
Citation: Urbano-Leon, C.L.;

Escabias, M.; Ovalle-Muñoz, D.P.;

Olaya-Ochoa J. Scalar Variance and

Scalar Correlation for Functional

Data. Mathematics 2023, 11, 1317.

https://doi.org/10.3390/

math11061317

Academic Editor: Alicia Nieto-Reyes

Received: 3 February 2023

Revised: 2 March 2023

Accepted: 4 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Scalar Variance and Scalar Correlation for Functional Data
Cristhian Leonardo Urbano-Leon 1,*,† , Manuel Escabias 1,† , Diana Paola Ovalle-Muñoz 1,†

and Javier Olaya-Ochoa 2,†

1 Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
2 School of Statistics, University of Valle, Cali 760042, Colombia
* Correspondence: e.leonardourbano@go.ugr.es
† These authors contributed equally to this work.

Abstract: In Functional Data Analysis (FDA), the existing summary statistics so far are elements in
the Hilbert space L2 of square-integrable functions. These elements do not constitute an ordered
set; therefore, they are not sufficient to solve problems related to comparability such as obtaining
a correlation measurement or comparing the variability between two sets of curves, determining
the efficiency and consistency of a functional estimator, among other things. Consequently, we
present an approach of coherent redefinition of some common summary statistics such as sample
variance, sample covariance and correlation in Functional Data Analysis (FDA). Regarding variance,
covariance and correlation between functional data, our summary statistics lead to numbers instead
of functions which is helpful for solving the aforementioned problems. Furthermore, we briefly
discuss the functional forms coherence of some statistics already present in the FDA. We formally
enumerate and demonstrate some properties of our functional summary statistics. Then, a simulation
study is presented briefly, with evidence of the consistency of the proposed variance. Finally, we
present the implementation of our statistics through two application examples.

Keywords: correlation for functional data; covariance for functional data; FDA; summary statistics
in functional data; variance for functional data

MSC: 62R10

1. Introduction

Functional Data Analysis (FDA) is a branch of statistics that has played a growing role
since the book by [1] due to its multiple applications [2–8]. In fact, according to [9], the term
Functional Data Analysis is due to [10,11], although some previous work on the subject is
credited to [12,13]. FDA takes, as a starting point, discrete measurements of a continuous
phenomenon to construct smooth curves using modified numerical analysis techniques.
With these, the set of scalar data is converted into a new object called a functional datum,
which is a continuous function [8,14]. This allows us to bring into statistical analysis some
theoretical aspects from functional analysis, where some sets of functions with certain
characteristics can form algebraic structures [15,16]. These structures can provide optimal
properties for the analysis and measurement of continuous function curves. The Hilbert
space, which is formed by square-integrable functions in a closed interval [a, b]; a, b ∈ R,
is a structure that plays a key role in this context. It is usually denoted as L2[a, b] and the
main reason for playing such an important role is because Hilbert spaces are usually seen
as extensions of the Euclidean space [15,17] (pages 249 and 19, respectively) because they
have distance and size measures [18], which are desirable properties.

Until now, most existing FDA theory has been constructed based on the extension of
scalar statistics concepts to functions, giving functional objects as a result. For instance, a
widely accepted definition of summary statistics for functional data is given in [1], who
define the sample functional mean, variance, covariance and correlation as continuous
functions in L2[a, b], as shown in Definition 1.
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Definition 1. Measures in Functional Data: Given the sets of functional data {Xi}n
i=1 and

{Yi}n
i=1 defined in t ∈ [a, b], the summary functions are defined as:

• Mean:

X (t) = ∑n
i=1 Xi(t)

n

• Variance:

Var(X )(t) = ∑n
i=1(Xi(t)−X (t))2

(n− 1)

• Standard Deviation:

Sd(X )(t) =
√

Var(X (t))

• Covariance:

Cov(X ,Y)(t) = ∑n
i=1(Xi(t)−X (t))(Yi(t)−Y(t))

(n− 1)

• Correlation:

Corr(Xi,Yi)(t) =
Cov(X ,Y)(t)

Sd(X )(t)Sd(Y)(t)

In Definition 1, we show an expression for the covariance between X and Y , which is
usually defined in the literature as “cross-covariance”. This name is suggested by Ramsay
and Silverman in their 2005 book because they define the covariance as a summary of the
dependence of records across different argument values.

It should be noted, however, that functions and scalars are different mathematical
objects with different properties, which generates some conceptual discussions. Let us
consider in the first place the functional mean. As is very well known for scalar data [19]
(pp. 15–18), the Arithmetic Mean is a central tendency indicator that must be interpretable
in the same context as the data. In this sense, the fact that the functional mean is a function
results in a conceptually coherent concept of “tendency” because the functional mean
describes the expected behavior of a set of functions related to a functional random variable.
Moreover, it also has the property of “centrality” [20] (p. 76), which can be described in
its functional form with the fulfilment of Equation (1), where X0 is the null function in the
definition interval of the functional dataset {Xi}n

(i=1).

n

∑
i=1

(Xi −X ) = X0 (1)

However, if we follow the approach of [1], proving this fact requires an exhaustive
walkthrough of the infinite points of the function’s definition interval, which adds complex-
ity to a proof that would become simpler upon performing the new approach we propose
in this paper.

Let us consider now the functional variance. It should be considered that the usual
motivation for the concept of variance is as a measure of dispersion [21] (p. 309), whose
initial intention is to bring a comparative way for the use of consistency and efficiency
concepts [22,23], whose definition is based on the basic premise that the sum of the squares
of the deviations from the mean is a minimum [19] (pp. 555–557). Namely, given a set of
scalar data {xi}n

i=1, n ∈ N, associated with the random variable X and whose arithmetic
mean is X, the sum of Expression (2) is minimum value when a = X [20] (p. 84), so that the
variance in Expression (3) is also minimum value because it reflects the expected behavior
of the deviations from the mean.

n

∑
i=1

(xi − a)2 (2)
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1
n

n

∑
i=1

(xi − X)2 (3)

Similarly, given a functional dataset {Xi}n
i=1 and a functional datum Y , the sum in

Expression (4) must be minimum value when Y = X , where X is the functional mean of
{Xi}n

i=1.

n

∑
i=1

(Xi −Y)2 (4)

However, Ramsay and Silverman’s functional variance given in Definition 1 does not
comply with this functional version of such property. This is true because the concept of a
“minimum” function lacks validity due to the functional character of the objects and that
the functions do not form a well ordered set [24–26].

Furthermore, a conceptual problem seems to be associated with the fact that the
variance itself gives a measure of the distance from the values to the mean [21]. Ac-
cording to [17], a measure always has to be a nonnegative real number; therefore, the
functional variance given in Definition 1 is not truly a measure of dispersion of the func-
tional data but rather a curve that offers point-to-point variances within the functional data
definition interval.

Another important flaw of the variance curve is that, due to the lack of order inside a
functional space, if there are two sets of curves, it is hard to decide which of the two sets
has a larger dispersion. This is possible, however, with a point-to-point comparison, as is
done if we look at the functional variance as a curve of point-to-point variances.

On the other hand, on the functional covariance and correlation, while the concept
of covariance is not thought of as a measure, it is expected to be an indicator of the joint
variation of two random variables [27,28]. It maintains a close relation to the concept of
variance because the variance is a very particular case of the covariance [19] (pp. 126–128).
Therefore, if the functional variance is a real number, the covariance must also be because
there should be coherence between the concepts. However, covariance in Definition 1 is
just a point-to-point covariance function whose interpretation gives an idea of the regions
where there is a larger or a smaller joint variation of the curves within the definition interval
of the functional data, but it is not an indicator of the joint variation of two functional
random variables.

In turn, correlation is defined as a coefficient that is linked to the concept of covari-
ance [19] (pp. 115–119) and for that reason, it must be defined as a real number, even in
functional data. However, it is important to point out that the concept of “linear” correlation
within functional data does not become clearly visible and its “linear” interpretation needs
further study.

In this sense, we present a new approach for the treatment of functional data that
attempts to provide summary statistics for functional data with conceptual coherence and
operational advantages, defining the variance, covariance and correlation for functional
data as real numbers. For this, we use one of the most notable particularities of the Hilbert
spaces like vector space because, as claimed by [29–32], the elements of a vector space can
be uniquely completely described by a linear combination of a set of orthogonal elements
called a basis. However, for L2[a, b], this set is infinite. For that reason, all FDA theory is not
performed over the entire L2[a, b] but over a subspace of finite dimension [33] because the
number of functions used as a basis for the construction of the functional data is finite [1,34].

Thus far, this fact has been little explored in FDA theoretical development, although
there are recent works, such as [35], that estimate a test statistic using the basis coefficients,
the use of coefficients in the homogeneity problem by [36], and also [37] who use the basis
coefficients for estimating functional PLS regression, or even previously, with the use of
principal components of functional logistic regression the authors of [38] deal with some
aspects of the subject. However, our approach addresses the functional data from a vector
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perspective because each functional datum corresponds to a single coefficient vector that
characterizes it, which allows transferring some operations between functions to operations
between coefficient vectors, component-by-component, providing operational advantages
in formal proofs.

It is important to point out that our approach is based on the representation of a con-
tinuous function within an arbitrary subspace of finite dimension of L2[a, b] and therefore
the results obtained can be applied without loss of generality to any type of orthonormal
basis and of any finite dimension. Thus, in addition to the theory proposed, a simulation
study with curves represented in a subspace spanned by an orthonormal basis of cosines
in the [0, 1] interval is presented briefly and two implementation examples are described
in the final section. In the first example, we implement our correlation proposition to
determine whether there is independence between the functional random variables, used
by [1] when constructing a functional analysis of variance (FANOVA) of the Canadian
average annual temperature in four of its regions. This is done because the analysis does
not specify the existence of independence between the functional random variables. The
second example describes the use of our variance and functional correlation proposition as
part of a functional and descriptive data analysis on particulate matter from two air quality
monitoring stations in Cali, Colombia.

At this point, we recall some very well known background information, which we
will need to present the new summary statistics definitions.

Definition 2. System of Generators, Basis and Dimension:

• Given a vector space V over a field K and given S ⊂ V, it is decided that V is spanned by S if
every element of V can be written as a linear combination of the elements of S [32].

• A vector space is said to be of finite dimension if it can be generated by a finite set of ele-
ments [39].

• A set B ⊂ V is a basis for V if B spans V and is also linearly independent. [32]

Definition 3. Hilbert Space: In a very general manner, a Hilbert space is a vector space over the
field of real numbers in which a norm and an inner product have been defined [34,40].

Definition 4. Functional Space: A functional space is a vector space whose elements are functions.

Definition 5. The Functional Hilbert Space L2[a, b]: The L2[a, b] space is a vector space over
the field of real numbers whose elements are square-integrable functions in the closed interval [a, b];
a, b ∈ R and where given f , g ∈ L2[a, b], an inner product, a norm and a distance are defined as:

• Inner product: 〈 f , g〉 =
∫ b

a f (x)g(x)dx.

• Norm: ‖ f ‖ = 〈 f , f 〉1/2 = (
∫ b

a f 2(x)dx)1/2

• Distance: d( f , g) =
√∫ b

a ( f (x)− g(x))2dx

With this, the L2[a, b] space is a functional Hilbert space [29,41].

Definition 6. Orthonormal and Orthogonal Bases: Two elements of a vector space are orthog-
onal if and only if the inner product between them is zero. In the same way, an element of a vector
space is said to be normal if and only if its norm value is equal to 1. Thus, a basis is said to be
orthogonal if and only if it is composed of elements that are orthogonal two-by-two. If, in addition,
such elements satisfy the condition of normality, the basis is said to be orthonormal [30,42].

Definition 7. Functional Random Variable: A functional random variable X is a random
variable that takes values in a functional space, where an observation of X is called a functional
datum [43].
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2. Summary Statistics for Functional Data

With the motivation of providing FDA theory with summary statistics that have
interpretive and operational advantages, in this section, we propose a new approach for
the treatment of functional data that considers them as elements of the same functional
subspace H of finite dimension of the Hilbert space L2[a, b], which allows transforming
operations between functions to operations between elements of vectors of coefficients
component-by-component because the L2[a, b] space is in particular a vector space and
therefore if B =

{
Fj
}p

j=1 is a finite basis of H and X ∈ H, defined on Equation (5), is a
functional datum,

X =
p

∑
j=1

ajFj For aj ∈ R with j = 1, 2, 3, . . . , p. (5)

where X is a linear combination of the elements of B and therefore X is uniquely completely
determined by the vector

(
a1, a2, a3, . . . , ap

)
B, which is called the B−basis representation vector.

As mentioned, Ref. [35] estimate a test statistic using the basis coefficients. Previously,
on a density estimation problem, Ref. [33] used a finite-dimensional approximation of
the functional data, just like the one we propose here. However, none of them moved
toward the representation of summary statistics for functional data using the vectors of
coefficients used for the functional data representation shown in Equation (5). Next, the
new definitions of summary statistics are proposed, as well as their properties.

2.1. Sum of Functional Data

As observed in works by [44,45] and in most of the textbooks on linear algebra and
functional analysis, the sum of the elements of a space of finite dimension can be defined by
the sum of their representation coefficients in the same basis, as is presented in Proposition
1 and whose proof is immediate, using the representation of each functional datum and the
association and commutation properties of L2[a, b] under the sum.

Proposition 1. Let H be a subspace of finite dimension p of the Hilbert space L2[a, b] with
basis B =

{
Fj
}p

j=1 and {Xi}n
i=1 ⊆ H a set of n functional data with representation vectors(

ai,1, ai,2, . . . , ai,p
)
B , for some ai,j ∈ R with i = 1, 2, . . . n and j = 1, 2, 3, . . . , p. Then, the sum

∑n
i=1 Xi is an element ofH with representation vector:(

n

∑
i=1

(ai,1),
n

∑
i=1

(ai,2), . . . ,
n

∑
i=1

(
ai,p
))
B

Proof. Given that
(
ai,1, ai,2, . . . , ai,p

)
B with ai,j ∈ R, i = 1, 2, . . . n and j = 1, 2, 3, . . . , p are

representation vectors,

n

∑
i=1
Xi =

n

∑
i=1

(
p

∑
j=1

ai,jFj

)

=
p

∑
j=1

(
n

∑
i=1

ai,j

)
Fj

Therefore, given Fj ∈ H for every 1 ≤ j ≤ p, then ∑n
i=1 Xi ∈ H and its representation

vector is (
n

∑
i=1

(ai,1),
n

∑
i=1

(ai,2), . . . ,
n

∑
i=1

(
ai,p
))
B
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Proposition 1 indicates that the sum of the n functional data {Xi}n
i=1 is completely

determined by the sum of the representation vectors component-by-component.

2.2. Mean of Functional Data

It is possible to obtain a definition of the mean for functional data from the represen-
tation coefficients, as we show in Proposition 2 and whose proof applies Proposition 1 as
well as the representation coefficients.

Proposition 2. Let H be a subspace of finite dimension p of the Hilbert space L2[a, b] with
basis B =

{
Fj
}p

j=1 and {Xi}n
i=1 ⊆ H a set of n functional data with representation vectors(

ai,1, ai,2, . . . , ai,p
)
B for ai,j ∈ R with i = 1, 2, . . . , n and j = 1, 2, . . . , p. Then, the functional

mean for the functional dataset {Xi}n
i=1 is given by:

X =
p

∑
j=1

(
Aj
)
Fj (6)

where Aj =
1
n
(
∑n

i=1 ai,j
)

for j = 1, 2, . . . , p

Proof. Given Aj = n−1(∑n
i=1 ai,j

)
is the mean of the jth coefficients with j = 1, 2, . . . , p,

then:

X =
1
n

n

∑
i=1
Xi

=
1
n

n

∑
i=1

(
p

∑
j=1

ai,jFj

)

=
p

∑
j=1

(
1
n

n

∑
i=1

ai,j

)
Fj =

p

∑
j=1

(
Aj
)
Fj

Proposition 2 indicates that the representation vector of the functional mean is com-
pletely determined by the representation vector of component-by-component mean coeffi-
cients. Namely, for a set of n functional data whose representation vectors are(

ai,1, ai,2, . . . , ai,p
)
B with 1 ≤ i ≤ n, the functional mean is another functional datum,

whose representation vector is
(

A1, A2, . . . , Ap
)
B .

In addition, it should be noted that the functional mean of Proposition 2 and the
one in Definition 1 are the same functions because, as mentioned above, it is coherent
with the concept of tendency. However, under this new approach, the functional mean
has operational advantages, some of which are immediately observed in the proof of the
functional version of the property of centrality (p. 76, [20]), illustrated by Proposition 3.

Proposition 3. LetH be a subspace of finite dimension p of the Hilbert space L2[a, b], {Xi}n
i=1 ⊆

H a set of n functional data and X its functional mean, then:
n

∑
i=1

(Xi −X ) = X0

where X0 is the null function in [a, b].

Proof. Let B = {Fi}
p
i=1 be a basis of H. Therefore, there are ai,j ∈ R such that Xi =

∑
p
j=1 ai,jFj for every i = 1, 2, . . . n. In addition, by Proposition 2, X = ∑

p
j=1AjFj, where

Aj =
1
n ∑n

i=1 ai,j; then, by Proposition 1:
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n

∑
i=1

(
Xi −X

)
=

n

∑
i=1

(
p

∑
j=1

(
ai,j − Aj

)
Fj

)

=
p

∑
j=1

(
n

∑
i=1

(
ai,j − Aj

))
Fj

=
p

∑
j=1

(0)Fj = X0

because ∑n
i=1
(
ai,j − Aj

)
= 0 for j = 1, 2, . . . , p, “ai,j” and “Aj” are scalars and therefore

satisfy the property of centrality.

2.3. Variance for Functional Data

We define the variance for functional data as the average of the squared distances
of each function to the functional mean. The distance used is the distance between the
functions of L2[a, b], shown above in Definition 5, which gives a scalar number as a result
and therefore the variance of Definition 8 is a scalar and maintains the concept of the
variance as a measure of dispersion because it is the expected behavior of the distances
of the functions to the functional mean, whose interpretation is performed in a general
manner over the entire set of functions.

Definition 8. Variance for Functional Data: Let H be a subspace of finite dimension p of
the Hilbert space L2[a, b] and let {Xi}n

i=1 ⊆ H be a set of n functional data associated with the
functional random variable X ; then, the scalar variance for this functional data set is defined as:

Var(X ) =
1
n

n

∑
i=1

(∫ b

a

(
Xi −X

)2
(t)dt

)
(7)

This definition allows having a scalar measure of dispersion, around the functional
mean, of a set of functions. The most notable operational advantage of Definition 8 is given
by Theorem 1.

Theorem 1. LetH be a subspace of finite dimension p of the Hilbert space L2[a, b], B = {Fj}
p
j=1

an orthonormal basis ofH and {Xi}n
i=1 ⊆ H a set of n functional data associated with the functional

random variable X , with representation vectors
(
ai,1, ai,2, . . . , ai,p

)
B : 1 ≤ i ≤ n, then:

Var(X ) =
p

∑
j=1

Vj (8)

where Vj =
1
n ∑n

i=1(ai,j −Aj)
2.

Theorem 1 indicates that if the representation basis is orthonormal, the variance for
the functional data can be simply calculated as the sum of the variances of the coefficients,
component-by-component.

To prove Theorem 1, we need first to prove a couple of very important results presented
in Lemmas 1 and 2.

Lemma 1. Let H be a subspace of finite dimension p of L2[a, b], B = {Fj}
p
j=1 a basis of H,

{Xi}n
i=1 ⊆ H a set of functional data with representation vectors

(
ai,1, ai,2, . . . , ai,p

)
B : 1 ≤ i ≤ n

and Y ∈ H a functional datum with representation vector
(
b1, b2, . . . , bp

)
B , then:
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1
n

n

∑
i=1

(Xi −Y)2 =
p

∑
j=1

(
1
n

n

∑
i=1

(ai,j − bj)
2

)
F 2

j + 2

p−1

∑
k=1

p−1

∑
j=k

(
1
n

n

∑
i=1

(ai,j − bj)(ai,(j+1) − b(j+1))

)
FjF(j+1)

The proof of Lemma 1 follows from the representation of each of the elements of H on the selected
basis and from the properties of summation.

Proof. Given that Y ∧ Xi ∈ H for every i = 1, 2, . . . , n, then:

1
n

n

∑
i=1

[Xi −Y ]2 =

=
1
n

n

∑
i=1

 p

∑
j=1

ai,jFj −
p

∑
j=1

bjFj

2

=
1
n

n

∑
i=1

 p

∑
j=1

(ai,jFj − bjFj)

2

=
1
n

n

∑
i=1

 p

∑
j=1

(ai,j − bj)Fj

2

=
1
n

n

∑
i=1

 p

∑
j=1

(ai,j − bj)
2F2

j


+

1
n

n

∑
i=1

2

p−1

∑
k=1

p−1

∑
j=k

(
(ai,j − bj)(ai,(j+1) − b(j+1))

)
FjF(j+1)


=

p

∑
j=1

(
1
n

n

∑
i=1

(ai,j − bj)
2

)
F2

j

+ 2
p−1

∑
k=1

p−1

∑
j=k

(
1
n

n

∑
i=1

(
(ai,j − bj)(ai,(j+1) − b(j+1))

))
FjF(j+1)

If in Lemma 1 we replace Y by the functional mean of {Xi}n
i=1, the Lemma 2

is obtained.

Lemma 2. Let H be a subspace of finite dimension p of L2[a, b], B = {Fj}
p
j=1 a basis of H,

{Xi}n
i=1 ⊆ H a set of functional data with representation vectors

(
ai,1, ai,2, . . . , ai,p

)
B : 1 ≤ i ≤ n

and X the functional mean of {Xi}n
i=1; then, ifAj =

1
n ∑n

i=1 ai.j, for 1 ≤ j ≤ p, the mean difference
of squares can be decomposed as:

1
n

n

∑
i=1

(
Xi −X

)2
=

p

∑
j=1

VjFj + 2
p−1

∑
k=1

p−1

∑
j=k

Saj ,aj+1FjFj+1

where Vj =
1
n ∑n

i=1(ai,j −Aj)
2 and Saj ,aj+1 =

1
n ∑n

i=1(ai,j −Aj)(ai,j+1 −Aj+1).

Proof. By Lemma 1:
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1
n

n

∑
i=1

(
Xi −X

)2
=

p

∑
j=1

(
1
n

n

∑
i=1

(ai,j −Aj)

)2

F2
j

+ 2
p−1

∑
k=1

p−1

∑
j=k

(
1
n

n

∑
i=1

(ai,j −Aj)(ai,(j+1) −A(j+1))

)
FjF(j+1)

but Vj =
1
n ∑n

i=1(ai,j −Aj)
2 and Saj ,aj+1 =

1
n ∑n

i=1(ai,j −Aj)(ai,j+1 −Aj+1), with which:

1
n

n

∑
i=1

(
Xi −X

)2
=

p

∑
j=1

VjF2
j + 2

p−1

∑
k=1

p−1

∑
j=k

Saj ,aj+1FjFj+1

We thus provide a proof of Theorem 1.

Proof. By Definition 8:

Var(X ) =
1
n

n

∑
i=1

(∫ b

a

(
Xi −X

)2
(t)dt

)
and by the integral’s properties, we know that:

1
n

n

∑
i=1

∫ b

a

(
Xi −X

)2
(t)dt =

∫ b

a

1
n

n

∑
i=1

(
Xi −X

)2
(t)dt

but from Lemma 2, we have that:∫ b

a

1
n

n

∑
i=1

(
Xi −X

)2
(t)dt =

=
∫ b

a

 p

∑
j=1

VjF2
j (t) + 2

p−1

∑
k=1

p−1

∑
j=k

Saj ,aj+1Fj(t)Fj+1(t)

dt

=
p

∑
j=1

Vj

∫ b

a
(F2

j )(t)dt + 2
p−1

∑
k=1

p−1

∑
j=k

Saj ,aj+1

∫ b

a
(Fj(t)Fj+1(t))dt

=
p

∑
j=1

Vj

∥∥∥Fj

∥∥∥+ 2
p−1

∑
k=1

p−1

∑
j=k

Saj ,aj+1

〈
FjFj+1

〉
By hypothesis, B is an orthonormal basis; that is,

∥∥Fj
∥∥ = 1 and

〈
FjFm

〉
= 0; for each

j, m = 1, 2, . . . , p ∧ j 6= m, therefore, we have that:

p

∑
j=1

Vj
∥∥Fj

∥∥2
+ 2

p−1

∑
k=1

p−1

∑
j=k

Saj ,aj+1

〈
FjFj+1

〉
=

=
p

∑
j=1

Vj + 2
p−1

∑
k=1

p−1

∑
j=k

Saj ,aj+10

=
p

∑
j=1

Vj

We highlight that as part of the proof of Theorem 1, the Equation (9) is obtained:

Var(X ) =
p

∑
j=1

Vj
∥∥Fj

∥∥2
+ 2

p−1

∑
k=1

p−1

∑
j=k

Saj ,aj+1

〈
FjFj+1

〉
, (9)
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which means that we can apply the result to a nonnormal basis and even to generator sets
that are not necessarily orthogonal.

Let us display now some properties of the functional variance under this new approach,
which satisfies the same properties of a variance for scalar data because it inherits them
from the variances of coefficients, as shown below.

Proposition 4. Let H be a subspace of finite dimension p of the Hilbert space L2[a, b], B =
{Fj}

p
j=1 an orthonormal basis ofH and {Xi}n

i=1 ⊆ H a set of n functional data associated with the
functional random variable X , with representation vectors

(
ai,1, ai,2, . . . , ai,p

)
B : 1 ≤ i ≤ n. Then,

the following properties for the functional variance are followed:

1. Var(X ) ≥ 0.
2. Var(X ) is of minimum value.
3. If {Xi}n

i=1 have the same representation vectors, then Var(X ) = 0.

Proof. Properties

1. Given that Var(X ) = ∑
p
j=1 Vj and that Vj ≥ 0 for every j = 1, 2, . . . , p, Var(X ) ≥ 0.

2. Given that Var(X ) = ∑
p
j=1 Vj and that each Vj is of minimum value for every j =

1, 2, . . . , p, then Var(X ) is of minimum value.
3. Given {Xi}n

i=1 functional data, such that their representation vectors are equal, then:

a1,1 = a2,1 = a3,1, . . . , an,1 = w1

a1,2 = a2,2 = a3,2, . . . , an,2 = w2

...
...

a1,p = a2,p = a3,p, . . . , an,p = wp

Then, for every 1 ≤ j ≤ p, Aj =
1
n ∑n

i=1 ai,j =
1
n ∑n

i=1 wj = wj and

Vj =
1
n

n

∑
i=1

(
ai,j − Aj

)2
=

1
n

n

∑
i=1

(
wj − wj

)2
= 0

Therefore, Vj = 0 for each j = 1, 2, . . . , p and consequently Var(X ) = 0.

The fulfilment of this last property shows that, in fact, Var(X ) measures the dispersion
of the functional data.

2.4. Covariance and Correlation in Functional Data

Following the same line of reasoning as for the variance for functional data associated
with Definition 8, the covariance for functional data is shown in Definition 9.

Definition 9. Covariance in Functional Data: LetH be a subspace of finite dimension p of the
Hilbert space L2[0, 1] and {Xi}n

i=1 ⊆ H and {Yi}n
i=1 ⊆ H two sets of n functional data associated

with the functional random variables X and Y , respectively. Then the scalar covariance for these
two sets of functional data is defined as:

Cov(X ,Y) = 1
n

n

∑
i=1

∫ b

a

(
Xi −X

)(
Yi −Y

)
(t)dt (10)

Like the variance case, this definition allows having a scalar value of the joint variability
of two functional random variables in relation to the functional mean in each case and
presents the operational advantage given by Theorem 2.
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Theorem 2. LetH be a subspace of finite dimension p of the Hilbert space L2[a, b], B = {Fj}
p
j=1

an orthonormal basis ofH and {Xi}n
i=1 ⊆ H and {Yi}n

i=1 ⊆ H two sets of n functional data associ-
ated with the functional random variablesX andY , with representation vectors

(
ai,1, ai,2, . . . , ai,p

)
B

and
(
bi,1, bi,2, . . . , bi,p

)
B : 1 ≤ i ≤ n, respectively. Then:

Cov(X ,Y) =
p

∑
j=1

Cj, (11)

where Cj =
1
n ∑n

i=1
(
ai,j −Aj

)(
bi,j −Bj

)
, being Bj =

1
n ∑n

i=1 bi,j and Aj =
1
n ∑n

i=1 ai,j for each
j = 1, 2, . . . , p

Proof. By definition, we have that:

Cov(X ,Y) = 1
n

n

∑
i=1

(∫ b

a

(
Xi −X

)(
Yi −Y

)
(t)dt

)
and by the integral’s properties, we know that:

1
n

n

∑
i=1

∫ b

a

(
Xi −X

)(
Yi −Y

)
(t)dt

=
∫ b

a

1
n

n

∑
i=1

(
Xi −X

)(
Yi −Y

)
(t)dt.

Because of Lemma 1, we have that:

1
n

n

∑
i=1

(
Xi −X

)(
Yi −Y

)
=

p

∑
j=1

(
1
n

n

∑
i=1

(ai,j − Aj)(bi,j − Bj)

)
F 2

j

+ 2
p−1

∑
k=1

p−1

∑
j=k

(
1
n

n

∑
i=1

(
(ai,j − Aj)(bi,(j+1) − B(j+1))

))
FjF(j+1)

By applying the integral, we obtain:
p

∑
j=1

Cj
∥∥Fj

∥∥+ 2
p−1

∑
k=1

p−1

∑
j=k

Sak ,ak+1〈FkFk+1〉

where Cj = 1
n ∑n

i=1(ai,j − Aj)(bi,j − Bj) and Sap ,bp+1 = 1
n ∑n

i=1(ai,p − Ap)(bi,p+1 − Bp+1).
However, because the basis is orthonormal, we have that:

Cov(X ,Y) =
p

∑
j=1

Cj · 1 + 0 =
p

∑
j=1

Cj (12)

We notice that under this approach, it makes sense that Cov(X ,X ) = Var(X ) and
that Cov(X ,Y), by virtue of Theorem 2, as well as Var(X ), by virtue of Theorem 1, inherit
the properties of the classical covariance in scalar data through their coefficients, but even
more so, it is possible to define a correlation coefficient, as shown in Definition 10.

Definition 10. Correlation in Functional Data: LetH be a subspace of dimension p of L2[a, b]
and {Xi}n

i=1, {Yi}n
i=1 ⊆ H two sets of functional data associated with the functional random



Mathematics 2023, 11, 1317 12 of 20

variables X and Y , whose scalar variances are Var(X ) and Var(Y), respectively, and with scalar
covariance Cov(X ,Y); then the scalar correlation coefficient is defined by the expression:

Cor(X ,Y) = Cov(X ,Y)√
Var(X )

√
Var(Y)

(13)

As a result of the proposed approach, it can be seen that Cor(X ,Y) ∈ R and that
−1 ≤ Cor(X ,Y) ≤ 1. In addition, under the compliance of the hypothesis of Theorems 1
and 2, the calculation of the correlation can be performed with the expression:

Cor(X ,Y) =
∑

p
j=1 Cj√(

∑
p
j=1 Vaj

)(
∑

p
j=1 Vbj

)
3. Simulation

In order to show that our variance is actually a measure of the variability of the curves,
without loss of generality, we conduct a brief simulation study, which builds a variety of
functional data sets and we represent it in the ten-dimensional subspace spanned by the

orthonormal basis
{

1,
√

2Cos((j− 1)πx
}9

j=2
. The Supplementary Materials contains the

code for the simulation, which was carried out in the R language. In each case, we use our
Theorem 1 to obtain the variance measure. Simulation cases come from two functions of
different types. The first type, which we call Type A, is a constant function, whereas the
second type, called Type B, is a non-constant function, as shown in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

−1
00

0
50

15
0

Type A curve

0.0 0.2 0.4 0.6 0.8 1.0

−1
00

0
50

15
0

Type B curve

Figure 1. Type A (top) and Type B (bottom) curves for simulation.

In the first simulation case, we consider three different scenarios of constant dispersion
across the domain of the curves: case 1.1 high dispersion, case 1.2 moderate dispersion and
case 1.3 low dispersion. Figure 2 clearly shows the simulated dispersion in the curves and
how our proposal captures the decreases in variability in the proposed scenarios.

We construct functions with non-uniform dispersion across the domain of functions in
the second simulation case and as in the first case, we consider three different scenarios: case
2.1 high dispersion, case 2.2 moderate dispersion and case 2.3 low dispersion. The resulting
curves are more erratic than those in the first case in each type of curve. Nevertheless,
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Figure 3 shows our variance measure can capture this variability between curves since the
variance decreases as the dispersion decreases.
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Figure 2. Scenarios variability considered for simulated curves in case 1 and scalar variances obtained.
Type A (top) and Type B (bottom) curves.

Now, we use the simulation to illustrate that our variance approach is consistent. For this,
we construct a functional data set with 500 type B functions. In this way, we obtain samples of
different sizes, then calculate the absolute difference between the variances of the sample and
the population. This step is repeated 500 times for each sample size. In Table 1, we report the
mean of results for each sample size; in Figure 4, we show that our proposed variance converges
in mean value to the population variance as the sample size increases.
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Figure 3. Scenarios of variability considered for simulated curves in case 2 and scalar variances
obtained. Type A (top) and Type B (bottom) curves.
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Table 1. Mean of the absolute difference between population variance and sample variance for each
sample size.

Sample Size Mean Absolute
Difference Sample Size Mean Absolute

Difference

5 1828.16 200 23.74

10 926.43 250 15.29

20 403.40 300 13.6

50 178.40 400 3.74

100 81.47 450 3.83

150 34.31 490 0.45
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Figure 4. Behavior of the mean of the absolute differences when the sample size increases.

4. Application Examples

To show the interpretive advantages, we present two application example cases on
actual data.

4.1. Example 1

In this example, we present a way of using our summary statistics in a functional anal-
ysis of variance (FANOVA). Therefore, we analyse the data collected by [1] corresponding
to monthly temperature from 35 weather stations in Canada. Such stations are sorted, in
four regions, according to their location: Atlantic, Continental, Pacific and Arctic.

Ref. [1] implement a FANOVA in order to evaluate the existence of statistically
significant differences between the average annual temperature in the four geographic
areas. However, because of the phenomenon dynamics, there might be a correlation in
the four areas’ temperature; hence, the conclusions from the FANOVA might be affected.
Nonetheless, this is not considered by [1] since their functional cross-correlation does not
permit to conclude whether there is a correlation between the functional data from the four
areas, as indicated in Figure 5. In contrast, our correlation approach permits to determine if
it is present between the four areas.
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Figure 5. Cross-correlations of the functional variable temperature between the geographic areas.

In addition, Table 2 shows evidence of a strong correlation between the functional
variables Arctic and Continental temperature. Furthermore, the functional variable Pacific
and Continental temperature presents negative correlation, which indicates that when there
is temperature rise in the Pacific area, there is a temperature decrease in the Continental
area. In summary, our correlation matrix demonstrates that the temperature in the four
areas is not independent since they present correlations different to zero.

Table 2. New correlation proposition of the functional variable temperature between the geographic
areas.

Zone Altlantic Continental Pacific Arctic

Altlantic 1.00 0.45 −0.50 0.26

Continental 0.45 1.00 −0.62 0.82

Pacific −0.50 −0.62 1.00 −0.22

Arctic 0.26 0.82 −0.22 1.00

4.2. Example 2

We provide an example of implementation on actual air pollution data in order to
show the interpretive advantages of the summary statistics we suggest.

According to [46], particles in the air whose aerodynamic diameter is less than 2.5 µm
(PM2.5) may be considered as criteria air pollutants; therefore, prolonged exposure is
harmful to human health. Consequently, PM2.5 monitoring stations have been implemented
in different cities around the world to monitor the pollutant’s daily behaviour. As a result,
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a relationship between anthropogenic activities and PM2.5 production within an urban area
has been identified. In consequence, the existing variability is of interest.

For instance, the Administrative Department of Environmental Management (DAGMA)
monitors the amount of PM2.5 in Cali, Colombia. To this end, they use two air quality
monitoring stations which are part of the air quality surveillance system in the city. These
stations are called Base Aérea (BA) and Compartir (CO). These stations are located approxi-
mately 3.5 km away from each other and regularly collect records of PM2.5 concentration
every 10 s. However, they only report the hourly average. Thus, we may collect at most
twenty-four measurements per day from each station. In addition, we aim to find out
which station presents more variability and if there is any correlation between the daily
behaviour measurements.

Because of this problem, it is necessary to consider all the daily behaviour that is
recorded by both stations. This and the variable’s continuous nature make necessary to
carry out a functional and descriptive analysis.

For this analysis, we include 29 days of year 2015 with all their twenty-four measure-
ments at both monitoring stations. For illustration purposes, we construct 58 curves, 29 per
station, in the subspaceH of L2[0, 1] of dimension 8 using a Fourier orthonormal basis. In
total, we have 29 paired curves. The dimensions of bothH and the basis obey construction
techniques of functional data. Although such techniques are not the objective of this work,
it is worth mentioning that the suggested approach is independent of them; therefore, it
can be applied without loss of generality to any type of basis.

In Figure 6, we show the curves of the functional data of BA and CO stations. The
X-axis has been set to [0, 1].
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Figure 6. PM2.5 functional data from station BA on the left and from station CO on the right.

In turn, Figure 7 shows the functional means and the curves of variances suggested
by [1]. Moreover, Figure 7b demonstrates that it is not possible to decide which of the two
stations experiences a larger variability.
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Figure 7. Functional Means and Curves of Variances at both stations (a) Base Aérea (black solid line)
and Compartir (blue dashed line) Functional Means. (b) Variance Curves in Base Aérea (black solid
line) and Compartir (blue dashed line).

In addition, Figure 8a,b indicate a curve of covariances and a curve of correlations,
respectively. However, these descriptive statistics suggested by [1] are not sufficient to
decide whether the functional variables are correlated and to what extent.

We observe that the functional descriptive analysis suggested by [1] is not sufficient to
provide an answer to the specific case in Cali, Colombia. However, our summary statistics
for functional data, shown in Table 3, solve the problem because it allows us to observe
that station BA presents more variability. This can be explained by BA’s high industrial
activity and its air and land traffic. Moreover, the high correlation between stations BA and
CO can be also explained by their proximity and their paired data. This suggests that the
pollutant might be airborne.
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Figure 8. Curves of covariances and curves of correlations from Definition 1; (a) Base Aérea and
Compartir Covariance. (b) Base Aérea and Compartir Correlation.

Table 3. Proposed measures for functional data.

Station Variance Covariance Correlation

Base Aérea 134.91
72.31 0.95

Compartir 76.24
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5. Conclusions

Because of the functional character of objects in FDA, it is reasonable to believe that a
first approach would be the extension of concepts in their functional form. However, scalars
and functions do not have the same properties or interpretations. Therefore, it is necessary
to create treatment methods that are coherent according to the nature of the objects. In this
sense, the proposed treatment method has important advantages because it puts aside the
point-to-point treatment of the curve to treat the functional datum as a complete unit by
means of the representation coefficients, given that each coefficient modifies a characteristic
of the function and not just a point of it.

Some of the most important advantages provided by this approach are:

• It maintains the concepts of tendency, centrality, dispersion and association coherently,
which results in an interpretive advantage.

• Given that each coefficient oversees a specific characteristic of the curve, when taking
the arithmetic mean of the functional data through the coefficients per group of com-
ponents, what is being taken is an “expected behavior” of each of the characteristics,
which is conceptually coherent in terms of tendency.

• It offers operational advantages, given that the set of representation coefficients is
finite and their elements are scalars, which facilitates the treatment of functional data
because many of the operations with them can be transferred to the coefficients.

• The proposed variance allows the comparison of the variability of two groups of
functional data in such a way that it is easy to calculate and interpret in terms of
the “amount”.

• It allows knowing how strong the joint variability of two datasets of functional data is,
with interpretive and operational ease.

• It allows characterizing the functional data in terms of a probability distribution
function for the coefficients, component-by-component, which facilitates the controlled
simulation of the functional data and their analysis.

• Our new proposition of variance for functional data is also useful to determine which
functional estimators are consistent within a set, i.e., which one decreases its variance
when the number of functional observations increases. Furthermore, our proposition
helps to determine which estimator shows less variance for the same number of
functional observations; i.e., which one is more efficient.

To use our summary statistics, it is necessary that the functional data can be represented
by a function basis, which limits its use to only functional data that have this characteristic.
Moreover, all functional data must be represented with the same basis and function number.

Another limitation is that, because it is a new proposal, we still do not know how to
assess the confidence of the estimates, which requires new simulation experiments.

To conclude, it is important to point out the need to create a theory based on methods
for the analysis of functional data and to take advantage of the mathematical richness
of continuous functions. Therefore, we present a formal theory to validate the proposed
approach that can be taken as a starting point for future works, hoping that FDA can be
transformed into a new form of statistics, say functional statistics.

Supplementary Materials: The R code used in the simulation is available at https://www.mdpi.
com/article/10.3390/math11061317/s1 , pages S1 to S5.
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