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Abstract: The problem of state estimation of a linear, dynamical state-space system where the output
is subject to quantization is challenging and important in different areas of research, such as control
systems, communications, and power systems. There are a number of methods and algorithms to
deal with this state estimation problem. However, there is no consensus in the control and estimation
community on (1) which methods are more suitable for a particular application and why, and (2) how
these methods compare in terms of accuracy, computational cost, and user friendliness. In this
paper, we provide a comprehensive overview of the state-of-the-art algorithms to deal with state
estimation subject to quantized measurements, and an exhaustive comparison among them. The
comparison analysis is performed in terms of the accuracy of the state estimation, dimensionality
issues, hyperparameter selection, user friendliness, and computational cost. We consider classical
approaches and a new development in the literature to obtain the filtering and smoothing distributions
of the state conditioned to quantized data. The classical approaches include the extended Kalman
filter/smoother, the quantized Kalman filter/smoother, the unscented Kalman filter/smoother, and
the sequential Monte Carlo sampling method, also called particle filter/smoother, with its most
relevant variants. We also consider a new approach based on the Gaussian sum filter/smoother.
Extensive numerical simulations—including a practical application—are presented in order to analyze
the accuracy of the state estimation and the computational cost.

Keywords: extended Kalman filter/smoother; unscented Kalman filter/smoother; Gaussian sum
filter/smoother; particle filter/smoother; state estimation; quantized data

MSC: 93E11

1. Introduction

In the last two decades, there has been a growing number of applications for sen-
sors, networks, and sensor networks, where common problems include dealing with the
loss of information in signals measured with low-resolution sensors, or storing and/or
transmitting a reduced representation of such signals—in order to minimize the resource
consumption in a communication channel [1]. This kind of problem encompasses a non-
linear process called quantization, which divides the input signal space into a finite (or
infinite but countable) number of intervals and each of them being represented by a sin-
gle output value [2]. Applications using quantized data include networked control [3,4],
fault detection [3,5–7], cyber-physical systems [8,9], multi-target tracking [10], and system
identification [11–14], just to mention a few. In these applications, a key element is the state
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estimation of a dynamical system conditioned upon the available quantized observations.
For instance, ref [15] deals with the problem of state estimation and control of a microgrid
incorporating multiple distributed energy resources, where the state estimation and con-
trol are based on uniform quantized observations that are transmitted through a wireless
channel.

For linear systems subject to additive Gaussian noise, expressions for the filtering
and smoothing probability density functions (filtering and smoothing PDFs) that give
estimators with optimal mean-square-error properties can be obtained from the Kalman
Filter and the Rauch–Tung–Striebel smoother (KS), respectively, [16]. However, for general
nonlinear systems subject to non-Gaussian additive noise, it is difficult (or even impossible
in most cases) to obtain closed-form expressions for these PDFs and, therefore, expressions
for a state estimator, given input/output data. Many sub-optimal methods have been
developed in order to obtain an approximation of the desired PDFs and an estimate of
the state vector; see, e.g., [17–19]. For example, the extended Kalman filter (EKF) was
studied in [20] to deal with quantized data. This approach is difficult to implement since
the quantizer is a non-differentiable nonlinear function and requires the computation
of a Jacobian matrix. The authors in [20] proposed to approximate the quantizer by a
smooth function to compute an approximation of the Jacobian matrix. However, since
the quantization function is highly nonlinear, the EKF/EKS approach typically produces
inaccurate estimates of the system state. The Kalman filter was modified to include the
quantization effect in the computation of the filtering state, which has been referred to
as the quantized Kalman filter (QKF) [21,22]. The unscented Kalman filter (UKF) was
applied by [23] to deal with quantized innovation systems in a wireless sensor network
environment. The UKF is based on the Unscented transformation [18] that represents the
mean and covariance of a Gaussian random variable through a reduced number of points.
Then, these points are propagated through the nonlinear function to accurately capture the
mean and covariance of the propagated Gaussian random variable. An advantage of the
UKF lies in its high estimation accuracy and convergence rate, together with its simplicity
of implementation compared with EKF, since it avoids the computation of the Jacobian
matrix required in the EKF method.

One of the most used methods in nonlinear filtering is the Sequential Monte Carlo
sampling approach called particle filtering (PF)[24]. The PF uses a set of weights and sam-
ples to create an approximation of the filtering and smoothing PDFs. The main advantages
of the combined PF and particle smoothing (PS) are the implementation and ability to deal
with nonlinear and non-Gaussian systems. Nevertheless, the PF also has drawbacks. One
of them is the degeneracy problem, where most weights—calculated at one iteration of the
PF approach—go to zero [25]. To get around this issue, [24] proposed an approach called
resampling. Here, the heavily weighted particles are replicated sometimes, and the rest
of the particles are discarded. A number of resampling techniques have been developed
in the literature, such as systematic (SYS), multinomial (ML), Metropolis (MT), and local
selection (LS) resampling methods [26]. These resampling techniques have advantages such
as unbiasedness and parallelism capacity. Naturally, the performance of the particle filter
depends upon the implemented resampling method [27]. Unfortunately, the resampling
process produces a loss of diversity in the particle set since the particles with high weights
are replicated. This problem is called sample impoverishment [25], and to mitigate it, a
Markov chain Monte Carlo (MCMC) move is usually introduced after the resampling step
to provide diversity to the samples so that the new particle set is still distributed according
to the posterior PDF [28]. There are mainly two MCMC methods that we can use to deal
with the impoverishment problem: the Gibbs and the Metropolis–Hasting (MH) sampling.
Here, we discuss the MH algorithm and a special MH algorithm called random walk
Metropolis (RWM [29,30]) in conjunction with the aforementioned resampling methods.

In addition to the methods detailed above, a new algorithm to deal with quantized
output data is proposed in [31,32]. In these works, the authors defined the probability
mass function of the quantized data conditioned upon the system state as an integral
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whose limits depend on the quantizer regions. This integral is approximated by using
Gauss–Legendre quadrature [33], yielding a model with a Gaussian sum structure. Such a
model is later used to develop a Gaussian sum—filter GSF and smoother GSS—to obtain
closed-form filtering and smoothing distributions for systems with quantized output data.

Despite the wide availability of the commonly used and also novel state-estimation
methods described above, there is no consensus among the control and estimation com-
munity on (1) which methods are more suitable for a particular application and why, and
(2) how these methods compare in terms of accuracy, computational cost, and user friend-
liness. This paper provides a comprehensive overview of the state-of-the-art algorithms
to deal with the problem of state estimation of linear dynamical systems using quantized
observations. This work aims to serve both as an introduction to the EKF/EKS, QKF/QKS,
UKF/UKS, GSF/GSS, and PF/PS algorithms for estimation using quantized output data,
and to provide clear guidelines on the advantages and shortcomings of each algorithm
based on the accuracy of the state estimation, dimensionality issues, hyperparameter
selection, user friendliness, and computational cost.

The organization of this paper is as follows: In Section 2, we define the problem of state
estimation with quantized output data. In Section 3, we present a comprehensive review
of the most effective filtering and smoothing methods that are available in the literature.
In Section 4, a numerical example to show the traits of each method is presented, and in
Section 5 a practical application is used for testing the algorithms. In Section 6, general user
guidelines are provided. Finally, concluding remarks are given in Section 7.

2. Statement of the Problem

This paper considers the filtering and smoothing problem for the following discrete-
time, LTI state-space system with quantized output (see Figure 1):

xt+1 = Axt + But + wt, (1)

zt = Cxt + Dut + vt, (2)

yt = q{zt}, (3)

where xt ∈ Rn is the state vector, ut ∈ Rm is the input of the system, zt ∈ R is the non-
quantized output, and yt ∈ R is the quantized output. The matrix A ∈ Rn×n, B ∈ Rn×m,
C ∈ R1×n, and D ∈ R1×m. The nonlinear map q{·} is the quantizer. The state noise wt ∈ Rn

and the output noise vt ∈ R are zero-mean white Gaussian noises with covariance matrix
Q and R, respectively. Due to the random components (i.e., the noises wt and vt) in (1)
and (2), the state-space model can be described using the state transition PDF p(xt+1|xt) ∼
N (xt+1; Axt + But, Q) and the non-quantized output PDF p(zt|xt) ∼ N (zt; Cxt + Dut, R)
with x1 ∼ N (x1; µ1, P1), where N (x; µ, P) represents a PDF corresponding to a Gaussian
distribution with mean µ and covariance matrix P of the random variable x. The initial
condition x1, the model noise wt, and the measurement noise vt are statistically independent
random variables.

ut
A, B, C, D

wt vt

+ q {·}
ytzt

Figure 1. State-space model with quantized output.

On the other hand, the nonlinear map q{·} : R→ Ψ is the quantizer, where Ψ ⊂ R is
the output set. More precisely, q{·} is given by [1]:

yt = q{zt} = ψk if zt ∈ Rk, k ∈ K, (4)
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where ψk is the kth output value in the output set Ψ,Rk is the kth interval mapped to the
value ψk, and the indices set K defines the number of quantization levels of the output set
Ψ. Here we consider two types of quantizers: (i) an infinite-level quantizer (ILQ), in which
its output has infinite (but countable) levels of quantization with

K = {. . . , 1, 2, . . . , L, . . . }. (5)

Here, Rk = {zt : qk−1 ≤ zt < qk} are disjoint intervals, and each ψk is the value that
the quantizer takes in the region Rk, and (ii) a finite-level quantizer (FLQ), in which the
output of the quantizer is limited to minimum and maximum values (saturated quantizer)
similar to (4) with

K = {1, 2, . . . , L− 1, L}. (6)

Notice that the FLQ quantizer is comprised of finite and semi-infinite intervals, given
by R1 = {zt : zt < q1}, RL = {zt : qL−1 ≤ zt}, and Rk = {zt : qk−1 ≤ zt < qk}, with
k = 2 . . . , L− 1. Usually, the setsRk and the output values ψk are defined in terms of the
quantization step ∆, for instance, see, e.g., [12,34].

Thus, the problem of interest can be defined as follows: given the available data
u1:N = {u1, u2, . . . , uN} and y1:N = {y1, y2, . . . , yN}, where N is the data length, we can
obtain the filtering and smoothing PDFs of the state given the quantized measurements,
p(xt|y1:t) and p(xt|y1:N), respectively, the state estimators

x̂t|t = E{xt|y1:t} =
∫

xt p(xt|y1:t)dxt, (7)

x̂t|N = E{xt|y1:N} =
∫

xt p(xt|y1:N)dxt, (8)

and the corresponding covariance matrices of the estimation error:

Σt|t = E
{
(xt − x̂t|t)(xt − x̂t|t)

>|y1:t

}
=
∫
(xt − x̂t|t)(xt − x̂t|t)

>p(xt|y1:t)dxt, (9)

Σt|N = E
{
(xt − x̂t|N)(xt − x̂t|N)

>|y1:N

}
=
∫
(xt − x̂t|t)(xt − x̂t|t)

>p(xt|y1:N)dxt, (10)

where t ≤ N and E{x|y} denotes the conditional expectation of x given y.

2.1. Practical Application: Liquid-Level System

To give context to the problem stated above, we included a practical application.
Consider the liquid-level system shown in Figure 2; see, e.g., [35]. The goal is to estimate
the liquid level in a tank using the measurements obtained by a low-cost sensor based on a
variable resistor that is attached to an arm with a floater. This sensor varies its resistance
in discrete steps providing the quantized measurements yt ∈ {0, 1, . . . , 9, 10}. F1 and F2
are the total inflow and outflow rates, respectively, and f1 with f2 are small deviations
of the inflow and outflow rate from the steady-state value F0. Additionally, h is a small
deviation of the liquid level of the tank from the steady-state value H0. The total liquid
level is H = H0 + h.
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F1 = F0 + f1

Arm

Floater

Tank

F2 = F0 + f2

H=H0+h

− 1
− 2
− 3
− 4
− 5
− 6
− 7
− 8
− 9
−10

Figure 2. Liquid-level system.

The linearized model (around the operating points F0 and H0) that relates the input

f1 to the output h is given by the differential equation a1
dh
dt

+ h = a2 f1. Setting a1 = 0.1,
a2 = 1, and a sampling period T = 0.1 leads to the following state-space model:

xt+1 = 0.3678xt + ut + wt, (11)

zt = 0.6321xt + vt, (12)

where xt is the level of the liquid present in the tank and zt is a nonavailable signal which
is transformed into quantized measurements by the sensor with the following model:

q{zt} =



0 if 0 ≤ zt < 1,
1 if 1 ≤ zt < 2,
...

...
...

9 if 9 ≤ zt < 10,
10 if zt ≥ 10.

(13)

Using only input data and the quantized sensor measurements, the goal is to estimate
the liquid level at every time instant t = nT, where n ∈ Z.

3. Recursive Filtering and Smoothing Methods for Quantized Output Data
3.1. Bayesian Filtering and Smoothing

Under a Bayesian framework, the filtering distributions admit the following recursions;
see, e.g., [16]:

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (14)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
, (15)

where (14) and (15) are the measurement- and time-update equations. The PDF p(xt|xt−1)
is directly obtained from the model in (1), and p(yt|y1:t−1) is a normalization constant. On
the other hand, the Bayesian smoothing equation, see, e.g., [16], is defined by the following:

p(xt|y1:N) = p(xt|y1:t)
∫ p(xt+1|y1:N)p(xt+1|xt)

p(xt+1|y1:t)
dxt+1. (16)
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Notice that to obtain p(xt|y1:t) in (15), we need the probability density function (PDF)
p(yt|xt). Since yt is a discrete random variable, the probabilistic model of p(yt|xt) is a
probability mass function (PMF). Then, the measurement-update equation in (15) combines
both PDFs and a PMF. Here, we use generalized probability density functions; see, e.g., [36].
They combine both discrete and absolutely continuous distributions. In [32], an integral
equation for p(yt|xt) is defined in order to solve the filtering recursion as follows

p(yt|xt) =
∫ bt

at
N (vt; 0, R)dvt. (17)

Here, at and bt are functions of the boundary values of each region of the quantizers
defined in Table 1.

Table 1. Integral limits of Equation (17).

FLQ

yt at bt

ψ1 −∞ q1 −Cxt −Dut

ψk,
k = 2, . . . , L− 1 qk−1 −Cxt −Dut qk −Cxt −Dut

ψL qL−1 −Cxt −Dut ∞

ILQ
ψk,

k = . . . , 1, . . . , L, . . . qk−1 −Cxt −Dut qk −Cxt −Dut

Notice that yt|xt in (17) is a non-Gaussian random variable. This leads to obtaining
non-Gaussian measurement- and time-update distributions. However, the EKF, QKF, and
UKF filters are developed under the assumption that the measurement- and time-update
distributions are Gaussian, which yields a loss of accuracy in the estimation. On the other
hand, (17) is used in GSF/GSS and PF/PS, where the Gaussian assumption is not needed.

3.2. Extended State-Space System

To implement filtering and smoothing algorithms such as the EKF/EKS and the
UKF/UKS, the state-space model in (1)–(3) is rewritten in an extended form as follows

xe
t+1 = Axe

t + Bue
t + we

t , (18)

yt = q{Cxe
t }+ ξt. (19)

The extended system matrices are given by

A =

[
A 0

CA 0

]
, B =

[
B 0

CB D

]
, C = [0 1], (20)

where xe
t = [x>t zt]

> is the extended state, ue
t = [u>t u>t+1] is the extended input with

uN+1 = 0. Notice that the extended system transforms the algebraic equation of the linear
output zt into a recursive equation. It is then necessary to define an initial condition for
zt at t = 1. Considering z1 ∼ N (z1; 0, σz), the initial condition of the extended vector
become xe

1 ∼ N (xe
1; µe

1, Pe
1) where µe

1 = [µ>1 0]> and Pe
1 = diag{P1, σz}. The noise we

t =

[w>t (Cwt + vt+1)
>]> satisfies we

t ∼ N (we
t ; 0,Q) with

Q =

[
Q QC>

CQ> CQC> + R

]
. (21)

The noise ξt is added in order to obtain the adequate structure of the system to
implement the EKF/EKS and the UKF/UKS. However, this does not imply that the mea-
surements are corrupted by the noise ξt. The idea of including an extra noise in the model
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is proposed to ensure a full-rank covariance matrix in the EM algorithm; see, e.g., [37]. We
assume that ξt ∼ N (ξt; 0, ε), where the variance ε is small.

3.3. Extended Kalman Filtering and Smoothing

The idea of EKF [38,39] is to have a linear approximation around a state estimate,
using a Taylor series expansion. The EKF is not directly applied to the problem of interest
in this paper because the quantizer is a non-differentiable nonlinear function. In [20], it
was suggested that it is possible to compute the Kalman gain using a smooth arctan-based
approximation of the quantizer. Thus, following the idea in [20] and the representation
of the arctan function found in [40], the following approximation for the quantizer is
proposed:

q{zt} ≈ h(zt) =



...
...

(∆/π) atan{(zt − 1.5∆)/ρ}+ 1.5∆ if ∆ ≤ zt < 2∆,
(∆/π) atan{(zt − 0.5∆)/ρ}+ 0.5∆ if 0 ≤ zt < ∆,
(∆/π) atan{(zt + 0.5∆)/ρ} − 0.5∆ if −∆ ≤ zt < 0,
(∆/π) atan{(zt + 1.5∆)/ρ} − 1.5∆ if −2∆ ≤ zt < −∆,

...
...

(22)

Here, ρ is a user parameter that defines how well the approximation fits the quantizer
function in the switch point, as shown in Figure 3.

−4∆ −3∆ −2∆ −∆ 0 ∆ 2∆ 3∆ 4∆
−4∆

−3∆

−2∆

−∆

0

∆

2∆

3∆

4∆

zt

yt

Infinite level quantizer

q {·}
approx. ρ = 0.001∆

approx. ρ = 0.1∆
approx. ρ = 0.5∆

−4∆ −3∆ −2∆ −∆ 0 ∆ 2∆ 3∆ 4∆
−4∆

−3∆

−2∆

−∆

0

∆

2∆

3∆

4∆

zt

yt

Finite level quantizer

q {·}
approx. ρ = 0.001∆
approx. ρ = 0.1∆
approx. ρ = 0.5∆

Figure 3. Quantizer approximation by using the arctan function.

On the other hand, by using the smooth approximation of the quantizer, it is possible
to approximate the nonlinear system as a linear time-varying system as follows:

xe
t+1 = Axe

t + Bue
t + we

t , (23)

yt = Htxe
t + Ft + ξt, (24)

where Ht is the Jacobian matrix of h(Cxe
t ) with respect to xe

t , and evaluated at x̂e
t|t−1 and

Ft = h(Cx̂e
t|t−1)−Htx̂e

t|t−1. Then, the equations of the EKF and EKS are summarized in
Algorithms 1 and 2, respectively. One of the difficulties in applying the EKF to deal with
quantized data is the computation of the Jacobian matrix Ht. Despite the approximation of
the quantizer, the Jacobian is nearly zero for all values of x̂e

t|t−1, except for the exact switch
points, as shown in Figure 4 (left), where ρ = 0.001∆. Additionally, Figure 4 (center and
right) shows that the quantizer and Jacobian approximations worsen as ρ increases, which
reduces the accuracy of the estimation.
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Algorithm 1: Extended Kalman filter algorithm for quantized output data

1 Input: The distribution of the initial condition p(xe
1), e.g., x̂e

0|1 = µe
1 and Σe

0|1 = Pe
1.

2 for t = 1 to N do

3 Compute the Kalman gain using: Kt = Σe
t|t−1H>t

(
ε + HtΣ

e
t|t−1H>t

)−1
.

4 Measurement Update:

5 Compute the filtering state x̂e
t|t according to x̂e

t|t = x̂e
t|t−1 + Kt

(
yt − h

(
Cx̂e

t|t−1

))
.

6 Compute the covariance matrix Σe
t|t according to Σe

t|t = (I−KtHt)Σ
e
t|t−1.

7 Time Update:
8 Compute the predicted state x̂e

t+1|t according to x̂e
t+1|t = Ax̂e

t|t + Bue
t .

9 Compute the covariance matrix Σe
t+1|t according to Σe

t+1|t = Q+AΣe
t|tA>.

10 end
11 Output: The PDF p(xe

t |y1:t) and the PDF p(xe
t+1|y1:t) for t = 1, . . . , N.

Algorithm 2: Extended Kalman smoother algorithm for quantized output data

1 Input: The PDF p(xe
t |y1:t) ∼ N

(
xe

t ; x̂e
t|t, Σe

t|t
)

and the PDF

p(xe
t+1|y1:t) ∼ N

(
xe

t+1; x̂e
t+1|t, Σe

t+1|t
)

for t = 1, . . . , N computed in Algorithm 1.

2 for t = N to 1 do

3 Compute the gain Gt = Σe
t|tA>t

(
Σe

t+1|t
)−1

.

4 Compute the smoothing state x̂e
t|N according to x̂e

t|N = x̂e
t|t + Gt

(
x̂e

t+1|T − x̂e
t+1|t

)
.

5 Compute the covariance matrix Σe
t|N according to

Σe
t|N = Σe

t|t + Gt

(
Σe

t+1|T − Σe
t+1|t

)
G>t .

6 end

7 Output: The PDF p(xe
t |y1:N) ∼ N

(
xe

t ; x̂e
t|N , Σe

t|N
)

for t = 1, . . . , N.

−3∆ −2∆ −∆ 0 ∆ 2∆ 3∆
0

100

200

300

400
approx. ρ = 0.001∆

−3∆ −2∆ −∆ 0 ∆ 2∆ 3∆
0

2

4
approx. ρ = 0.1∆

−3∆ −2∆ −∆ 0 ∆ 2∆ 3∆
0

2

4
approx. ρ = 0.5∆

Figure 4. Jacobian matrix of the quantizer approximation.

3.4. Unscented Kalman Filtering and Smoothing

The unscented Kalman Filter [18] is a deterministic sampling-based approach that
uses samples called sigma points to propagate the mean and covariance of the system state
(assumed to be a Gaussian random variable) through the nonlinear functions of the system.
These propagated points accurately capture the mean and covariance of the posterior state
to the 3rd-order Taylor series expansion for any nonlinear function [41]. The key idea
of UKF is to directly approximate the mean and covariance of the posterior distribution
instead of approximating nonlinear functions [18]. The unscented Kalman Filter is based
on the unscented transformation of the random variable x ∈ Rn into the random variable
y = g(x) + v, where g(·) is a nonlinear function, x ∼ N (x; m, Γ), and v ∼ N (v; 0, P). Thus,
the sigma points are defined by

X 0 = m, (25)

X τ = m +
√

n + λ
[
Γ1/2

]
τ
, (26)

X τ+n = m−
√

n + λ
[
Γ1/2

]
τ
. (27)
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Here, τ = 1, . . . , n, the scaling parameter λ = α2(n + κ)− n, the parameters α and κ
determine the propagation of the sigma points around the mean, and the notation [P ]τ
refers to the τth column of the matrix P . The weights associated with the unscented
transformation are the sets{

ϕ0, ϕ1, . . . , ϕ2n
}
= {λζ, 0.5ζ, . . . , 0.5ζ}, (28){

σ0, σ1, . . . , σ2n
}
= {λζ + $, 0.5ζ, . . . , 0.5ζ}, (29)

where ζ = (n + λ)−1 and $ = 1 − α2 + β. In this set of equations, β is an additional
parameter that can be used to incorporate prior information on the x distribution. Then,
the statistics of the transformed random variable are the mean µ = ∑2n

τ=0 ϕτg(X τ) and
the covariance matrix Φ = ∑2n

τ=0 στ [g(X τ)− µ][g(X τ)− µ]> + P. Additionally, the cross-
covariance matrix between x and y is given by Ψ = ∑2n

τ=0 στ [X τ −m][g(X τ)− µ]>. The
steps to implement the UKF are summarized in Algorithm 3. Notice that for the problem of
interest in this paper, the process equation is a linear function. Thus, the UKS algorithm is similar
to EKS but uses the filtering and predictive distributions obtained from the UKF algorithm.

Algorithm 3: Unscented Kalman filter algorithm for quantized output data

1 Input: The distribution of the initial condition p(xe
1), i.e., x̂e

0|1 = µe
1 and Σe

0|1 = Pe
1, the

constant α, κ, and β.
2 for t = 1 to N do
3 Compute and store the sigma points X τ

t|t−1, the weights ϕτ
t|t−1 and στ

t|t−1 by using x̂e
t|t−1

and Σe
t|t−1 for τ = 0, . . . , 2n.

4 Propagate the sigma points using the measurement model Yτ
t = q

{
CX τ

t|t−1

}
for

τ = 0, . . . , 2n.
5 Compute the gain Kt = ΞtS−1

t , where

νt =
2n

∑
τ=1

ϕτ
t|t−1Yτ

t ,

St =
2n

∑
τ=1

στ
t|t−1(Yτ

t − νt)(Yτ
t − νt)

> + ε,

Ξt =
2n

∑
τ=1

στ
t|t−1

(
X τ

t|t−1 − x̂e
t|t−1

)
(Yτ

t − νt)
>.

Measurement Update:
6 Compute the filtering state x̂e

t|t according to x̂e
t|t = x̂e

t|t−1 + Kt(yt − νt).

7 Compute the covariance matrix Σe
t|t according to Σe

t|t = Σe
t|t−1 −KtStK>t .

8 Time Update:
9 Compute the predicted state x̂e

t+1|t according to x̂e
t+1|t = Ax̂e

t|t + But.

10 Compute the covariance matrix Σe
t+1|t according to Σe

t+1|t = Q+AtΣ
e
t|tA>t .

11 end
12 Output: The PDF p(xe

t |y1:t) and the PDF p(xe
t+1|y1:t) for t = 1, . . . , N.

3.5. Quantized Kalman Filtering and Smoothing

The quantized Kalman filter is an alternative version of the Kalman filter that modifies
the measurement update equation to include the quantization effect in the computation of
the filtering distributions. This modification can be performed in different ways [21,22]. In
this work, we use the following modification of the KF:

x̂t|t = x̂t|t−1 + Kt

(
yt − q

{
Cx̂t|t−1 −Dut

})
, (30)
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where Kt is the Kalman gain. Notice that, with the modification in (30), the QKS algorithm
is similar to the standard Kalman smoother (KS).

3.6. Gaussian Sum Filtering and Smoothing

The Gaussian Sum Filter [31,32] is a novel approach to deal with quantized output
data. The key idea of GSF is to approximate the integral of p(yt|xt) given in (17) using the
Gauss–Legendre quadrature rule. This approximation produces a model with a Gaussian
sum structure as follows:

p(yt|xt) ≈
K

∑
τ=1

ςτ
tN (ητ

t ; Cxt + Dut + µτ
t , R). (31)

Here, K is the number of points from the Gauss–Legendre quadrature rule, ςτ
t , ητ

t , and
µτ

t are defined in Table 2, and ωτ and ψτ are weights and points defined by the quadrature
rule, given in, e.g., [33].

Table 2. Parameters of the p(yt|xt) approximation using the Gauss–Legendre quadrature.

FLQ

yt ςτ
t ητ

t µτ
t

ψ1 2ωτ/(1 + ψτ)2 −(1− ψτ)/(1 + ψτ) −q1

ψk,
k = 2, . . . , L− 1 ωτ(qk − qk−1)/2 ψτ(qk − qk−1)/2 −(qk + qi−1)/2

ψL 2ωτ/(1 + ψτ)2 (1− ψτ)/(1 + ψτ) −qL−1

ILQ
ψk,

k = . . . , 1, . . . , L, . . . ωτ(qk − qi−1)/2 ψτ(qk − qi−1)/2 −(qk + qi−1)/2

Using the approximation of p(yt|xt) given in (31), the Gaussian sum filter iterates
between the following two steps:

p(xt|y1:t) =

Mt|t

∑
k=1

γk
t|tN (xt; x̂k

t|t, Σk
t|t), (32)

p(xt+1|y1:t) =

Mt+1|t

∑
k=1

γk
t+1|tN (xt+1; x̂k

t+1|t, Σk
t+1|t). (33)

All quantities in this recursion can be computed following the algorithm in Algorithm 4.
On the other hand, to compute the smoothing distribution, (16) is separated into two
formulas, to avoid the division by a non-Gaussian distribution [42]. The first formula is
the backward recursion that is defined as follows (obtained by using the approximation of
p(yt|xt) given in (31)):

p(yt+1:N |xt) =

St|t+1

∑
k=1

εk
t|t+1λk

t|t+1 exp
{
−1

2

(
x>t Fk

t|t+1xt − 2GkT
t|t+1xt + Hk

t|t+1

)}
, (34)

p(yt:N |xt) =

St|t

∑
k=1

εk
t|tλ

k
t|t exp

{
−1

2

(
x>t Fk

t|txt − 2GkT
t|t xt + Hk

t|t
)}

. (35)

All quantities in this recursion can be computed following the algorithm in
Algorithm 5. The second formula computes the smoothing distribution as follows:

p(xt|y1:N) =

St|N

∑
k=1

εk
t|NN (xt; x̂k

t|N , Σk
t|N). (36)
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In this equation, all quantities can be computed following Algorithm 6.

Algorithm 4: Gaussian sum filter algorithm for quantized output data.

1 Input: The PDF of the initial state p(x1), e.g., M1|0 = 1, γ1|0 = 1, x̂1|0 = µ1, Σ1|0 = P1.

The points of the Gauss–Legendre quadrature {ωτ , ψτ}K
τ=1.

2 for t = 1 to N do
3 Compute and store ςτ

t , ητ
t , and µτ

t according to Table 2.
4 Measurement Update:
5 Set Mt|t = KMt|t−1.
6 for ` = 1 to Mt|t−1 do
7 for τ = 1 to K do
8 Set the index k = (`− 1)K + τ.
9 Compute the weights, means, and covariances matrices as follows:

γk
t|t = γ̄k

t|t
(

∑
Mt|t
s=1 γ̄s

t|t
)−1

,

K`
t = Σ`

t|t−1C>
(

R + CΣ`
t|t−1C>

)−1
,

x̂k
t|t = x̂`t|t−1 + K`

t (η
τ
t −Cx̂`t|t−1 −Dut − µτ

t , ),

Σk
t|t = (I−K`

t C)Σ`
t|t−1,

γ̄k
t|t = ςτ

t γ`
t|t−1N

(
ητ

t ; Cx̂`t|t−1 + Dut + µτ
t , R + CΣ`

t|t−1C>
)

.

10 end
11 end
12 Perform the Gaussian-sum-reduction algorithm according to [43] to obtain the reduced

GMM of p(xt|y1:t).
13 Time Update
14 Set Mt+1|t = Mt|t.
15 for k = 1 to Mt+1|t do
16 Compute and store the weights, means, and covariance matrices as follows:

γk
t+1|t = γk

t|t,

x̂k
t+1|t = Ax̂k

t|t + But,

Σk
t+1|t = Q + AΣk

t|tA
>.

17 end
18 end
19 Output: The filtering PDFs p(xt|y1:t), the predictive PDFs p(xt+1|y1:t), and the set
{ςτ

t , ητ
t , µτ

t }, for t = 1, . . . , N.
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Algorithm 5: Backward-filtering algorithm for quantized output data.

1 Input: The initial backward measurement p(yN |xN) at t = N with parameters: SN|N = K
and

εk
N|N = ςk

N ,

λk
N|N = (det{2πR})−1/2,

θk
N = ηk

N −DuN − µk
N ,

Fk
N|N = C>R−1C,

GkT
N|N = θkT

N R−1C,

Hk
N|N = θkT

N R−1θk
N ,

with the set {ςτ
t , ητ

t , µτ
t } for t = 1, . . . , N being computed from Algorithm 4.

2 for t = N − 1 to 1 do
3 Backward Prediction
4 Set St|t+1 = St+1|t+1.
5 for k = 1 to St|t+1 do
6 Compute and store the backward prediction update quantities as follows

εk
t|t+1 = εk

t+1|t+1,

λk
t|t+1 =

(
det{Q}det

{
Fqk

})−1/2
λk

t+1|t+1,

Fk
t|t+1 = A>MqkA,

GkT
t|t+1 = GkT

t+1|t+1F−1
qk Q−1A− u>t B>MqkA,

Hk
t|t+1 = Hk

t+1|t+1 −GkT
t+1|t+1F−1

qk Gk
t+1|t+1

+ u>t B>MqkBut − 2u>t B>Q−1F−1
qk Gk

t+1|t+1,

where Fqk = Fk
t+1|t+1 + Q−1 and Mqk = Q−1 −Q−1F−1

qk Q−1.

7 end
8 Backward Measurement Update:
9 Set St|t = KSt|t+1.

10 for ` = 1 to St|t+1 do
11 for τ = 1 to K do
12 Set the index k = (`− 1)K + τ.
13 Compute the backward measurement update quantities as follows

εk
t|t = ςτ

t ε`t|t+1,

θτ
t = ητ

t −Dut − µτ
t ,

λk
t|t = (det{2πR})−1/2λ`

t|t+1,

Fk
t|t = F`t|t+1 + C>R−1C,

GkT
t|t = G`T

t|t+1 + θτT
t R−1C,

Hk
t|t = H`

t|t+1 + θτT
t R−1θτ

t .

14 end
15 end
16 Compute the GMM structure of p(yt:N |xt) using Lemma A.3 in [32].
17 Perform the Gaussian sum reduction algorithm according to [43] to obtain the reduced

GMM structure of p(yt:N |xt), see Equation (54) in [32]:

p(yt:N |xt) =
Sred

∑
k=1

δk
t|tN

(
xt; zk

t|t, Uk
t|t
)

,

where Sred, δk
t|t, zk

t|t, and Uk
t|t are the number of Gaussian components kept after the

Gaussian reduction procedure, the weight, mean, and covariance matrix, respectively.
18 Compute and store the backward filter form of the reduced version of p(yt:N |xt) using

Lemma A.3 in [32].
19 end
20 Output: The backward prediction p(yt+1:N |xt) and the backward measurement update

p(yt:N |xt) for t = N, . . . , 1.
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Algorithm 6: Gaussian sum smoothing algorithm for quantized output data.

1 Input: The PDFs p(xt|y1:t−1) and p(xN |y1:N) obtained from Algorithm 4 and the reduced
version of p(yt:N |xt) obtained from Algorithm 5, see (54) in [32].

2 Save the PDF p(xN |y1:N).
3 for t = N − 1 to 1 do
4 Set St|N = Mt|t−1Sred.
5 for ` = 1 to Sred do
6 for τ = 1 to Mt|t−1 do
7 Set the index k = (`− 1)Mt|t−1 + τ.
8 Compute the weights, means, and covariance matrices as follows:

εk
t|N = ε̄ k

t|N
(

∑
St|N
s=1 ε̄ s

t|N
)−1

,

x̂k
t|N = Στ

t|t−1

(
U`

t|t + Στ
t|t−1

)−1
z`t|t + U`

t|t
(

U`
t|t + Στ

t|t−1

)−1
x̂τ

t|t−1,

Σk
t|N = Στ

t|t−1

(
U`

t|t + Στ
t|t−1

)−1
U`

t|t,

where

ε̄ k
t|N =

γτ
t|t−1δ`t|t exp

{
−1

2
(x̂τ

t|t−1 − z`t|t)
>
(

U`
t|t + Στ

t|t−1

)−1
(x̂τ

t|t−1 − z`t|t)
}

(2π)
n
2

√
det
{

U`
t|t + Στ

t|t−1

} .

9 end
10 end
11 end
12 Output: The smoothing PDFs p(xt|y1:N), for t = 1, . . . , N.

3.7. Particle Filtering and Smoothing

Particle filtering [24,25] is a Monte Carlo method that approximately represents the
filtering distributions p(xt|y1:t) of the state variables conditioned to the observations y1:t
by using a set of weighted random samples, called particles, so that

p(xt|y1:t) ≈
M

∑
i=1

w(i)
t δ
(

xt − x(i)t

)
, (37)

where δ(·) is the Dirac delta function, w(i)
t denotes the ith weight, x(i)t denotes the ith

particle sampled from the filtering distribution p(xt|y1:t), and M is the number of particles.
Since the filtering distribution is unknown in the current iteration, it is difficult or impossi-
ble to sample directly from it. In this case, the particles are usually generated from a known
density that is chosen (by the user) to facilitate the sampling process. This is called impor-
tance sampling, and the PDF is called importance density. Then, the importance weight
computation can be carried out in a recursive fashion (sequential importance sampling,
SIS) as follows:

w(i)
t ∝ w(i)

t−1
p(yt|x(i)t )p(x(i)t |x

(i)
t−1)

h(xt|x(i)t−1, yt)
, (38)

where h(xt|x(i)t−1, yt) is the importance density and w(i)
t−1 are the importance weights of the

previous iteration. On the other hand, the choice of importance distribution is critical for
performing particle filtering and smoothing. The particle filter literature shows that the
importance density p(xt|x(i)t−1, yt) is optimal in the sense that it minimizes the variance in

the importance weights w(i)
t [16,25]. However, in most cases, it is difficult or impossible

to draw samples for this optimal importance density, except for particular cases such
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as a state-space model with a nonlinear process and linear output Equation [25]. Many
sub-optimal methods have been developed to approximate the importance density, such
as Markov chain Monte Carlo [44], ensemble Kalman filter [28], local linearization of the
state-space model, and local linearization of the optimal importance distribution [25],
among others. One of the most commonly used importance densities in the literature is
the state transition prior p(xt|xt−1); see, e.g., [25,31,45]. This choice yields an intuitive
and simple-to-implement algorithm with w(i)

t ∝ w(i)
t−1 p(yt|x(i)t ). This algorithm is called a

bootstrap filter [24].
The particle filter suffers from a problem called the degeneracy phenomenon. As shown

in [25], the variance in the importance weights can only increase over time. This implies that
after a few iterations, most particles have negligible weights; see also [46]. A consequence
of the degeneracy problem is that a large computational effort is devoted to updating
particles whose contribution to the final estimate is nearly zero. To solve the degeneracy
problem, the resampling approach was proposed in [24]. The resampling method eliminates
the particles that have small weights, and the particles with large weights are replicated,
generating a new set (with replacement) of equally weighted particles.

Additionally, the resampling method used to reduce the degeneracy effect on the
particles produces another unwanted issue called particle impoverishment. This effect implies
a loss of diversity in the sample set since the resampled particles will contain many repeated
points that were generated from heavily weighted particles. In the worst-case scenario,
all particles can be produced by a single particle with a large weight [29]. To solve the
impoverishment problem, methods such as roughening and regularization have been
suggested in the literature [26]. Markov chain Monte Carlo (MCMC) is another method
used after the resampling step to add variability to the resampled particles [47]. The basic
idea is to apply the MCMC algorithm to each resampled particle with p(xt|y1:t) as the
target distribution. That is, we need to build a Markov chain by sampling a proposal
particle x∗t from the proposal density. Then, x∗t is accepted only if u ≤ v(x∗t , xt), with
u ∼ U [0, 1], where U [a1, a2] corresponds to the uniform distribution over the real numbers
in the interval [a1, a2], and v(x∗t , xt) is the acceptance ratio given by

v(x∗t , xt) = min
{

1,
p(yt|x∗t )
p(yt|xt)

}
. (39)

With this process, the diversity of the new particles is greater than the resampled
ones, reducing the risk of particle impoverishment. Additionally, the new particles are
distributed according to p(xt|y1:t). In this paper, we use the MH and RWM algorithms
to build on the MCMC step. In Algorithm 7, we summarize the steps to implement the
particle filter with the MCMC step.
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Algorithm 7: MCMC-based particle filter algorithm for quantized output data

1 Input: p(x1), the number of particles M.

2 Draw the samples x(i)1 ∼ p(x1) and set w(i)
1 = 1/M for i = 1, . . . , M.

3 for t = 1 to N do
4 From the importance distribution draw the samples x(i)t ∼ h(xt|x(i)t−1, yt) for

i = 1, . . . , M.
5 Calculate the weights w(i)

t using p(yt|xt) given in (17) according to (38) for i = 1, . . . , M.

6 Normalize the weights w(i)
t to sum one.

7 Perform resampling and generates a new set of weights w(i)
t and particles x(i)t for

i = 1, . . . , M. Notice that in the resampling algorithms MR, SR, and MTR w(i)
t = 1/M

for i = 1, . . . , M. The LS algorithm produces a new set of weights; see, e.g., [26].
8 Implement the MCMC move: for ` = 1, . . . , M.

9 Pick the sample x(`)t from the set of the resampled particles.
10 MH: Sample a proposal particle x∗t from the proposal PDF.
11 RWM: Generate x+t from N (0, Λ2) (Λ is defined by the user) and compute

x∗t = x(`)t + x+t .

12 Evaluate v(x∗t , x(`)t ) given in (39). If u ≤ v(x∗t , x(`)t ), then accept the move

(x(`)t = x∗t ) else reject the move (x(`)t = x(`)t ).
13 end

14 Output: w(i)
t , and x(i)t ∼ p(xt|y1:t), i = 1, . . . , M.

Similar to particle filtering, particle smoothing is a Monte Carlo method that approxi-
mately represents the smoothing distributions p(xt|y1:N) of the state variables conditioned
upon the observations y1:N , using random samples as follows:

p(xt|y1:N) ≈
M

∑
i=1

w(i)
t|Nδ

(
xt − x̃(i)t

)
, (40)

where w(i)
t|N denotes the ith weight, x̃(i)t denotes the ith particle sampled from the smoothing

distribution p(xt|y1:N), and M is the number of particles. Some smoothing algorithms are
based on the particles provided by the particle filtering, i.e., x(i)t , such as the backward-
simulation particle smoother [48] and marginal particle smoother [25]. Particularly in the
marginal particle smoother, the weights w(i)

t|N are updated in reverse time as follows:

w(i)
t|N =

M

∑
j=1

w(j)
t+1|N

w(i)
t p(x(j)

t+1|x
(i)
t )

∑M
k=1 w(k)

t p(x(j)
t+1|x

(k)
t )

, (41)

where w(i)
N|N = w(i)

N for i = 1, . . . , M and the approximation of (40) is performed using

x̃(i)t = x(i)t for t = N, . . . , 1. In this paper, we use the smoothing method developed in [49].
The problem of interest in this work admits further simplifications; see also [50]. This
smoothing method [49] requires the evaluation of the function f (x(i)t+1, x(τ)t ) given by

f (x(i)t+1, x(τ)t ) = exp
{
−1

2
η>t Q−1ηt

}
, (42)

where ηt = x(i)t+1 −Ax(τ)t − But. In Algorithm 8, we summarize the steps to implement the
particle smoother.
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Algorithm 8: Rejection-based particle smoother algorithm for quantized out-
put data

1 Input: Weights w(i)
t , and particles x(i)t provided by Algorithm 7, for t = 1, . . . , N, and

i = 1, . . . , M .
2 Set x̃(i)N = x(i)N and w(i)

N|N = 1/M for i = 1, . . . , M.

3 for t = N − 1 to 1 do
4 for i = 1 to M do
5 do
6 Take τ ∼ U ([1, ..., M]).
7 Take u ∼ U [0, 1].

8 while u > f (x(i)t+1, x(τ)t );

9 Set x̃(i)t = x(τ)t and w(i)
t|N = 1/M.

10 end
11 end

12 Output: w(i)
t|N , and x̃(i)t ∼ p(xt|y1:N), i = 1, . . . , M.

On the other hand, provided the weights w(i) and particles x(i) (from particle filter or
smoother), the state estimators in (7) and (8) and the covariance matrices of the estimation
error in (9) and (10) can be computed from

E{g(xt)|s} ≈
M

∑
i=1

w(i)g(x(i)), (43)

where g(xt) represents a function of xt. For example, the mean and covariance matrix of
the filtering and smoothing distributions can be computed with g(xt) = xt and g(xt) =

(xt −E{xt})(xt −E{xt})>, respectively. The variable s represents the observation set that
is used, which is s = y1:t for filtering and s = y1:N for smoothing.

4. Numerical Experiment

In this section, we present a numerical example to analyze the performance of KF/KS,
EKF/EKS, QKF/QKS, UKF/UKS, GSF/GSS, and MCMC-based PF/PS having quantized
observations. We use the discrete-time system in the state-space form given in (1)–(2) with

yt = ∆round(zt/∆). (44)

In (44), ∆ is a quantization step, and round is the Matlab function that computes
the nearest decimal or integer. The sets Rk are computed using qk−1 = yt − 0.5∆ and
qk = yt + 0.5∆. We compare the performance of all filtering and smoothing algorithms
considering eight variations of the PF, where we use the Markov chain Monte Carlo
method MH and RWM with the following resampling methods: SYS, ML, MT, and LS.
For clarity of presentation, we use the bootstrap filter, and we solve the integral in (17)
using the cumulative distribution function computed with the Matlab function mvncdf.
We consider the state-space system given by (1)–(2) with A = 0.9, B = 1.2, C = 2.2, and
D = 0.75. We also consider that wt ∼ N (wt; 0, 1), vt ∼ N (vt; 0, 0.5), the input signal
is drawn from N (0, 1), and x1 ∼ N (x1; 1, 0.01), and the quantization step ∆ = 8. To
implement EKF/EKS ρ = 0.1, to implement UKF/UKS α = 0.001, κ = 0.001, and β = 1.
To implement the GSF/GSS K = 10, and to implement PF/PS we consider Λ2 = 100, and
M = {100, 500, 1000}.

In Figures 5 and 6, we show the filtering and smoothing distributions, i.e., p(xt|y1:t)
and p(xt|y1:N), for a time instant. We freeze the results of KF, QKF, EKF, UKF, and GSF
to observe the behavior of the PF when varying the number of used samples, and when
different MCMC methods are used with different resampling algorithms. These figures
show that the PDFs obtained using GSF/GSS are the ones that best fit the ground truth,
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followed by PF/PS. Furthermore, in Figures 7 and 8, we show the boxplot of the mean
square error (MSE) between the estimated and the true state after running 1000 Monte Carlo
experiments. These figures show the loss of accuracy of the state estimates obtained with
KF/KS, EKF/EKS, QKF/QKS, and UKF/UKS, and better performance for GSF/GSS and
PF/PS (except for the PF version that uses LS resampling). Additionally, we can observe
that in terms of accuracy, the PF/PS implementation that gives the lower MSE is the one
that uses the MCMC move RWM with SYS, ML, and MT resampling methods. On the
other hand, in terms of the computational load, PS in almost all its versions exhibits the
highest execution time, followed by the GSS, EKS, UKS, and KS (see Figure 9). In Table 3,
we ranked all the algorithms studied in the present manuscript in terms of the mean of
the MSE and the execution time. This table suggests that there is a trade-off between the
accuracy of the estimates and the execution time in the case of PF/PS. The GSF/GSS, on
the other hand, exhibits high accuracy in the estimation compared with all its analogs and
exhibits a relatively short execution time compared with (i) the PF/PS using 500 and 1000
particles, (ii) the PF/PS using the MT resampling method with 100 particles and (iii) the
EKF/EKS algorithms.

Table 3. Rank of the filtering and smoothing recursive algorithms for quantized data. References:
KF/KS, EKF/EKS [16], QKF/QKS [21,22], PF/PS [24], UKF/UKS [16,18], GSF/GSS [31,32]. The
notation XX-YY-ZZ(M) denotes the following: XX stands for the filtering or smoothing algorithm (PF
or PS), YY stands for the MCMC algorithm (RWM or MH), ZZ stands for the resampling method
(SYS, ML, MT or LS), and (M) stands for the number of particles used (100, 500, or 1000).

Rank
Filtering Smoothing Smoothing Execution Time

MSE Algorithm MSE Algorithm Execution Time Algorithm

1 0.6724 GSF 0.5207 GSS 0.0026 KS

2 0.6740 PF-RWM-SYS(1000) 0.5212 PS-RWM-SYS(1000) 0.0031 QKS

3 0.6744 PF-RWM-ML(1000) 0.5220 PS-RWM-ML(1000) 0.0111 UKS

4 0.6754 PF-RWM-SYS(500) 0.5231 PS-RWM-SYS(500) 0.1453 PS-RWM-SYS(100)

5 0.6765 PF-RWM-ML(500) 0.5247 PS-RWM-ML(500) 0.1644 PS-RWM-LS(100)

6 0.6880 PF-RWM-SYS(100) 0.5393 PS-RWM-MT(1000) 0.1718 PS-RWM-ML(100)

7 0.6948 PF-RWM-ML(100) 0.5415 PS-RWM-SYS(100) 0.2077 PS-MH-LS(100)

8 0.7588 PF-RWM-MT(1000) 0.5420 PS-RWM-MT(500) 0.2109 PS-MH-SYS(100)

9 0.7830 PF-RWM-MT(500) 0.5470 PS-RWM-ML(100) 0.2354 PS-MH-ML(100)

10 0.9590 PF-MH-SYS(1000) 0.5689 PS-RWM-MT(100) 0.3931 GSS

11 0.9593 PF-MH-MT(1000) 0.6708 PS-MH-SYS(1000) 0.3984 PS-RWM-MT(100)

12 0.9595 PF-MH-ML(1000) 0.6711 PS-MH-ML(1000) 0.4579 PS-MH-MT(100)

13 0.9608 PF-MH-SYS(500) 0.6737 PS-MH-SYS(500) 0.4676 EKS

14 0.9612 PF-MH-MT(500) 0.6746 PS-MH-ML(500) 0.6048 PS-RWM-SYS(500)

15 0.9612 PF-MH-ML(500) 0.6752 PS-MH-MT(1000) 0.6348 PS-RWM-LS(500)

16 0.9686 PF-MH-SYS(100) 0.6781 PS-MH-MT(500) 0.7469 PS-RWM-ML(500)

17 0.9697 PF-MH-ML(100) 0.6927 PS-MH-SYS(100) 0.9772 PS-MH-LS(500)

18 0.9715 PF-MH-MT(100) 0.6927 PS-MH-ML(100) 1.2054 PS-RWM-SYS(1000)

19 1.0138 KF 0.6974 PS-MH-MT(100) 1.2274 PS-RWM-LS(1000)

20 1.6731 PF-RWM-MT(100) 0.7469 PS-MH-LS(1000) 1.2709 PS-MH-SYS(500)
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Table 3. Cont.

Rank
Filtering Smoothing Smoothing Execution Time

MSE Algorithm MSE Algorithm Execution Time Algorithm

21 1.8616 QKF 0.7497 PS-MH-LS(500) 1.4192 PS-MH-ML(500)

22 5.0549 UKF 0.7667 PS-MH-LS(100) 1.5197 PS-RWM-ML(1000)

23 7.3381 PF-RWM-LS(1000) 0.9100 KS 1.8362 PS-RWM-MT(500)

24 7.3602 PF-RWM-LS(500) 0.9393 PS-RWM-LS(1000) 2.0277 PS-MH-LS(1000)

25 7.6912 PF-RWM-LS(100) 1.2900 PS-RWM-LS(500) 2.3945 PS-MH-MT(500)

26 8.3846 PF-MH-LS(1000) 1.6693 QKS 3.0254 PS-MH-SYS(1000)

27 8.4079 PF-MH-LS(500) 5.0545 UKS 3.3505 PS-MH-ML(1000)

28 8.6717 PF-MH-LS(100) 6.4904 PS-RWM-LS(100) 3.6364 PS-RWM-MT(1000)

29 47.7827 EKF 33.8842 EKS 5.0651 PS-MH-MT(1000)
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Figure 5. Filtering PDFs for a time instant. GT stands for the ground truth. KF, EKF, QKF, UKF,
GSF, and PF stand for Kalman filter, extended Kalman filter, quantized Kalman filter, unscented
Kalman filter, Gaussian sum filter, and particle filter, respectively. The PDFs given by the KF, EKF,
QKF, UKF were frozen in all plots to observe the behavior of the PF (with RWM moves) when the
number of particles increased. SYS, ML, MT, LS stand for systematic, multinomial, metropolis, and
local selection resampling algorithms, respectively.
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Figure 6. Smoothing PDFs for a time instant. GT stands for the ground truth. KS, EKS, QKS, UKS,
GSS, and PS stand for Kalman smoother, extended Kalman smoother, quantized Kalman smoother,
unscented Kalman smoother, Gaussian sum smoother, and particle smoother, respectively. The PDFs
given by the KS, EKS, QKS, and UKS were frozen in all plots to observe the behavior of the PS
(with RWM moves) when the number of particles increased. SYS, ML, MT, LS stand for systematic,
multinomial, metropolis, and local selection resampling algorithms, respectively.
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Figure 7. Boxplot of the MSE between the estimated and true state for 1000 Monte Carlo experiments.
KF, EKF, QKF, UKF, GSF, and PF stand for Kalman filter, extended Kalman filter, quantized Kalman
filter, unscented Kalman filter, Gaussian sum filter, and particle filter, respectively. Additionally, SYS,
ML, MT, LS stand for systematic, multinomial, metropolis, and local selection resampling algorithms,
respectively. RWM and MH denote random walk Metropolis and Metropolis–Hasting moves.
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Figure 8. Boxplot of the MSE between the estimated and true state for 1000 Monte Carlo experiments.
KS, EKS, QKS, UKS, GSS, and PS stand for Kalman smoother, extended Kalman smoother, quantized
Kalman smoother, unscented Kalman smoother, Gaussian sum smoother, and particle smoother,
respectively. Additionally, SYS, ML, MT, and LS stand for systematic, multinomial, metropolis, and
local selection resampling algorithms, respectively. RWM and MH denote random walk Metropolis
and Metropolis–Hasting moves.
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Figure 9. Boxplot of the execution time for 1000 Monte Carlo experiments. KS, EKS, QKS, UKS, GSS,
and PS stand for Kalman smoother, extended Kalman smoother, quantized Kalman smoother, un-
scented Kalman smoother, Gaussian sum smoother, and particle smoother, respectively. Additionally,
SYS, ML, MT, and LS stand for systematic, multinomial, metropolis, and local selection resampling
algorithms, respectively. RWM and MH denote random walk Metropolis and Metropolis–Hasting
moves.

5. Practical Application Revisited: Liquid-Level System

We now consider the liquid-level system detailed in Section 2.1. To simulate the system
in (11) and (12), we consider wt ∼ N (wt; 0, 0.1) and vt ∼ N (vt; 0, 0.05). The input ut is
drawn from ut ∼ N (ut; 8, 25), and the initial condition satisfies x1 ∼ N (x1; 1, 0.01). In
this example, we implement the following filtering and smoothing algorithms: EKF/EKS,
UKF/UKS, QKF/QKS, GSF/GSS, and PF/PS. The latter filtering algorithm was imple-
mented using the systematic resampling and MH methods with 500 particles. Addition-
ally, to implement the Gaussian Sum algorithms, we consider K = 10 points from the
Gauss–Legendre quadrature rule. We simulate 100 Monte Carlo experiments for both the
filtering and smoothing algorithms with N = 100.

Figure 10a shows one realization of the non-quantized signal zt and the quantized
output yt. Figure 10b shows the execution time of all smoothing algorithms, where we
see that PS has the highest computational cost by a considerable margin, followed by the
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GSS. In terms of estimation accuracy, the MSE between the real and estimated tank liquid
level corresponding to the filtered and smoothed states is documented in Figure 10c,d,
respectively. These boxplots show that GSF and GSS exhibit the lowest MSE, followed by
the UKF/UKS, QKF/QKS, PF/PS, and EKF/EKS. Taking into consideration these results,
this practical setup also illustrates that the Gaussian sum filter and smoother provides the
best trade-off between estimation accuracy and computational cost.
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Figure 10. Practical application: (a) A realization of the non-quantized signal zt and the quantized
output yt. (b) Boxplot of the execution time of the smoothing algorithms. (c) Boxplot of the MSE
between the real and estimated (filtered) tank liquid level. (d) Boxplot of the MSE between the real
and estimated (smoothed) tank liquid level. EKF/EKS, QKF/QKS, UKF/UKS, GSF/GSS, and PF/PS
stand for extended Kalman filter/smoother, quantized Kalman filter/smoother, unscented Kalman
filter/smoother, Gaussian sum filter/smoother, and particle filter/smoother, respectively.

6. User Guidelines and Comments

All the filtering and smoothing algorithms studied in this paper have a number of
hyperparameters that need to be chosen based on their purpose. Hence, some guidelines
are provided based on both the numerical analysis and also on the authors’ practical
experience.

• To implement the EKF/EKS, the user parameter ρ defines the arctan-approximation
accuracy of the quantizer, which impacts the accuracy of the approximation for Ht in
(24). Choose a small value of ρ to obtain a high accuracy for the quantizer. The disad-
vantage of these algorithms is that despite an accurate approximation of the quantizer,
the estimation of the state of the system is not accurate for a coarse quantization
scheme;

• To implement UKF/UKS, the parameter α is usually set to a small positive value, for
instance, α = {0.01, 0.001, 0.0001}. The parameter κ is typically set to zero or a very
small positive value, for instance, κ =

{
0, 0.001, 1× 10−10}. For the extra parameter β,

if the random variable to transform is Gaussian distributed, it is known that β = 2
is optimal [41]. In the problem of interest in this work, the random variables—after
the unscented transformation—are non-Gaussian, and the parameter β can be chosen
heuristically so that the estimation error is acceptable;
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• Based on the authors’ practical experience, the QKF/QKS produces an accurate es-
timation of the system states (under the assumption that filtering and smoothing
distributions are Gaussian) if the quantization step is small compared to the amplitude
of the output signal. However, the accuracy of the estimates decreases as the quanti-
zation step increases. The advantage of this algorithm is that it is easy to implement,
and it is faster compared to more sophisticated implementations such as the PF/PS
and the GSF/GSS;

• To implement the GSF/GSS, choose the number of Gauss–Legendre quadrature points
as K = {4, 6, 10}. These values of K produce highly accurate estimates for the system
states and the filtering/smoothing PDFs with a low computational cost. Additionally,
these algorithms produce directly an explicit model for the filtering and smoothing
PDFs without extra algorithms. The disadvantage of the GSF/GSS algorithms is that
they are difficult to implement since they require the backward filter recursion and
the Gaussian sum reduction algorithms;

• The PF/PS produces accurate estimations of the system state with a relatively low
amount of particles. For instance, M = {100, 200, 500} are good choices for low-order
models. These algorithms are easy to implement, and there are many resampling
methods that can be replicated. The disadvantage of the PF/PS algorithms is that
the computational cost increases rapidly as the number of particles and the system
order increases. Additionally, the PF/PS does not directly produce the filtering and
smoothing PDFs unless a PDF-fitting algorithm is implemented. This introduces an
extra computational cost if filtering and smoothing PDFs are required;

• In some situations, as is the case shown in Figures 7 and 8, the QKF/QKS performs
worse than the standard KF/KS in terms of estimation accuracy. This suggests that
there are cases with fine quantization, where if the accuracy of the estimation is not
critical, but the execution time is, then the user can choose to neglect the quantization
block and pick the standard KF/KS algorithms for state estimation.

7. Conclusions

In this paper, we investigated the performance of the extended Kalman filter/smoother,
quantized Kalman filter/smoother, unscented Kalman filter/smoother, Gaussian sum fil-
ter/smoother, and particle filter/smoother for state-space models with quantized obser-
vations. The analysis was carried out in terms of the accuracy of the estimation, using
the MSE and the computational cost as performance indexes. Simulations show that the
PDFs of Gaussian sum filter/smoother and particle filter/smoother with a high number of
particles are the ones best fitting the ground-truth PDFs. However, contrary to the particle
filter/smoother, the Gaussian sum filter/smoother does not require a high computational
load to achieve accurate results. The extended Kalman filter/smoother, quantized Kalman
filter/smoother, and unscented Kalman filter/smoother produce results with low accuracy,
although their execution time is minor. From simulations, we observed that the perfor-
mance of the particle filter is closely related to the number of samples, the choice of the
resampling method, and the MCMC algorithms, which address the degeneracy problem
and mitigate the sample impoverishment. We used four different resampling schemes
combined with two MCMC algorithms. We found out that the implementation of the
MCMC-based particle filter and smoothing that produces the lower MSE is the one using
random walk Metropolis combined with the systematic resampling technique.
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Abbreviations
The following abbreviations are used in this manuscript:

KF/KS Kalman Filter/Rauch–Tung–Striebel smoother
EKF/EFS Extended Kalman filter/smoother
UKF/UKS Unscented Kalman filter/smoother
QKF/QKS Quantized Kalman filter/smoother
PF/PS Particle filter/smoother
GSF/GSS Gaussian sum filter/smoother
MCMC Markov chain Monte Carlo
MH Metropolis–Hasting
RWM Random walk Metropolis
PDF Probability density function
PMF Probability mass function
FLQ Finite level quantizer
ILQ Infinite level quantizer
SYS Systematic (resampling)
ML Multinomial (resampling)
MT Metropolis (resampling)
LS Local selection (resampling)
GT Ground truth
MSE Mean square error
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