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Abstract: This article presents an analysis of co-simulation defects for a system of coupled ordinary
differential equations. The research builds on the theorem that the co-simulation error is bounded
if the co-simulation defect is bounded. The co-simulation defect can be divided into integration,
output, and connection defects, all of which can be controlled. This article proves that the output and
connection defect can be controlled by the co-simulation master by varying the communication step
size. A non-iterative co-simulation method with variable communication step size is presented to
demonstrate the applicability of the presented research. The orders of the interpolation polynomials
used in the co-simulation method are varied in the experimental analysis. The experimental analysis
shows how each component of a co-simulation defect affects the co-simulation error. The analysis
presented is used to verify the applicability of the proposed approach and to provide guidelines for
the configuration of the co-simulation.
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1. Introduction

In practice, a network of co-simulation slaves is often used to model complex systems
by coupling subsystems on the behavioral description level [1]. The usefulness of this
approach comes from the fact that a co-simulation slave can be exported from a simulation
tool. Multi-disciplinary teams can use co-simulation to combine information from already
developed models from multiple domains. A recent overview of existing co-simulation re-
search can be found in [2]. A Functional Mock-up Interface (FMI) [3,4] has been introduced
to standardize the co-simulation interface. This effort allows the coupling of a growing
number of commercial simulators [5].

A co-simulation master is an algorithm responsible for the simulation of a co-simulation
network. The master calculates the approximation of input signals and controls the exe-
cution of slaves. Each slave has a solver of the internal model to calculate its own state
and output updates. The responsibility for the quality of co-simulation results is shared be-
tween the master and the solvers. The main objective of this article is to develop a practical
co-simulation quality assessment and to illustrate its use in a variable-step co-simulation.

An implicit co-simulation master repeats the simulation steps of the slaves until the
coupled inputs and outputs match. An explicit co-simulation master executes a single
step and continues the execution regardless of the connection error. A comparison of
implicit and explicit masters using the example of a two-mass oscillator can be found
in [6]. The comparison shows that implicit approaches have larger regions of stability than
explicit approaches. Furthermore, Ref. [1] states implicit co-simulation is zero-stable if
zero-stable [7] solvers are used. However, an implicit co-simulation requires the option to
roll back a step of a co-simulation slave. That option is defined in the FMI standard but is
rarely supported in practice. For this reason, only the explicit co-simulation is analyzed in
this article.
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Another very important reason to focus on explicit co-simulation is that hardware-in-
the-loop simulation [8,9] is explicit co-simulation. Hardware co-simulation slaves included
in the simulation loop cannot repeat a simulation step. Furthermore, there are very few tech-
niques that can be applied to assess the quality of such a co-simulation. An energy-based
quality assessment of an engine-in-the-loop simulation is presented in [10]. In comparison,
this article tries to provide an analysis of the whole co-simulation including integration and
output equations, and not just the connections. The quality assessment in [10] shows how
the quality of power bonds [11] can be analyzed. This article provides a quality assessment
applicable to a wider range of co-simulation systems. Connections do not have to be pairs
of effort and flow signals. One example of systems that can have connections that are not
power bonds is kinematic models in robotics [12].

Error estimation techniques used in ordinary differential equations provide sugges-
tions for evaluating the simulation quality. Most algorithms for solving ordinary differential
equations attempt to control either the local error or the defect of a numerical solution [13].
Local error estimation techniques based on Richardson extrapolation for the co-simulation
have been presented in [14]. Assuming perfect subsystem integration, that article shows
that the global error is bounded in terms of extrapolation error. That technique, however,
requires the option to roll back a step of a co-simulation slave.

This article presents a co-simulation quality assessment based on the defect calcu-
lation [15–17]. The research presented is the continuation of the work presented in [15].
There, the numerical defect of the co-simulation is analyzed. That analysis showed that for
co-simulation, when numerical defects are limited, numerical errors are limited. The main
parts of this analysis are referenced in the next section.

The analysis in this article and [15] is based on coupled ordinary differential equations.
Coupled ordinary differential equations are a special case of differential and algebraic
equations. An example of such a system is shown in Figure 1. Ordinary differential
equations are used to represent the state equations of systems modeled by co-simulation
slaves. Algebraic equations are divided into output and connection equations. This is
performed to reflect co-simulation practice, where co-simulation slaves are typically black
boxes. State and output equations are not available to the co-simulation master and are
therefore colored gray in Figure 1.

Master

ũı̆ῐ(t) = ỹ“i“l(t)+ δũı̆ῐ(t),
(
“ı, “l
)
= L

(
ı̆, ῐ
)

Slave 1

˙̃x1(t) = f1(x̃1(t), ũ1(t)) + δx̃1(t)

ỹ1(t) = g1(x̃1(t), ũ1(t)) + δỹ1(t)

Slave 2

˙̃x2(t) = f2(x̃2(t), ũ2(t)) + δx̃2(t)

ỹ2(t) = g2(x̃2(t), ũ2(t)) + δỹ2(t)

ũ1(t)

ỹ1(t)

ỹ2(t)

ũ2(t)

Figure 1. The underlying model for the analysis in this article is coupled ordinary differential
equations [15]. Co-simulation slave equations are colored gray because they are not available to the
master. Output equations are lighter colored because this article suggests that the master should
estimate the output defect.

This article proposes an explicit variable step co-simulation method based on numeri-
cal defect control. A co-simulation slave is responsible for generating its output signals,
while the co-simulation master is responsible to solve the connection equation (Figure 1).
The state and output equations are grayed out to indicate that they are usually not available
to the co-simulation master. However, the output defect depends on the co-simulation step
size controlled by the co-simulation master. This is why this article assumes that the output
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defect should be estimated by the co-simulation master and why the output equations in
Figure 1 are lighter colored.

Ref. [15] provides the basis for the defect analysis of the co-simulation. This article
continues that work and proposes how to adapt a step size controller [18] to co-simulation
defect control. Non-iterative co-simulation in [15] is a fixed-step, multi-rate co-simulation
that uses zero-order hold. This article presents a non-iterative single-rate variable-step
co-simulation using higher-order interpolation.

The next section shows the basis for the analysis in this work, carried over from [15].
The defect control section introduces an explicit co-simulation variable-step method. That
section shows how to calculate the connection defect and estimate the output defect. The
proposed method controls the error by varying the communication step size using the PI
controller. A simple application of the method is presented in the example section. This
application serves to highlight some of the effects of using different orders of interpolation
polynomials in co-simulation. The final section of the article contains conclusions and ideas
for future work.

2. Error Bounds

This article extends the work performed in [15] with variable step co-simulation
presented in the next section and experimental analysis in the following section. There,
coupled ordinary differential Equation (1) and their numerical solution (2) are used to
analyze numerical errors of the co-simulation. An important result of [15] is Theorem 1. It
states that the global error of the co-simulation is limited when the co-simulation defect
is limited. It is worth noting that a similar statement is proved in [19] for a system of
differential and algebraic equations. The main difference is that algebraic equations in this
article are divided into output and connection equations (Figure 1). This section repeats
the expressions for coupled ordinary differential equations and the error bounds theorem
from [15] (Theorem 1). Coupled ordinary differential equations are the basis for the step
size analysis and Theorem 1 justifies the error control presented in the next section.

A co-simulation models a system partitioned into N subsystems connected by the
connection function L

ẋi(t) = fi(xi(t), ui(t)) (1a)

yi(t) = gi(xi(t), ui(t)) (1b)

xi(0) = x0i (1c)

uı̆ῐ(t) = y“i“l(t),
(
“ı, “l
)
= L

(
ı̆, ῐ
)

(1d)

where i is the subsystem index, xi is the state signal, yi is the output signal, ui is the input
signal, and x0i is the initial state of the subsystem. The numerical solution of the system
satisfies the following equations

˙̃xi(t) = fi(xi(t), ui(t)) + δx̃i(t) (2a)

ỹi(t) = gi(xi(t), ui(t)) + δỹi(t) (2b)

x̃i(0) = x0i (2c)

ũı̆ῐ(t) = ỹ“i“l(t)+ δũı̆ῐ(t),
(
“ı, “l
)
= L

(
ı̆, ῐ
)

(2d)

where the numerical solution of the state, output, and input signals is denoted as x̃i, ỹi, and
ũı̆ῐ, respectively. The signals found by the numerical solution are assumed to be piecewise
continuous. The defect introduced to the numerical solution is partitioned into integration
δx̃i, output δỹi, and connection defect δũı̆ῐ. The system (1) represents the equations solved
by the co-simulation and the system (2) represents the behavior of the solution obtained by
the co-simulation.
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The numerical solution (1) can be rewritten to

˙̃x(t) = f(x̃(t), ũ(t)) + δx̃(t) (3a)

ỹ(t) = g(x̃(t), ũ(t)) + δỹ(t) (3b)

ũ(t) = Lỹ(t)+ δũ(t) (3c)

where signals of all subsystems in (2) are grouped into large column vector signals

xT
(t) =

[
xT

1 (t) xT
2 (t) · · · xT

N (t)
]

yT
(t) =

[
yT

1 (t) yT
2 (t) · · · yT

N (t)
]

uT
(t) =

[
uT

1 (t) uT
2 (t) · · · uT

N (t)
] (4)

The error of the numerical solution (3) is defined as the difference between the numerical
and the analytic solution of the system (1)

∆x̃(t) = x̃(t)− x(t), ∆ỹ(t) = ỹ(t)− y(t), ∆ũ(t) = ũ(t)− u(t) (5)

where ∆x̃ is the integration error, ∆ỹ the output error and ∆ũ the input error of the numerical
solution.

Definition 1 (Lipschitz Continuity). A function f is said to be Lipschitz continuous if there exist
constant Kf > 0 such that for all x1, x2 ∈ R|x|:∥∥f(x2)− f(x1)

∥∥ 6 Kf
∥∥x2 − x1

∥∥ (6)

The constant Kf is called the Lipschitz constant of the function f.

Definition 1 introduces Lipschitz continuity, which is used to describe the conditions
for the uniqueness of the solution for (1) [15]. It is used to formulate Assumption 1 and
Theorem 1.

Assumption 1. Assume that there exists a Lipschitz continuous function G that explicitly calcu-
lates the input signals

ũ(t) = G(x̃(t), δỹ(t), δũ(t)) (7)

Assume that the aggregated state transition function f (3a) is Lipschitz continuous. Assume that the
aggregated output function g (3b) is Lipschitz continuous. Assume that the numerical solution (2)
is continuous in every subinterval (tκ−1, tκ ].

Theorem 1 (Error Bounds = Theorem 2.12 in [15]). Suppose Assumption (1) holds. Then, the
integration error is limited

‖∆x̃(t)‖ 6 eKf(t−t0)‖∆x̃(t0)‖+
1

Kf

(
eKf(t−t0) − 1

)
δ(t0,t] (8)

the input error satisfies is limited

‖∆ũ(t)‖ 6KGeKf(t−t0)‖∆x̃(t0)‖+
KG

Kf

(
eKf(t−t0) − 1

)
δ(t0,t]

+ KG‖δỹ(t)‖+ KG‖δũ(t)‖
(9)
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and the output error satisfies is limited

‖∆ỹ(t)‖ 6Kg(1 + KG)eKf(t−t0)‖∆x̃(t0)‖

+
Kg

Kf
(1 + KG)

(
eKf(t−t0) − 1

)
δ(t0,t]

+
(
1 + KgKG

)
‖δỹ(t)‖+ KgKG‖δũ(t)‖

(10)

In [15], it is shown that Theorem 1 requires the same conditions as the uniqueness
of the solution for (1). In addition, the numerical solution obtained by co-simulation (2)
must be piecewise continuous. This theorem provides the justification for the defect control
presented next.

3. Defect Control

Theorem 1 suggests that the step size control of the co-simulation defect can be used
to limit the global error of the co-simulation. According to [3], a communication step size
is the “distance between two subsequent communication points (also known as sampling
rate or macro step size)”, where communication points are “time grid for data exchange
between master and slaves in a co-simulation environment (also known as sampling points
or synchronization points)”. This section describes how to control the communication step
size of a slave using a non-iterative variant of the Jacobi co-simulation method (Algorithm 1).
The proposed co-simulation method is shown in Figure 2. The variable-step variant of
the method generates a sequence of communication step sizes H : N → R>0 with the
explicit version of the PI control procedure introduced in [18]. The defect controlled by the
proposed method is based on the connection defect (2d) and/or the output defect (2b).

Slave 1

Master

Slave 2

2’ 4’

2” 4”

5’
:ỹ

(T
[k
−

2 ]
,T
[k
−

1 ]
]

1

1’
:ũ

(T
[k
−

1 ]
,T
[k
]]

1

3’
:ŷ

1( T
[k
−

1 ]
+

H
[k
]

2

)

5”
:ỹ

(T
[k
−

2 ]
,T
[k
−

1 ]
]

2

3”
:ŷ

2( T
[k
−

1 ]
+

H
[k
]

2

)
1”

:ũ
(T

[k
−

1 ]
,T
[k
]]

2

5’
:ỹ

(T
[k
−

1 ]
,T
[k
]]

1

1’
:ũ

(T
[k
],T

[k
+

1 ]
]

1

5”
:ỹ

(T
[k
−

1 ]
,T
[k
]]

2

1”
:ũ

(T
[k
],T

[k
+

1 ]
]

2

T[k−1] T[k−1]+
H[k]

2 T[k−1]+ H[k]

T[k−1] T[k−1]+
H[k]

2
T[k−1]+ H[k]

Figure 2. This article uses a non-iterative variant of the Jacobi co-simulation method with variable
steps to demonstrate co-simulation defect control.

The numerical defect must be limited to ensure that the co-simulation error is limited.
Theorems 2 and 3 show that the defect can be limited by reducing the communication step
size. This section shows how to calculate the connection defect and estimate the output
defect. Theorem 4 shows that the output defect estimate used is asymptotically correct.

The sequence of communication points T : N0 → R>0 is determined by the communi-
cation step sizes

T[k] = T[k−1]+ H[k] (11)

The sequence of points tκ at which a numeric solution discontinuity can occur is marked
differently than the sequence of communication points T[k]. The reason is that discontinu-
ities in the numeric solution may occur during slave integration. Each slave can perform
the integration with different individual integration steps (sometimes referred to as a micro
step size ). It is assumed that the internal solver of the slave takes over the responsibility
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for the control of the integration step size. Control of the integration step size may be used
to reduce the integration error [16,17]. Theorem 1 suggests that integration defect reduction
is an important factor for the quality of co-simulation. This article focuses on controlling
the size of the communication step with respect to output and connection defects. This
choice respects the black box character of co-simulation slaves (Figure 1) and leaves the
integration defects in the responsibility of internal slave solvers.

Co-simulation is the simulation of a continuous time model with a computer, a discrete
system. The co-simulation generates samples of the signal and its derivatives at communi-
cation points. This description is consistent with [3]. The reconstruction of output signals
from such samples can be obtained using the Taylor polynomial

ỹ(T[k−1],T[k]]
i (t) =

ni

∑
n=0

dnỹ(T[k−1],T[k]]
i

dtn (T[k])
(t− T[k])n

n!
(12)

where the samples of the output signal and its derivatives are determined by the co-
simulation slave. The output signal of the ith co-simulation slave is a piecewise polyno-
mial signal

ỹi(t) = ỹ(T[k−1],T[k]]
i (t), T[k−1] < t 6 T[k] (13)

The inputs of the ith co-simulation slave are extrapolated with the following polynomial

ũ(T[k−1],T[k]]
i (t) =

mi

∑
m=0

dmũ(T[k−1],T[k]]
i

dtm (T[k−1])
(t− T[k−1])m

m!
(14)

where the samples of the input signal and its derivatives are determined by the co-
simulation master. A non-iterative Jacobi co-simulation master (Figure 2) determines
the input signals in the kth step with the connected output signals from the (k− 1)st step

dmũ(T[k],T[k+1]]
ı̆ῐ

dtm (T[k−1]) =
dmỹ(T[k−2],T[k−1]]

“i“l
dtm (T[k−1]),(

“ı, “l
)
= L

(
ı̆, ῐ
)
, m 6 mı̆, m 6 n“ı

(15)

The input signal of the ith co-simulation slave is a piecewise polynomial signal

ũi(t) = ũ(T[k−1],T[k]]
i (t), T[k−1] < t 6 T[k] (16)

The connection defect (2d) can be calculated by comparing the extrapolation polynomials
for the output (12) and input (14) signals, i.e.,

δũ(T[k−1],T[k]]
ı̆ῐ (t) = ũ(T[k−1],T[k]]

ı̆ῐ (t)− ỹ(T[k−1],T[k]]
“i“l

(t),
(
“ı, “l
)
= L

(
ı̆, ῐ
)

(17)

where individual scalar signals are selected according to the connection function.
This article assumes that the output signal and all its derivatives are perfectly sampled,

i.e., the output defect can only deviate from zero between the communication points

dnỹ(T[k−1],T[k]]
i

dtn (T[k]) =
dngi(x̃i(t), ũi(t))

dtn

∣∣∣∣
t=T[k]

, n = 0, . . . , ni (18)

Lemma 1. Assume that the numerical solution for the input signals is bounded ‖ũ“ı(t)‖ 6 Bũ“ı
,

the numerical solution for the state signal is bounded ‖x̃“ı(t)‖ 6 Bx̃“ı
, the integration defects are

δx̃“ı(t) = O(HNi [k]), and the state transition function f“ı is Lipschitz continuous (Definition 1). Then

lim
H[k]→0

∥∥x̃“ı(T[k])− x̃“ı(T[k−1])
∥∥ = 0 (19)
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Proof. Since δx̃“ı(t) = O(HNi [k]) there exists C, H0 ∈ R>0 such that for all H[k] 6 H0

‖δx̃“ı(t)‖ 6 CHNi
0 (20)

By the integration of (2a)

x̃“ı(T[k])− x̃“ı(T[k−1]) =

T[k]∫
T[k−1]

f
(
x̃“ı(τ), ũ“ı(τ)

)
+ δx̃“ı(τ) dτ (21)

the following inequality is obtained

∥∥x̃“ı(T[k])− x̃“ı(T[k−1])
∥∥ 6 T[k−1]+H[k]∫

T[k−1]

Kf Bx̃“ı
+ KfBũ“ı

+ CHNi
0 dτ (22)

The statement of the lemma (19) follows from the previous inequality∥∥x̃“ı(T[k])− x̃“ı(T[k−1])
∥∥ 6 (Kf Bx̃“ı

+ KfBũ“ı
+ CHNi

0

)
H[k] (23)

Theorem 2 (Connection defect). Assume that the numerical solution for the input signals is
bounded ‖ũ“ı(t)‖ 6 Bũ“ı

, the numerical solution for the state signal is bounded ‖x̃“ı(t)‖ 6 Bx̃“ı
, the

integration defects are δx̃“ı(t) = O(HN“ı [k]), the state transition function f“ı is Lipschitz continuous
(Definition 1), the output function of the “ıth subsystem is

g“ı(x̃“ı(t), ũ“ı(t)) = g“ı(x̃“ı(t)) (24)

and the step sizes of connected simulators “i, ı̆ ∈ IF. The connection defect (2d) of a numerical
solution converges in terms of the communication step size

lim
H[k]→0

(
δũ(T[k−1],T[k]]

ı̆ῐ (t)
)
= 0 (25)

Proof. From (14)–(18) and (24) it follows that

δũ(T[k−1],T[k]]
ı̆ῐ (t) =

min(mı̆ ,n“ı)

∑
m=0

dmg“ı“l(x̃“ı(t))

dtm

∣∣∣∣∣
t=T[k−1]

(t− T[k−1])m

m!

−
n“ı

∑
n=0

dng“ı“l(x̃“ı(t))

dtn

∣∣∣∣∣
t=T[k]

(t− T[k])n

n!

=g“ı“l

(
x̃“ı(T[k−1])

)
− g“ı“l

(
x̃“ı(T[k])

)
+O(H[k])

(26)

where
(
“ı, “l
)
= L

(
ı̆, ῐ
)
. Since g“ı is Lipschitz continuous it follows that∥∥∥g“ı“l

(
x̃“ı(T[k−1])

)
− g“ı“l

(
x̃“ı(T[k])

)∥∥∥ 6 Kg“i

∥∥x̃“ı(T[k−1])− x̃“ı(T[k])
∥∥ (27)

The statement of the theorem follows from Lemma 1, (26) and (27).

Theorem 2 specifies the conditions under which the connection defect converges with
respect to the communication step size. A number of simplifications are adopted to prove
Theorem 2. In (26), the higher order terms are ignored to simplify the proof. The goal was
to prove that the connection defect was converging in terms of communication step size,
rather than finding the smallest limit. The next section shows the order of convergence of
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the connection defect in a simple example. Bounded inputs and state signals are reasonable
assumptions for a stable system and a stable co-simulation. The assumptions (24), however,
restrict the models used to those that have no direct output dependency on input signals. If
this simplification is not applied, it is possible to construct a system with an algebraic loop
that makes the co-simulation unstable. The subject of future work will be to analyze how
some or all of these simplifications can be discarded or at least relaxed.

Theorem 3 (Output defect). Suppose the function gi is continuously differentiable and the
calculated state signal x̃i is continuously differentiable. Then, the output defect (2b) is

δỹi(t) = O
(

Hni+1
[k]
)

(28)

Proof. From (14) and the fact that gi and x̃i are continuously differentiable, it follows that

g
(
x̃i(t), ũi(t)

)
=

ni

∑
n=0

dni g
(
x̃i(τ), ũi(τ)

)
dτni

∣∣∣∣∣
τ=T[k]

(
t− T[k]

)n

n!
+O

(
Hni+1

[k]
)

(29)

for T(k−1) < t 6 T[k] The expression (28) follows from (2b), (12) and (18).

Theorem 3 shows that the output defect can be controlled by reducing the commu-
nication step size. Theorem 2 and Theorem 3 justify the communication step size control.
Numerical solvers are expected to minimize the remaining component of the numerical
defect, the integration defect (2a). The rest of the section analyzes how to estimate the
output defect.

For the purpose of estimating the output defect between the communication points, a
Hermite interpolation polynomial [20] is łintroduced

ŷ(T[k−1],T[k]]
i (t) = ỹi(t)+

(T[k]−t)ni+1

(0.5H[k])ni+1

[
gi

(
x̃i

(
T[k]− H[k]

2

)
, ũi

(
T[k]− H[k]

2

))
− ỹi

(
T[k]− H[k]

2

)]
(30)

A Hermite interpolation polynomial is consistent with multiple samples of the signals and
their derivatives. The polynomial used in this paper is consistent with signal values at two
communication points and signal derivatives at the later point

ŷ(T[k−1],T[k]]
i

(
T[k]− H[k]

2

)
= gi

(
x̃i

(
T[k]− H[k]

2

)
, ũi

(
T[k]− H[k]

2

))
dnŷ(T[k−1],T[k]]

i
dtn (T[k]) =

dngi(x̃i(t), ũi(t))
dtn

∣∣∣∣
t=T[k]

, n = 0, . . . , ni

(31)

The Hermite interpolation polynomial is used to obtain an asymptotically correct estimate
of the output defect.

Theorem 4 (Estimate of the Output Defect). The estimation of the output defect is defined as the
difference between interpolation polynomials (30) and (12)

δ̂ỹ(T[k−1],T[k]]
i (t) = ỹ(T[k−1],T[k]]

i (t)− ŷ(T[k−1],T[k]]
i (t) (32)

Suppose the function gi is ni + 1 times continuously differentiable on the interval t ∈ (T[k−1], T[k]] and

x̃(T[k−1],T[k]]
i (t) =

ni+1

∑
n=0

dnx̃i
dtn (T[k])

(t− T[k])n

n!
+O

(
Hni+2

[k]
)

(33)

Then, the estimate of the output defect (32) is asymptotically correct, i.e., for each α ∈ (0, 1]

lim
H[k]→0

δ̂ỹ(T[k−1],T[k]]
i (t)

δỹ(T[k−1],T[k]]
i (t)

= 1, t = T[k−1]+ αH[k] (34)
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Proof. Since gi is continuously differentiable, it is also Lipschitz continuous. Lipschitz
continuity and (33) imply

gi

(
x̃(T[k−1],T[k]]

i (t), ũ(T[k−1],T[k]]
i (t)

)
=

ni+1
∑

n=0

[
dngi(x̃i(t),ũi(t))

dtn

∣∣∣
t=T[k]

(t−T[k])n

n!

]
+O

(
Hni+2[k]

)
(35)

The output defect (3b) is the difference between the numerical output signal (12) and the
output signal without defect (35). The output defect on the interval (T[k−1], T[k]] is equal to

δỹi(t) = ỹi(t)− gi(x̃i(t), ũi(t)) =
dni+1gi(x̃i(t),ũi(t))

dtni+1

∣∣∣
t=T[k]

(t−T[k])ni+1

(ni+1)! +O
(

Hni+2[k]
)

(36)

The estimate of the output defect on the interval (T[k−1], T[k]] is equal to

δ̂ỹ(T[k−1],T[k]]
i (t) =

(T[k]− t)ni+1

(0.5H[k])ni+1

[
gi

(
x̃i

(
T[k]− H[k]

2

)
, ũi

(
T[k]− H[k]

2

))
− ỹi

(
T[k]− H[k]

2

)]
=

(T[k]− t)ni+1

(0.5H[k])ni+1

[
dni+1gi(x̃i(t), ũi(t))

dtni+1

∣∣∣∣
t=T[k]

(−0.5H[k])ni+1

(ni + 1)!
+O

(
H[k]ni+2

)]

=
dni+1gi(x̃i(t), ũi(t))

dtni+1

∣∣∣∣
t=T[k]

(t− T[k])ni+1

(ni + 1)!
+O

(
Hni+2

[k]
)

(37)

The Equation (34) follows directly from (36) and (37).

The output defect estimate (32) is obtained by adding communication points during co-
simulation. The additional points are added in the middle of the interval (T[k−1], T[k]] shown
in Figure 2. These points are used to obtain a higher order interpolation polynomial (30)
for use in the output defect estimate. Theorem 4 gives the conditions (33) under which the
output defect estimate (32) is asymptotically correct. The integration should have a higher
order of local error than the order of the output interpolation polynomial (12).

The connection defect calculation (17) and the output defect estimate (32) are used to
define the controlled co-simulation defect

ε[k] = max
(

max
i,j

(
RMS

T[k−1]< t6 T[k]
(δũij)

)
, max

i,j

(
RMS

T[k−1]< t6 T[k]
(δ̂ỹij)

))
(38)

The calculation of the co-simulation defect is used in a step size control approach similar
to the one introduced in [18]. The approach uses a PI controller for the logarithm of an
error measurement

e[k] = log(tol)− log(ε[k])

I′ [k] = I[k−1]+ KIe[k]
H′ [k] = exp

(
I′ [k]+ KPe[k]

)
H[k] =

{
θmax H[k−1], H′ [k] > θmax H[k−1]

H′ [k], otherwise

I[k] = I′ [k]+ log(H[k])− log
(

H′ [k]
)

H[1] = H1, I[1] = log(H1)

(39)

where ε : N → R is the controlled error approximation. Such a method has already
been used for co-simulation [21]. The difference to the method presented in this article is
the controlled error estimate. In [21], the authors have used an explicit step size control
procedure to control the local co-simulation error of the output signal. In this article, the
method controls the maximum of the connection defect and the output defect estimate (38).

The co-simulation method used for demonstrating the communication step size control
is defined in Algorithm 1. It is also shown in Figure 2 to simplify the introduction. Like
any other co-simulation master, the method solves the connection Equation (1d) and
controls the execution of the co-simulation slaves. The connection equation is solved
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by the assignment of input signal derivatives (15). The presented co-simulation method
allows a parallel execution with a distribution of the calculation performed in for-loops.
The communication step sizes are controlled using the PI controller (39) to keep the co-
simulation defect (38) constant.

4. Numerical Example

This section presents an example of using the proposed variable-step co-simulation
method (Algorithm 1). The example system is a two mass oscillator that is commonly used
to benchmark co-simulation master algorithms [6,21–25]. The slaves are implemented in the
C programming language using Functional Mock-up Interface (FMI) [3,4]. The proposed
connection defect calculation (17) and the output defect estimation (32) are illustrated in
this example.

Algorithm 1 The pseudocode describes a non-iterative Jacobi co-simulation method. In the
variable-step variant, the step size H[k] is computed with the PI controller (17), (32), (38)
and (39). In the fixed-step variant, the step size is constant H[k] = H[k−1] = H1.

Require: a partitioned system (1) without algebraic loops, an initial step size H1, defect
tolerance tol

1: k := 0, T[k] := 0, H[1] = H1
2: calculate the initial output signals by solving the Equations (1b) and (1d)
3: repeat
4: k := k + 1
5: for i← 1 to N do
6: assign the input signals (15)
7: for i← 1 to N do
8: integrate the Equation (1a) on the interval

(
T[k−1], T[k−1]+

H[k]
2

]
9: for i← 1 to N do

10: obtain the output signal samples at T[k−1]+
H[k]

2

11: for i← 1 to N do
12: integrate the Equation (1a) on the interval

(
T[k−1]+

H[k]
2 , T[k]

]
13: for i← 1 to N do
14: obtain the output signal samples at T[k]

15: compute H[k]

16: T[k] := T[k−1]+ H[k]

17: until T[k] 6 tend

The algorithms presented in this article and the code used to generate the results
in this section are published at [26]. The models are implemented in C, the algorithms
are implemented in C++, and the figures are created in Python. In the repository [26] an
interested reader can find

• a C++ implementation of Algorithm 1 in the template function
fmi::jacobi_co_simulation (src/fmi.h),

• an implementation of the step size controller (39) in the method VariableStepSize:
:next (src/fmi.cpp),

• an implementation of the Hermite polynomial calculation (30) in the method
FMU::get_hermite (src/fmi.cpp),

• an implementation of the output defect calculation in the function fmi::calculate
_output_defects (src/fmi.cpp),

• an implementation of connection defect calculation in the function fmi::calculate
_connection_defects (src/fmi.cpp),

• an implementation of co-simulation slaves according to the FMI 2.0 standard [3] in the
directories src/OscillatorOmega2Tau and src/OscillatorTau2Omega,
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• an implementation of the reference solution in the directory
src/TwoMassRotationalOscillator,

• and the code to create the images presented in this section in the Python script
scripts/results_analysis.py.

The implementation of the co-simulation slaves (Figure 3b) follows the FMI standard [3].
Since slaves are compiled together with the master, the shared library and the interface
description are not packaged together for ease of implementation. Models solved by the
slaves are described in the following equations.

J1

φ1, ω1

c1

d1

τ1, φ2, ω2

J2

c2

d2

ck

dk

CVODE

(a)

J1

φ1, ω1

c1

d1

τ1ck

dk

S1 Euler

J2

c2

d2

φ2, ω2

S2Euler

master

(b)
Figure 3. During co-simulation, a co-simulation master orchestrates co-simulation slaves. In the case
of the monolithic simulation, a solver solves the entire system of equations: (a) Monolithic simulation;
(b) Co-simulation.

The example system consists of two slaves i ∈ {1, 2} that solve the following system
of equations

ẋi(t) = fi(xi(t), ui(t)) = Aix1(t) + B1u1(t), (40a)

yi(t) = gi(xi(t), ui(t)) = Cixi(t) + Diui(t), (40b)

xi(0) = xi0 (40c)

connected by
u1(t) = y2(t), u2(t) = y1(t) (41)

where
y1(t) =

[
τ1(t)

]
, u1(t) =

[
ω2(t)

]
,

x1(t) =
[
φ1(t) ω1(t) φ2(t)

]T , x10 =
[
φ10 ω10 φ20

]T ,

A1 =

 0 1 0
− c1+ck

J1
− d1+dk

J1

ck
J1

0 0 0

, B1 =

 0
dk
J1
1

,

C1 =
[
ck dk −ck

]
, D1 =

[
−dk

]
(42)
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and
y2(t) =

[
ω2(t)

]
, u2(t) =

[
τ1(t)

]
,

x2(t) =
[
φ2(t) ω2(t)

]T , x20 =
[
φ20 ω20

]T ,

A2 =

[
0 1
− c2

J2
− d2

J2

]
, B2 =

[
0
1
J2

]
,

C2 =
[
0 1

]
, D2 =

[
0
]

(43)

Model parameters are set to

J1 = 10 kg m2, c1 = 1 N m
rad , d1 = 1 N m s

rad , ck = 1 N m
rad ,

dk = 2 N m s
rad , φ10 = 0.1 rad, ω10 = 0.1 rad

s , J2 = 10 kg m2,

c2 = 1 N m
rad , d2 = 2 N m s

rad , φ20 = 0.2 rad, ω20 = 0.1 rad
s

(44)

The analytic solution is approximated by a monolithic solution of the system (Figure 3a)
solved using the CVODE solver [27] with a tight tolerance bound. The absolute tolerance
limit for the solver used is set to 10−8. This solution is used to give a reference solution for
the co-simulation and to approximate the numerical error.

The internal equations of co-simulation slaves are solved using the forward Euler
method. The forward Euler method is a first-order numerical solver for the same equations

x̃(T[k−1],T[k]]
i (t) =x̃(T[k−2],T[k−1]]

i (T[k−1])

+ (t− T[k−1]) fi

(
x̃(T[k−2],T[k−1]]

i (T[k−1]), ũ(T[k−1],T[k]]
i (T[k−1])

) (45)

The state derivative values of the Euler solver are equal to

dnx̃(T[k−1],T[k]]
i

dtn (T[k]) =

{
Aix̃

(T[k−2],T[k−1]]
i (T[k−1]) + Biũ

(T[k−1],T[k]]
i (T[k−1]), n = 1

0, n > 1
(46)

Output polynomials are Taylor polynomials (12) with output derivative values calcu-
lated using (18) and

dnỹ(T[k−1],T[k]]
i

dtn (T[k]) = Ci
dnx̃(T[k−1],T[k]]

i
dtn (T[k])+ Di

dnũ(T[k−1],T[k]]
i

dtn (T[k]), n = 1, . . . , ni (47)

Input polynomials are Taylor polynomials (14) with input derivative values calculated
using (15).

Figure 4a,b shows the piecewise response for both fixed and variable-step co-simulation
using Algorithm 1. Figure 4a shows the responses obtained by fixed-step co-simulation
with the step size

H = H[k] = H[k−1] = H1 = 1 (48)

Figure 4b shows the responses obtained by variable-step co-simulation with the initial
step size and tolerance

H1 = 1, tol = 0.005 (49)

The step size is controlled by the step controller (39) with the control parameters set to

KP = 0.13, KI =
1
15

, θmax = 2 (50)
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Co simulation
Monolithic

(a)
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0.10

y 1
1(
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y 2
1(
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Co simulation
Monolithic

(b)
Figure 4. The diagrams show numerical solutions that were calculated with the Jacobi co-simulation
method (Algorithm 1). The numerical solutions are compared with the monolithic solution: (a) Fixed
step; (b) Variable step.

The comparison of figures shows how the step size controller reduces the step size
during the co-simulation. In Figure 4a,b

• orders of output (12) and input (14) polynomials are fixed to 0,
• and compared to the monolithic system (Figure 3a) solution found using CVODE (tol-

erance 10−8, [27]).

Theorems 2 and 3 show that the connection and the output defect can be limited by
reducing the communication step size. In order to verify this statement, the root mean
square value of the connection

RMS(δũi1) = ∑
0<kH6tend

∫ T[k]

T[k−1]
δũi1(τ)dτ (51)

and output defect

RMS(δỹi1) = ∑
0<kH6tend

∫ T[k]

T[k−1]
δỹi1(τ)dτ (52)

is calculated for fixed-step co-simulations with different step sizes

H = H[k] = H[k−1] = H1 ∈ {10−3, 10−2.8, . . . , 100} (53)

The results are shown in Figure 5a,b.
The output defect (2b) is estimated using (32). The order of convergence of the output

defect is given with Theorem 3. Figure 5a confirms this theorem. It is interesting to observe
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the output defect of the Euler solver (45) in Figure 5a. From (12), (40b), (45), (46) and (47) it
follows that

ỹ(T[k−1],T[k]]
i1 (t) = 0.5 x̃(T[k−1],T[k]]

i1 (t), ni > 0 (54)

and
δỹi1(t) = 0, ni > 0 (55)

for the Euler solver. This result agrees with the asymptotic upper limit from Theorem 3.
This is interesting because it shows that the output defect for such a solver setup is zero for
any output interpolation order greater than 0. However, the numerical error is larger than
that of an analytic solver (Figure 6).

10 5

10 4

10 3

10 2

RM
S(

y 1
1)

mi = ni = 0
mi = ni = 1, RMS = 0
mi = ni = 2, RMS = 0

10 3 10 2 10 1 100

h

10 5

10 4

10 3

10 2

RM
S(

y 2
1)

mi = ni = 0
mi = ni = 1, RMS = 0
mi = ni = 2, RMS = 0

(a)

10 6

10 5

10 4

10 3

10 2

RM
S(

u 2
1)

mi = ni = 0
mi = ni = 1
mi = ni = 2

10 3 10 2 10 1 100

h

10 6

10 5

10 4

10 3

10 2

RM
S(

u 1
1)

mi = ni = 0
mi = ni = 1
mi = ni = 2

(b)
Figure 5. The diagrams show the defects of the fixed-step Jacobi co-simulation method (Algorithm 1,
H[k] = H[k−1] = H1) and different orders of interpolation polynomials mi = ni: (a) Output defects;
(b) Connection defects.

Theorem 2 shows that the connection defect converges (by assuming that the output
equations are independent of the input signal) , but does not show the order of convergence.
The input assignment (15) suggests that the input signal depends on the order of the input
polynomial as well as the connected output polynomial. However, Figure 5b shows a
relationship between connection defects and an internal solver. The connection defect when
using the analytic solver seems to correlate with the interpolation order and appears to be
O
(

Hmin(mi ,ni)+1). In the case of the Euler solver, the connection defect seems to be limited
to O

(
H2). The latter seems to be a consequence of (46).
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Figure 6. The diagrams show the numerical errors of the fixed-step Jacobi co-simulation method
(Algorithm 1, H[k] = H[k−1] = H1), different orders of interpolation polynomials and different
internal subsystem solvers.

The focus of future work will be on the investigation of the order of convergence of
connection defects. Theorem 2 uses a simplification to avoid the analysis of direct influences
of input signals on output signals. This simplification prevents the analysis of algebraic
loops, which could make the system unstable. Direct influences of input signals on output
signals have an effect on the local co-simulation error shown in [24]. This indicates that
a direct output input dependency could affect the order of the connection defect. This
will be a topic for future work, along with the analysis of the influence of the solver on
connection defects.

Theorem 1 suggests that by limiting the overall co-simulation defect, the global co-
simulation error should be limited. Theorems 2 and 3 show that by limiting the step size,
connection and output defects can be limited. Figure 5 confirms this. The three theorems
suggest that by limiting the step size, the global co-simulation error can be limited. This
is confirmed by Figure 6. It is worth noting that the conclusions given apply to a coupled
ordinary differential system 1.

Reducing the step size limit is not the only way to reduce connection and output
defects. The order of the polynomials used to transmit input and output signals also has
an effect. This effect can be observed in Figure 6. Theorem 1 shows that the co-simulation
error is bounded by connection, output, and integration defects. If defects are

δũ(t) = O
(

Hpi
)
, δỹ(t) = O

(
Hqi
)
, δx̃(t) = O

(
Hri
)
) (56)

then the errors are

∆ũ(t) = O
(

Hmin(pi ,qi ,ri+1)), ∆ỹ(t) = O
(

Hmin(pi ,qi ,ri+1)), ∆x̃(t) = O
(

Hmin(pi ,qi ,ri+1)) (57)

All co-simulation errors are limited by the worst co-simulation defect. Figure 6 shows how
the integration defect of the Euler solver limits the co-simulation error to O

(
H
)
.

Co-simulation errors can be limited by limiting the co-simulation defects. The rate of
convergence of the output defect is given by Theorem 3. It is important to note that the
order of convergence for the output defect estimate is influenced by the Euler solver. The
Euler solver brakes the assumption (33). This is an example where an integration defect
can affect the output error estimate.

It is interesting to observe the effect of the internal solver on the connection defect.
In Figure 5b, it can be seen that for the Euler solver and larger orders of extrapolation
for input and output signals the connection defect is O

(
H
)
. The connection defect (17)
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in the explicit co-simulation is influenced by the difference of the state signal at different
co-simulation steps (26). This observation suggests that a connection defect can be used to
detect numerical errors introduced by solving state, output, and connection equations. The
authors plan future work to rigorously analyze whether there are conditions under which
this hypothesis is true.

The previous experiments use fixed-step co-simulation to confirm Theorems 1, 2 and 3.
Theorem 1 shows that defect control can be used to limit the co-simulation error. Theorems 2
and 3 show that output and connection defects can be limited by limiting the step size. The
previous experiments and theorems justify the use of variable step size co-simulation using
defect control. The next experiments show the results of applying the variable-step Jacobi
co-simulation method to the system (40) and (41). The method is presented in Algorithm 1
and the step size is calculated with (39). The numerical experiment was performed with
the reference tol = 0.1, controller parameters (50) and the initial step size H1 = 0.001.
The comparison of the obtained output signals with the monolithic solution (Figure 3a) is
shown in Figure 4b.

Next, the tolerance was varied

tol ∈ {10−3, 10−2.8, . . . , 100} (58)

to demonstrate that such a controller can limit output and connection defects. Figure 7
shows that the output defect is limited by the tolerance. Figure 8 shows that the connection
defect is limited by the tolerance. This may not always be the case for explicit co-simulation.
In the presented experiments, the initial step size was set to small H1 = 0.001 to ensure that
the numerical defect produced in the initial step stays within tolerance. The experiment
shows that by controlling (38) both connection and output defects can be controlled.

Furthermore, Figure 9 shows that by reducing the tolerance, the co-simulation error
can be reduced. It is interesting to observe that plots of the output defect (Figure 7)
and connection defect (Figure 8) are similar shapes to the error plot (Figure 9). This
comparison suggests that there are cases where such variable step co-simulation can be
used successfully.

10 3 10 2 10 1 100

tol

10 3

10 2

10 1

100

RM
S(

y 1
1)

mi = ni = 0
mi = ni = 1, RMS = 0
mi = ni = 2, RMS = 0

10 3 10 2 10 1 100

tol

RM
S(

y 2
1)

mi = ni = 0
mi = ni = 1, RMS = 0
mi = ni = 2, RMS = 0

Figure 7. The diagrams show the output defects of the variable-step Jacobi co-simulation method
(Algorithm 1, (39) and (50), H1 = 10−4) and different orders of interpolation polynomials.
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Figure 8. The diagrams show the connection defects of the variable-step Jacobi co-simulation method
(Algorithm 1, (39) and (50), H1 = 10−4), different orders of interpolation polynomials and different
internal subsystem solvers.
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Figure 9. The diagrams show the numerical errors of the variable-step Jacobi co-simulation method
(Algorithm 1, (39) and (50), H1 = 10−4), different orders of interpolation polynomials and different
internal subsystem solvers.

It should be noted that the integration defect (2a) is not directly controlled in this
example. In the case of the analytic solver, the defect is completely eliminated. In the case
of the Euler solver (45), the integration defect is O(H). In practice, co-simulation slaves
are black boxes without the ability to monitor the integration. This is why the integration
defect is not included in this analysis.

In Figure 9, it can be seen that co-simulation errors are similar in order of magnitude for
different extrapolation orders. Figure 10 shows the benefit of increasing the extrapolation
order. It shows how an average step size during co-simulation depends on the requested
tolerance. The step size controller takes smaller steps to achieve the same tolerance if higher
extrapolation order is used. This conclusion may not be generalized to more complex
subsystems. It shows the idea that an extrapolation order could be used to decrease the
CPU and communication network load during co-simulation.
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Figure 10. The diagrams show the average step sizes of the variable-step Jacobi co-simulation method
(Algorithm 1, (39) and (50), H1 = 10−4), different orders of interpolation polynomials and different
internal subsystem solvers.

5. Conclusions and Future Work

This article presents an analysis of the co-simulation defect for a system of coupled
ordinary differential equations. The analysis is motivated to deepen the understanding of
the co-simulation configuration. In practice, co-simulation slaves are black boxes coupled
with connection equations (Figure 1). A quality measure that does not require knowledge
of the slave’s internal equations can facilitate the co-simulation configuration. The defect
analysis was only applied to the co-simulation in [15]. This article continues the application
of defect analysis and applies it to variable-step co-simulation with different orders of
interpolation polynomials.

The main contribution of this article is a non-iterative co-simulation method with
variable communication step size (Figure 2, Algorithm 1). Theorem 1 states that the
co-simulation error is bounded if the co-simulation defect is bounded. Theorem 2 and
Theorem 3 show that the connection and the output defect can be limited by reducing the
communication step size. These theorems justify the use of variable step co-simulation
based on defect control. Section 4 shows an application of the proposed method to an
example of a two-mass oscillator and gives a verification of the above statements.

Such a method is valuable in practice because it requires little configuration. The
parameters for the procedure are the initial communication step size H1 and the required
tolerance tol. The method does not require a co-simulation slave to repeat a communication
step. This relaxes the implementation requirements for co-simulation slaves. In addition,
like any variable step method, it can save computation time by calculating the step size for
the results of the desired quality.

One goal of future work would be to see if there is a way to eliminate the need to
perform additional sampling of the communication points to estimate output defects. It
is worth considering under what conditions the calculations of the connection defect are
sufficient to assess the quality of the co-simulation.

Another goal of future work would be to focus on the properties of a model and
try to estimate the correct initial step size H1 for co-simulation. This would reduce the
configuration effort even further and achieve an almost ideal configuration. In this case,
only the required quality of the co-simulation is requested by a user tol.
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