k
h=0 Gh(χ, ß) is finite and that G(χ, ß) reflects the series solution

that was found. Assuming α > 0 such that ||Gh+1(χ, ß)|| ≤ ||Gh(χ, ß)||, the maximum absolute
error is given by the following relation.

||G(χ, ß)−
k

∑
h=0

Gh(χ, ß)|| < αk+1

1− α
||G0(χ, ß)||. (29)

Proof. Suppose ∑k
h=0 Gh(χ, ß) is finite which implies that ∑k

h=0 Gh(χ, ß) < ∞.
Let us consider

||G(χ, ß)−
k

∑
h=0

Gh(χ, ß)|| =||
∞

∑
h=k+1

Gh(χ, ß)||

≤
∞

∑
h=k+1

||Gh(χ, ß)||

≤
∞

∑
h=k+1

αh||G0(χ, ß)||

≤αk+1(1 + α + α2 + · · · )||G0(χ, ß)||

≤ αk+1

1− α
||G0(χ, ß)||.

(30)

which completes the proof of theorem.

Theorem 3. The result of (16) is unique when 0 < (ϕ1 + ϕ2)(
ßς

Γ(ς+1) ) < 1.

Proof. Let H = (C[J], ||.||) with the norm ||φ(ß)|| = maxß∈J |φ(ß)| be Banach space, which
is ∀-continuous function on J. Let I : H → H be a non-linear mapping, where

ζC
l+1 = ζC

0 + Y−1[p(ς, υ, v)Y[M(ζl(χ, ß)) +N (ζl(χ, ß))]], l ≥ 0.

Suppose that |M(ζ) −M(ζ∗)| < ϕ1|ζ − ζ∗| and |N (ζ) − N (ζ∗)| < ϕ2|ζ − ζ∗|, where
ζ := ζ(χ, ß) and ζ∗ := ζ∗(χ, ß) are are two different function values and ϕ1,ϕ2 are Lipschitz
constants.

||Iζ − Iζ∗|| ≤ maxt∈J |Y−1
[

p(ς, υ, v)Y[M(ζ)−M(ζ∗)]

+ p(ς, υ, v)Y[N (ζ)−N (ζ∗)]|
]

≤ maxß∈J

[
ϕ1Y−1[p(ς, υ, v)Y[|ζ − ζ∗|]]

+ ϕ2Y−1[p(ς, υ, v)Y[|ζ − ζ∗|]]
]

≤ maxt∈J(ϕ1 + ϕ2)
[
Y−1[p(ς, υ, v)Y|ζ − ζ∗|]

]
≤ (ϕ1 + ϕ2)

[
Y−1[p(ς, υ, v)Y||ζ − ζ∗||]

]
= (ϕ1 + ϕ2)(

ßς

Γ(ς + 1)
)||ζ − ζ∗||,

(31)

where I is a contraction as 0 < (ϕ1 + ϕ2)(
ßς

Γ(ς+1) ) < 1. From Banach’s fixed-point theorem,
the result of (16) is unique.
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Theorem 4. The result of (16) is convergent.

Proof. Let ζm = ∑m
r=0 ζr(χ, ß). To show that ζm is a Cauchy sequence in H, let

||ζm − ζn|| = maxß∈J |
m

∑
r=n+1

ζr|, n = 1, 2, 3, · · ·

≤ maxß∈J

∣∣∣∣∣Y−1

[
p(ς, υ, v)Y

[
m

∑
r=n+1

(M(ζr−1) +N (ζr−1))

]]∣∣∣∣∣
= maxß∈J

∣∣∣∣∣Y−1

[
p(ς, υ, v)Y

[
m−1

∑
r=n+1

(M(ζr) +N (ζr))

]]∣∣∣∣∣
≤ maxß∈J |Y−1[p(ς, υ, v)Y[(M(ζm−1)−M(ζn−1) +N (ζm−1)−N (ζn−1))]]|
≤ ϕ1maxß∈J |Y−1[p(ς, υ, v)Y[(M(ζm−1)−M(ζn−1))]]|
+ ϕ2maxß∈J |Y−1[p(ς, υ, v)Y[(N (ζm−1)−N (ζn−1))]]|

= (ϕ1 + ϕ2)(
ßς

Γ(ς + 1)
)||ζm−1 − ζn−1||.

(32)

Let m = n + 1; then,

||ζn+1 − ζn|| ≤ ϕ||ζn − ζn−1|| ≤ ϕ2||ζn−1ζn−2|| ≤ · · · ≤ ϕn||ζ1 − ζ0||, (33)

where ϕ = (ϕ1 + ϕ2)(
ßς

Γ(ς+1) ). Similarly, we have

||ζm − ζn|| ≤ ||ζn+1 − ζn||+ ||ζn+2ζn+1||+ · · ·+ ||ζm − ζm−1||,
(ϕn + ϕn+1 + · · ·+ ϕm−1)||ζ1 − ζ0||

≤ ϕn
(

1− ϕm−n

1− ϕ

)
||ζ1||,

(34)

As 0 < ϕ < 1, we obtain 1− ϕm−n < 1. Therefore,

||ζm − ζn|| ≤
ϕn

1− ϕ
maxß∈J ||ζ1||. (35)

Since ||ζ1|| < ∞, ||ζm − ζn|| → 0 when n→ ∞. As a result, ζm is a Cauchy sequence in H,
implying that the series ζm is convergent.

6. Numerical Problems

Example 1. Here, we consider the following fractional porous media Equation [55]:

∂ςζ(χ, ß)
∂ßς

=
∂

∂χ

(
ζ(χ, ß)

∂ζ(χ, ß)
∂χ

)
, (36)

with the initial condition
ζ(χ, 0) = χ

Applying the YT yields

Y
(

∂ςζ

∂ßς

)
= Y

[
∂

∂χ

(
ζ(χ, ß)

∂ζ(χ, ß)
∂χ

)]
, (37)
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The simplified form reads

1
uς
{M(u)− uζ(χ, 0)} = Y

[
∂

∂χ

(
ζ(χ, ß)

∂ζ(χ, ß)
∂χ

)]
, (38)

M(u) = uζ(χ, 0) + uςY

[
∂

∂χ

(
ζ(χ, ß)

∂ζ(χ, ß)
∂χ

)]
. (39)

By employing the inverse of the YT, we obtain

ζ(χ, ß) = ζ(χ, 0) + Y−1

[
uς

{
Y

[
∂

∂χ

(
ζ(χ, ß)

∂ζ(χ, ß)
∂χ

)]}]
,

ζ(χ, ß) = χ + Y−1

[
uς

{
Y

[
∂

∂χ

(
ζ(χ, ß)

∂ζ(χ, ß)
∂χ

)]}]
.

(40)

In terms of HPM, we have

∞

∑
ı=0

εıζı(χ, ß) = χ +

(
Y−1

[
uςY

[
∂

∂χ

(
∞

∑
ı=0

εı Hı(ζ)

)]])
. (41)

Here, the nonlinear term reads

H0(ζ) = ζ0ζ0χ,

H1(ζ) = ζ0ζ1χ + ζ1ζ0χ,

H2(ζ) = ζ0ζ2χ + ζ1ζ1χ + ζ2ζ0χ,
....

Now, by equating the coefficient of ε, we have

ε0 : ζ0(χ, ß) = χ,

ε1 : ζ1(χ, ß) = Y−1

[
uςY

[
∂

∂χ

(
∞

∑
ı=0

εı H0(ζ)

)]]
=

ßς

Γ(ς + 1)
,

ε2 : ζ2(χ, ß) = Y−1

[
uςY

[
∂

∂χ

(
∞

∑
ı=0

εı H1(ζ)

)]]
= 0,

....

Finally, we approximate the analytical solution in the form of the following series"

ζ(χ, ß) = ζ0(χ, ß) + ζ1(χ, ß) + ζ2(χ, ß) + · · · ,

ζ(χ, ß) = χ +
ßς

Γ(ς + 1)
+ · · · .

Now, in terms of YTDM and by applying the YT, we obtain

Y
{

∂ςζ

∂ßς

}
= Y

[
∂

∂χ

(
ζ(χ, ß)

∂ζ(χ, ß)
∂χ

)]
, (42)

The simplified form reads

1
uς
{M(u)− uζ(χ, 0)} = Y

[
∂

∂χ

(
ζ(χ, ß)

∂ζ(χ, ß)
∂χ

)]
, (43)
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M(u) = uζ(χ, 0) + uςY

[
∂

∂χ

(
ζ(χ, ß)

∂ζ(χ, ß)
∂χ

)]
. (44)

By employing the inverse of the YT, we obtain

ζ(χ, ß) = ζ(χ, 0) + Y−1

[
uς

{
Y

[
∂

∂χ

(
ζ(χ, ß)

∂ζ(χ, ß)
∂χ

)]}]
,

ζ(χ, ß) = (−15
8

sech2(
χ

2
)) + Y−1

[
uς

{
Y

[
∂

∂χ

(
ζ(χ, ß)

∂ζ(χ, ß)
∂χ

)]}]
.

(45)

The series form solution of ζ(χ, ß) reads

ζ(χ, ß) =
∞

∑
m=0

ζm(χ, ß), (46)

with ζ(χ, ß) ∂ζ(χ,ß)
∂χ = ∑∞

m=0Am, showing the nonlinear term in terms of Adomian polynomial, and

∞

∑
m=0

ζm(χ, ß) = ζ(χ, 0) + Y−1

[
uς

{
Y

[
∂

∂χ

(
∞

∑
m=0
Am

)]}]
,

∞

∑
m=0

ζm(χ, ß) = χ + Y−1

[
uς

{
Y

[
∂

∂χ

(
∞

∑
m=0
Am

)]}]
.

(47)

Here, the nonlinear terms read

A0 = ζ0ζ0χ,

A1 = ζ0ζ1χ + ζ1ζ0χ,

A2 = ζ0ζ2χ + ζ1ζ1χ + ζ2ζ0χ,
....

Similarly,
ζ0(χ, ß) = χ,

for m = 0

ζ1(χ, ß) =
ßς

Γ(ς + 1)
,

for m = 1
ζ2(χ, ß) = 0,

Finally, we approximate the analytical solution in the form of the following series:

ζ(χ, ß) =
∞

∑
m=0

ζm(χ, ß) = ζ0(χ, ß) + ζ1(χ, ß) + ζ2(χ, ß) + · · · ,

ζ(χ, ß) = χ +
ßς

Γ(ς + 1)
+ · · · .

The exact result at ς = 1 reads

ζ(χ, ß) = χ + ß. (48)
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Example 2. Here, we consider the following fractional heat-transfer equation [55]

∂ςζ(χ, ß)
∂ßς

=
∂2ζ(χ, ß)

∂χ2 − 2ζ3(χ, ß), (49)

with the initial condition
ζ(χ, 0) =

1 + 2χ

χ2 + χ + 1
.

Applying the YT yields

Y
(

∂ςζ

∂ßς

)
= Y

[
∂2ζ(χ, ß)

∂χ2 − 2ζ3(χ, ß)
]

, (50)

The simplified form reads

1
uς
{M(u)− uζ(χ, 0)} = Y

[
∂2ζ(χ, ß)

∂χ2 − 2ζ3(χ, ß)
]

, (51)

M(u) = uζ(χ, 0) + uςY
[

∂2ζ(χ, ß)
∂χ2 − 2ζ3(χ, ß)

]
. (52)

By employing the inverse of the YT, we obtain

ζ(χ, ß) = ζ(χ, 0) + Y−1

[
uς

{
Y

[
∂2ζ(χ, ß)

∂χ2 − 2ζ3(χ, ß)

]}]
,

ζ(χ, ß) =
1 + 2χ

χ2 + χ + 1
+ Y−1

[
uς

{
Y

[
∂2ζ(χ, ß)

∂χ2 − 2ζ3(χ, ß)

]}]
.

(53)

In terms of HPM, we have

∞

∑
ı=0

εıζı(χ, ß) =
1 + 2χ

χ2 + χ + 1
+

(
Y−1

[
uςY

[
∂2ζ(χ, ß)

∂χ2 −
∞

∑
ı=0

εı Hı(ζ)

]])
. (54)

Here, the nonlinear terms read

H0(ζ) = 2ζ3
0(χ, ß),

H1(ζ) = 6ζ2
0(χ, ß)ζ1(χ, ß),

H2(ζ) = 6ζ0(χ, ß)ζ2
1(χ, ß) + 6ζ2

0(χ, ß)ζ2(χ, ß),
....
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Now, by equating the coefficient of ε, we have

ε0 : ζ0(χ, ß) =
1 + 2χ

χ2 + χ + 1
,

ε1 : ζ1(χ, ß) = Y−1

(
uςY

[
∂2ζ(χ, ß)

∂χ2 −
∞

∑
ı=0

εı H0(ζ)

])
=
−6(1 + 2χ)

(χ2 + χ + 1)2
ßς

Γ(ς + 1)
,

ε2 : ζ2(χ, ß) = Y−1

(
uςY

[
∂2ζ(χ, ß)

∂χ2 −
∞

∑
ı=0

εı H1(ζ)

])
=

72(1 + 2χ)

(χ2 + χ + 1)3
ß2ς

Γ(2ς + 1)
,

ε3 : ζ3(χ, ß) = Y−1

(
uςY

[
∂2ζ(χ, ß)

∂χ2 −
∞

∑
ı=0

εı H2(ζ)

])
=

(
− 1296(1 + 2χ)

(χ2 + χ + 1)4 +
432(1 + 2χ)3

(χ2 + χ + 1)5−

216(1 + 2χ)3

(χ2 + χ + 1)5 ·
Γ(2ς + 1)
Γ2(ς + 1)

)
ß3ς

Γ(3ς + 1)
,

....

Finally, we approximate the analytical solution in the form of the following series

ζ(χ, ß) = ζ0(χ, ß) + ζ1(χ, ß) + ζ2(χ, ß) + ζ3(χ, ß) + · · ·

ζ(χ, ß) =
1 + 2χ

χ2 + χ + 1
+
−6(1 + 2χ)

(χ2 + χ + 1)2
ßς

Γ(ς + 1)
+

72(1 + 2χ)

(χ2 + χ + 1)3
ß2ς

Γ(2ς + 1)
+

(
− 1296(1 + 2χ)

(χ2 + χ + 1)4 +

432(1 + 2χ)3

(χ2 + χ + 1)5 −
216(1 + 2χ)3

(χ2 + χ + 1)5 ·
Γ(2ς + 1)
Γ2(ς + 1)

)
ß3ς

Γ(3ς + 1)

+ · · · .

Now, in terms of YTDM and applying the YT yields

Y
{

∂ςζ

∂ßς

}
= Y

[
∂2ζ(χ, ß)

∂χ2 − 2ζ3(χ, ß)
]

. (55)

Upon simplification, we have

1
uς
{M(u)− uζ(χ, 0)} = Y

[
∂2ζ(χ, ß)

∂χ2 − 2ζ3(χ, ß)
]

, (56)

M(u) = uζ(χ, 0) + uςY
[

∂2ζ(χ, ß)
∂χ2 − 2ζ3(χ, ß)

]
. (57)

By employing the inverse of YT, we obtain

ζ(χ, ß) = ζ(χ, 0) + Y−1

[
uς

{
Y

[
∂2ζ(χ, ß)

∂χ2 − 2ζ3(χ, ß)

]}]
,

ζ(χ, ß) =
1 + 2χ

χ2 + χ + 1
+ Y−1

[
uς

{
Y

[
∂2ζ(χ, ß)

∂χ2 − 2ζ3(χ, ß)

]}]
.

(58)

The series form solution of ζ(χ, ß) reads

ζ(χ, ß) =
∞

∑
m=0

ζm(χ, ß), (59)
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with 2ζ3(χ, ß) = ∑∞
m=0Am, showing the nonlinear term in terms of Adomian polynomial

∞

∑
m=0

ζm(χ, ß) = ζ(χ, 0)−Y−1

[
uς

{
Y

[
∂2ζ(χ, ß)

∂χ2 −
∞

∑
m=0
Am

]}]
,

∞

∑
m=0

ζm(χ, ß) =
1 + 2χ

χ2 + χ + 1
−Y−1

[
uς

{
Y

[
∂2ζ(χ, ß)

∂χ2 −
∞

∑
m=0
Am

]}]
.

(60)

Here, the nonlinear terms read

A0 = 2ζ3
0(χ, ß),

A1 = 6ζ2
0(χ, ß)ζ1(χ, ß),

A2 = 6ζ0(χ, ß)ζ2
1(χ, ß) + 6ζ2

0(χ, ß)ζ2(χ, ß),
....

Similarly,

ζ0(χ, ß) =
1 + 2χ

χ2 + χ + 1
,

for m = 0

ζ1(χ, ß) =
−6(1 + 2χ)

(χ2 + χ + 1)2
ßς

Γ(ς + 1)
,

for m = 1

ζ2(χ, ß) =
72(1 + 2χ)

(χ2 + χ + 1)3
ß2ς

Γ(2ς + 1)
,

for m = 2

ζ3(χ, ß) =

(
− 1296(1 + 2χ)

(χ2 + χ + 1)4 +
432(1 + 2χ)3

(χ2 + χ + 1)5 −
216(1 + 2χ)3

(χ2 + χ + 1)5 ·
Γ(2ς + 1)
Γ2(ς + 1)

)
ß3ς

Γ(3ς + 1)
.

Finally, we approximate the analytical solution in the form of the following series:

ζ(χ, ß) =
∞

∑
m=0

ζm(χ, ß) = ζ0(χ, ß) + ζ1(χ, ß) + ζ2(χ, ß) + ζ3(χ, ß) + · · · ,

ζ(χ, ß) =
1 + 2χ

χ2 + χ + 1
+
−6(1 + 2χ)

(χ2 + χ + 1)2
ßς

Γ(ς + 1)
+

72(1 + 2χ)

(χ2 + χ + 1)3
ß2ς

Γ(2ς + 1)
+

(
− 1296(1 + 2χ)

(χ2 + χ + 1)4 +

432(1 + 2χ)3

(χ2 + χ + 1)5 −
216(1 + 2χ)3

(χ2 + χ + 1)5 ·
Γ(2ς + 1)
Γ2(ς + 1)

)
ß3ς

Γ(3ς + 1)
+ · · · .

The obtained results agree with the result in Ref. [56]. For ς = 1, the above can be rearranged as

ζ(χ, ß) =
1 + 2χ

χ2 + χ + 1
− 6(1 + 2χ)

(χ2 + χ + 1)2 ß+
36(1 + 2χ)

(χ2 + χ + 1)3 ß2− 216(1 + 2χ)

(χ2 + χ + 1)4 ß3 + · · · . (61)

Numerical Simulation Studies
Here, we have presented the numerical simulations of the time-fractional heat transfer

equation as well as the nonlinear fractional porous media equation with cubic nonlinearity
of fractional order by applying the proposed methodologies. We used graphs and tables to
show how the obtained solution behaves. Maple was used to complete all of the computa-
tional work for the problems stated. The behavior of the exact and suggested approaches’
solutions at ς = 1 is depicted in the graphs in Figure 1. Figure 2 displays the results of
proposed methodologies at various fractional orders of ς = 1, 0.75, 0.50, 0.25, within the
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domain 1 ≤ χ, ß ≤ 0 for Example 1. Table 1 compares the accurate as well as proposed
methods’ solutions with the aid of absolute error for Example 1. The approximate solutions
ζ(χ, ß) for various fractional-order ς values are shown in Figures 3 and 4, respectively.
This illustrates how the graphical behavior varies on the order of the fractional derivative.
Table 2 compares the approximations for the solutions to Example 2 for various values of
χ and ß. The demonstrated plots help us to better understand the nature of the proposed
equations when temporal-spatial variables vary in comparison with arbitrary order. The
comparison of absolute errors demonstrates that our methods converge more quickly than
other methods. Additionally, the graphical depiction demonstrates a good agreement
between the exact solution and the suggested approaches solution.

Figure 1. The visual representation of the proposed techniques and the specific solution at ς = 1 for
ζ(χ, ß) are presented with a graphical layout.

Figure 2. The proposed solution methods for ζ(χ, ß) have been visually represented in the form of a
graphical layout for different values of ς.



Mathematics 2023, 11, 1350 15 of 19

Figure 3. The visual representation of the proposed techniques at a value of ς = 0.7 and ς = 0.9 for
the function ζ(χ, ß) is shown graphically.

Figure 4. Visual representation of proposed techniques for finding ζ(χ, ß) at different values of ς.

Table 1. A comparison between our approach and the actual outcome with a ς value of 1, including
the calculation of the absolute error (AE).

ß = 0.01 Exact Result Our Techniques’ Result AE of Our Techniques

χ ς = 1 ς = 1 ς = 1

1 1.01000000000 1.01000000000 0.0000000000 × 10+00

2 2.01000000000 2.01000000000 0.0000000000 × 10+00

3 3.01000000000 3.01000000000 0.0000000000 × 10+00

4 4.01000000000 4.01000000000 0.0000000000 × 10+00

5 5.01000000000 5.01000000000 0.0000000000 × 10+00

6 6.01000000000 6.01000000000 0.0000000000 × 10+00

7 7.01000000000 7.01000000000 0.0000000000 × 10+00

8 8.01000000000 8.01000000000 0.0000000000 × 10+00

9 9.01000000000 9.01000000000 0.0000000000 × 10+00

10 10.01000000000 10.01000000000 0.0000000000 × 10+00
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Table 2. A solution is presented through the proposed method, which involves the use of different
values of χ and ß for varying fractional orders ς in Example 2.

χ ß ς = 0.50 ς = 0.75 ς = 1

1 0.25 0.900577 0.796350 0.750000
2 0.577330 0.583104 0.594023
3 0.467902 0.475540 0.483500
4 0.390528 0.395451 0.400145
5 0.332537 0.335639 0.338499
1 0.50 1.612625 1.255979 1.000000
2 0.578917 0.552933 0.539358
3 0.438141 0.439283 0.442876
4 0.369207 0.372329 0.376093
5 0.318621 0.321125 0.323822
1 0.75 2.825667 0.321125 1.750000
2 0.655398 0.595920 0.550291
3 0.427756 0.420533 0.416590
4 0.355017 0.355164 0.356413
5 0.307995 0.309167 0.310806
1 1 4.448532 3.692364 3.000000
2 0.7910888 0.703748 0.626822
3 0.432096 0.416896 0.404642
4 0.346044 0.342991 0.341107
5 0.299696 0.299287 0.299452

7. Conclusions

In this work, both the nonlinear fractional porous media equation and time-fractional
heat transfer equation have been solved by implementing HPTM and YTDM, an elegant
combination of the hybrid Yang transformation (YT) with the homotopy perturbation
method (HPM) and the Adomian decomposition method (ADM). Both He’s polynomials
and Adomian polynomials have been applied to express the nonlinear terms in the targeted
issues. The suggested hybrid methods feature simpler and clearer steps for determining
the solutions to fractional problems. To make the offered approaches more understandable
and to assess their applicability, various numerical problems were solved. The obtained
results demonstrate a strong association between the suggested strategy and the actual
solution. Plots of the fractional solutions depict the behavior of different dynamics of the
specified physical phenomenon. The fractional solution rapidly approaches the integer-
order ones. In conclusion, we recommend that these methods be applied to solving several
other nonlinear fractional problems in various scientific fields because they are easy to
implement and lead to the actual solution. The proposed methods can also address many
evolution equations that govern different nonlinear phenomena in plasma physics [57–60].
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