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1 Department of Mathematics, Baba Mastnath University, Asthal Bohar, Rohtak 124021, Haryana, India
2 Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam Bin Abdulaziz

University, Alkharj 11942, Saudi Arabia
3 Department of Mathematics, Cairo University, Cairo 12613, Egypt
4 Mathematics and Engineering Physics Department, Mansoura University, Mansoura 35516, Egypt
5 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia
* Correspondence: r.gopalan@psau.edu.sa

Abstract: In this paper, we introduce the new notion of contravariant (α− ψ) Meir–Keeler contractive
mappings by defining α-orbital admissible mappings and covariant Meir–Keeler contraction in
bipolar metric spaces. We prove fixed point theorems for these contractions and also provide some
corollaries of main results. An example is also be given in support of our main result. In the end, we
also solve an integral equation using our result.
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1. Introduction

Fixed point theory is the major branch of non-linear analysis. It has number of appli-
cations in other branch of sciences, economics, etc. In 1922, Banach [1] gave a contraction
principle to obtain a fixed point theorem in complete metric space. Some other researchers
tried to generalize the concept of metric space; see [2–4]. Due to the various applications of
the Banach contraction principle, the contraction mapping theorem has been generalized
by many researchers in the setting of various topological spaces using different contrac-
tive conditions; see [5–14]. In 2012, Samet et al. [15] introduced the new contraction by
defining the α-admissible mappings and established fixed point results thereon. In 2013,
Kumam et al. [16] extended and generalized the α-admissible mapping of [15], introduced
(α− ψ) Meir–Keeler contractive mappings and proved some fixed point theorems in com-
plete metric space. In 2014, Popescu [17] introduced α-orbital admissible mapping to get
fixed point theorems.

Recently, in 2016, Mutlu et al. [18] introduced the new type of metric space called
bipolar metric space. Since then, researchers have established several fixed point theorems
using various contractive conditions in the setting of bipolar metric spaces; see [19–24].

Inspired by this, in the present work, we introduce (α− ψ) Meir–Keeler contractive
mappings and establish fixed point theorems in the setting of bipolar metric spaces. The rest
of the paper is organized as follows. In Section 2, we review some preliminary definitions
and monographs that are required for our main result. In Section 3, we present our main
results and establish a fixed point result using (α− ψ) Meir–Keeler contractive mappings
in the setting of bipolar metric space. We supplement the derived results with suitable
non-trivial examples. In Section 4, we apply the derived fixed point result to find an
analytical solution to the integral equation. Finally, we conclude the paper with some open
problems for future work.

Mathematics 2023, 11, 1310. https://doi.org/10.3390/math11061310 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061310
https://doi.org/10.3390/math11061310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9027-0810
https://orcid.org/0000-0001-7125-9675
https://doi.org/10.3390/math11061310
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061310?type=check_update&version=2


Mathematics 2023, 11, 1310 2 of 14

2. Preliminaries

To prove our main results, we need some basic definitions from the literature as fol-
lows:

Definition 1 ([18]). Let X and Y be two non-empty sets and d : X × Y → [0, ∞) be a map
satisfying the following conditions:

1. d(x, y) = 0 if and only if x = y for all (x, y) ∈ X×Y;
2. d(x, y) = d(y, x) for all x, y ∈ X ∩Y;
3. d(x1, y2) ≤ d(x1, y1) + d(x2, y1) + d(x2, y2);

for all x1, x2 ∈ X and y1, y2 ∈ Y.

Then, d is called bipolar metric and (X, Y, d) is called bipolar metric space.
If X ∩Y = φ, then the space is called disjoint; otherwise, it is called joint. The set X is called

the left pole and the set Y is called the right pole of (X, Y, d). The elements of X, Y and X ∩Y are
called left, right and central elements, respectively.

Definition 2 ([18]). Let (X, Y, d) be a bipolar metric space. Then, any sequence {xn} ⊆ X is
called a left sequence and is said to be convergent to the right element; for example, y if d(xn, y)→ 0
as n → ∞. Similarly, a right sequence {yn} ⊆ Y is said to be convergent to a left element; for
example, x if d(x, yn)→ 0 as n→ ∞.

Definition 3 ([18]). Let (X, Y, d) be a bipolar metric space.

1. A sequence {xn, yn} on X×Y is called a bisequence on (X, Y, d).
2. If both the sequences {xn} and {yn} converge, then the bisequence {xn, yn} is said to be

convergent. If both sequences {xn} and {yn} converge to the same point u ∈ X ∩Y, then the
bisequence {xn, yn} is called biconvergent.

3. A bisequence {xn, yn} on (X, Y, d) is said to be a Cauchy bisequence if for each ε > 0 there
exists a positive integer N ∈ N such that d(xn, ym) < ε for all n, m ≥ N.

4. A bipolar metric space is said to be complete if every Cauchy bisequence is convergent in
this space.

Definition 4 ([18]). Let (X1, Y1, d1) and (X2, Y2, d2) be two bipolar metric spaces and T : X1 ∪
Y1 → X2 ∪Y2 be a function:

1. If TX1 ⊆ X2 and TY1 ⊆ Y2, then T is called covariant mapping and is denoted by T :
(X1, Y1, d1) ⇒ (X2, Y2, d2).

2. If TX1 ⊆ Y2 and TY1 ⊆ X2, then T is called contravariant mapping and is denoted by
T : (X1, Y1, d1) � (X2, Y2, d2).

Definition 5 ([18]). Let (X1, Y1, d1) and (X2, Y2, d2) be two bipolar metric spaces.

1. A map T : (X1, Y1, d1) ⇒ (X2, Y2, d2) is called left continuous at a point x0 ∈ X if for every
ε > 0 there exists a δ > 0 such that d2(Tx0, Ty) < ε whenever d1(x0, y) < δ.

2. A map T : (X1, Y1, d1) ⇒ (X2, Y2, d2) is called right continuous at a point y0 ∈ Y if for
every ε > 0 there exists a δ > 0 such that d2(Tx, Ty0) < ε whenever d1(x, y0) < δ.

3. A map T : (X1, Y1, d1) ⇒ (X2, Y2, d2) is called continuous if it is left continuous at each
x0 ∈ X and right continuous at each y0 ∈ Y.

4. A map T : (X1, Y1, d1) � (X2, Y2, d2) is called continuous if and only if it is continuous as a
covariant map T : (X1, Y1, d1) ⇒ (X2, Y2, d2)

Definition 6 ([20]). Let T : (X, Y) ⇒ (X, Y) and α : X × Y → [0, ∞). Then, T is called
α-admissible if

α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1, (1)

for all (x, y) ∈ X×Y.
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Definition 7 ([20]). Let T : (X, Y) � (X, Y) and α : X × Y → [0, ∞). Then, T is called
α-admissible if

α(x, y) ≥ 1 implies α(Ty, Tx) ≥ 1, (2)

for all (x, y) ∈ X×Y.

Definition 8 ([15]). Let Ψ be the family of functions ψ : [0, ∞) → [0, ∞) satisfying the follow-
ing conditions:

1. ψ is non-decreasing.
2. ∑+∞

n=1 ψn < ∞ for all t > 0, where ψn is the nth iterate of ψ.

These functions are known as (c)-comparison functions. It can be easily verified that
ψ(t) < t for any t > 0.

3. Results

Here, we introduce (α− ψ) Meir–Keeler contractions and α-orbital admissible map-
pings and prove fixed point theorems for these contractions in bipolar metric spaces.

Definition 9. Let T : (X, Y) � (X, Y) and α : X × Y → R. Then, T is called an α-orbital
admissible mapping if

α(x, Tx) ≥ 1⇒ α(T2x, Tx) ≥ 1, (3)

and

α(Ty, y) ≥ 1⇒ α(Ty, T2y) ≥ 1, (4)

For all (x, y) ∈ X×Y.

Definition 10. Let (X, Y, d) be a bipolar metric space and ψ ∈ Ψ. Suppose T : (X, Y) � (X, Y)
is an contravariant mapping and if for every ε > 0 there exists δ > 0 such that

ε ≤ ψ(d(x, y)) < ε + δ⇒ α(x, Tx)α(Ty, y)ψ(d(Ty, Tx)) < ε, (5)

for all (x, y) ∈ X×Y and α : X×Y → R.
Then, T is said to be contravariant (α− ψ) Meir–Keeler contractive mapping.

Remark 1. From (5), we get α(x, Tx)α(Ty, y)ψ(d(Ty, Tx)) < ψ(d(x, y)), when x 6= y.
If x = y then α(x, Tx)α(Ty, y)ψ(d(Ty, Tx)) ≤ ψ(d(x, y)).

Now, we present our first theorem.

Theorem 1. Let (X, Y, d) be a complete bipolar metric space. Suppose that T : (X, Y) � (X, Y)
is a contravariant (α− ψ) Meir–Keeler contractive mapping. If the following conditions hold,

1. T is α-orbital admissible,
2. There exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
3. T is continuous,

then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1. Construct the sequences {xn} and {yn} by
taking yn = Txn and xn+1 = Tyn for all n ∈ N. Clearly, {xn, yn} is a bisequence.

Since T is α-admissible, we obtain

α(x0, y0) = α(x0, Tx0) ≥ 1⇒ α(T2x0, Tx0) = α(x1, y0) ≥ 1,

α(x1, y0) = α(Ty0, y0) ≥ 1⇒ α(Ty0, T2y0) = α(x1, y1) ≥ 1,

α(x1, y1) = α(x1, Tx1) ≥ 1⇒ α(T2x1, Tx1) = α(x2, y1) ≥ 1,

α(x2, y1) = α(Ty1, y1)⇒ α(Ty1, T2y1) = α(x2, y2) ≥ 1.
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By continuing this process, we get

α(xn, yn) ≥ 1 and α(xn+1, yn) ≥ 1 f or all n ∈ N. (6)

Using Remark 1 and (6), we get

ψ(d(xn, yn)) = ψ(d(Tyn−1, Txn)) ≤ α(xn, yn)α(xn, yn−1)ψ(d(Tyn−1, Txn)),

= α(xn, Txn)α(Tyn−1, yn−1)ψ(d(Tyn−1, Txn)),

< ψ(d(xn, yn−1)). (7)

Using again Remark 1 and (6), we get

ψ(d(xn+1, yn)) = ψ(d(Tyn, Txn)) ≤ α(xn, yn)α(xn+1, yn),

= α(xn, Txn)α(d(Tyn, yn))ψ(d(xn, yn)),

< ψ(d(xn, yn)). (8)

From (7) and (8), using mathematical induction, we have

ψ(d(xn, yn)) < ψ(d(xn−1, yn−1))∀n ∈ N (9)

and

ψ(d(xn+1, yn)) < ψ(d(xn, yn−1))∀n ∈ N. (10)

From (9) and (10), it is clear that {ψ(d(xn, yn))} and {ψ(d(xn+1, yn))} are monotoni-
cally decreasing sequences of positive reals and hence convergent. Let {ψ(d(xn, yn))} → s1
and {ψ(d(xn+1, yn))} → s2 as n→ ∞, where s1, s2 ≥ 0.

Now, we prove that s1 = 0 and s2 = 0.
Firstly, suppose if possible that s1 > 0.
Clearly, ψ(d(xn, yn)) ≥ s1 > 0 for all n ∈ N.
Let ε = s1. Then, by hypothesis, there exist δ > 0 and n0 ∈ N such that

ε ≤ ψ(d(xn0 , yn0)) < ε + δ. (11)

From (5), we have

ψ(d(xn0+1, yn0+1)) ≤ α(xn0+1, yn0+1)α(xn0+1, yn0)ψ(d(xn0+1, yn0+1)),

= α(xn0+1, Txn0+1)α(Tyn0 , yn0)ψ(d(Tyn0 , Txn0+1)) < ε = s1,

a contradiction.
So, s1 = 0.
Similarly, one can prove easily that s2 = 0.
Hence, ψ(d(xn, yn)) → 0 and ψ(d(xn+1, yn)) → 0 as n → ∞. By using the definition

of continuity of ψ at t = 0, we can say that

d(xn, yn)→ 0 and d(xn+1, yn)→ 0 as n→ ∞. (12)

For a given ε > 0, by the hypothesis, there exists δ > 0 such that (5) holds. Without
loss of generality, let us assume that δ < ε.

Since ψ(d(xn, yn))→ 0 and ψ(d(xn+1, yn))→ 0, there exist N1, N2 ∈ N such that

ψ(d(xn−1, yn−1)) <
δ

3
f or all n ≥ N1, (13)

ψ(d(xn, yn−1)) <
δ

3
f or all n ≥ N2. (14)
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Now, we shall prove that
ψ(d(xn+l , yn)) < ε (15)

and

ψ(d(xn, yn+l)) < ε, f or all n ≥ N. (16)

where N = max{N1, N2}.
Firstly, using mathematical induction, we prove (15), that is ψ(d(xn+l , yn)) < ε. From

(14), clearly the inequality holds for l = 1.
Suppose that the result is true for some l = k, that is

ψ(d(xn+k, yn)) < ε, f or all n ≥ N. (17)

Now, by using the definition of bipolar metric space, (13), (14) and (17), we get

ψ(d(xn+k, yn−1)) ≤ ψ(d(xn+k, yn) + d(xn, yn) + d(xn, yn−1))

≤ ψ(d(xn+k, yn)) + ψ(d(xn, yn)) + ψ(d(xn, yn−1))

<
δ

3
+

δ

3
+ ε =

2δ

3
+ ε < ε + δ. (18)

If ψ(d(xn+k, yn−1)) ≥ ε, then by (5), we have

ψ(d(xn+k+1, yn)) ≤ α(xn, yn)α(xn+k+1, yn+k)ψ(d(xn+k+1, yn)),

= α(xn, Txn)α(Tyn+k, yn+k)ψ(d(Tyn+k, Txn)),

< ε.

Hence, (15) holds.
If ψ(d(xn+k, yn−1)) ≤ ε, then by Remark 1, we have

ψ(d(xn+k+1, yn)) ≤ α(xn, yn)α(xn+k+1, yn+k)ψ(d(xn+k+1, yn)),

= α(xn, Txn)α(Tyn+k, yn+k)ψ(d(Tyn+k, xn)),

< ψ(d(xn, yn+k)) < ε.

So, (15) holds for l = k + 1.
Hence,

d(xn, ym) < ε f or all n > m ≥ N. (19)

Again, using mathematical induction, we prove (16).
Using the definition of bipolar metric space, (13) and (14), we get

ψ(d(xn, yn+1)) ≤ ψ(d(xn, yn) + d(xn+1, yn) + d(xn+1, yn+1))

≤ ψ(d(xn+1, yn+1)) + ψ(d(xn+1, yn)) + ψ(d(xn, yn))

≤ δ

3
+

δ

3
+

δ

3
= δ < ε.

So, (16) holds for l = 1.
Now, let us suppose that the result is true for some l = k, that is,

ψ(d(xn, yn+k)) < ε f or all n ≥ N. (20)

Now, by using the definition of bipolar metric space, (13), (14) and (20), we get

ψ(d(xn−1, yn+k)) ≤ ψ(d(xn−1, yn−1) + d(xn, yn−1) + d(xn, yn+k)),

≤ ψ(d(xn−1, yn−1) + ψ(d(xn, yn−1) + ψ(d(xn, yn+k))

<
δ

3
+

δ

3
+ ε =

2δ

3
+ ε < ε + δ. (21)
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If ψ(d(xn−1, yn+k)) ≥ ε, then by (5), we have

ψ(d(xn, yn+k+1)) ≤ α(xn+k, yn+k)α(xn+1, yn)ψ(d(xn, yn+k+1)),

= α(xn+k, Txn+k)α(Tyn, yn)ψ(d(Txn+k, Tyn)),

< ε.

Hence, (16) holds.
If ψ(d(xn−1, yn+k)) < ε, then by Remark 1, we have

ψ(d(xn, yn+k+1)) ≤ α(xn+k, yn+k)α(xn+1, yn)ψ(d(xn, yn+k+1)),

= α(xn+k, Txn+k)α(Tyn, yn)ψ(d(Txn+k, yn)),

< ψ(d(xn+k, yn)) < ε.

So, (16) holds for l = k + 1.
Hence,

d(xn, ym) < ε f or all m > n ≥ N. (22)

From (19) and (22), we can say that {xn, yn} is a Cauchy bisequence. Since (X, Y, d) is
a complete bipolar metric space, then {xn, yn} biconverges. That is, there exists u ∈ X ∩Y
such that {xn} → u and {yn} → u as n→ ∞. As T is a continuous map, one has

(xn)→ u implies that yn = Txn → Tu.

Combining yn = Txn → Tu with (yn)→ u, we get Tu = u.

In the next theorem, we omit continuity and give a new condition to get the fixed point.

Theorem 2. Let (X, Y, d) be a complete bipolar metric space. Suppose that T : (X, Y) � (X, Y)
is a contravariant (α− ψ) Meir–Keeler contractive mapping. If the following conditions hold,

1. T is α-orbital admissible,
2. There exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
3. If {xn, yn} is a bisequence such that α(xn, yn) ≥ 1 for all n and yn → u ∈ X ∩Y as n→ ∞,

then α(Tu, u) ≥ 1,

then T has a fixed point.

Proof. From the proof of Theorem 1, we conclude that {xn, yn} is a Cauchy bisequence.
Since (X, Y, d) is a complete bipolar metric space, then {xn, yn} is biconvergent. Hence,
there exist u ∈ X ∩Y such that xn → u , yn → u.

From condition (3), we get α(Tu, u) ≥ 1.
By applying the definition of bipolar metric space, ψ, Remark 1, (6) and the above

inequality, we get

ψ(d(Tu, u)) ≤ ψ(d(Tu, Txn) + d(Tyn, Txn) + d(Tyn, u)),

≤ ψ(d(Tu, Txn)) + ψ(d(Tyn, Txn)) + ψ(d(Tyn, u)),

≤ α(xn, yn)α(Tu, u)ψ(d(Tu, Txn)),

+ α(xn, Txn)α(Tyn, yn)ψ(d(Tyn, Txn)),

+ α(xn, Txn)α(Tyn, yn)ψ(d(Tyn, Txn)) + ψ(d(Tyn, u)),

≤ ψ(d(xn, u)) + ψ(d(xn, yn)) + ψ(d(u, yn)).

Letting n→ ∞ in the above inequality and using (22), we get

ψ(d(Tu, u)) ≤ 0.

That is, d(Tu, u) = 0.
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Hence, Tu = u.

Now, we introduce generalized (α− ψ) Meir–Keeler contractive mappings and prove
fixed point theorem for these mappings.

Definition 11. Let (X, Y, d) be a bipolar metric space and ψ ∈ Ψ. Suppose T : (X, Y) � (X, Y)
be an contravariant mapping and that for every ε > 0 there exists δ > 0 such that

ε ≤ ψ(M(x, y)) < ε + δ⇒ α(x, Tx)α(Ty, y)ψ(d(Ty, Tx)) < ε, (23)

where M(x, y) = max{d(x, y), d(x, Tx), d(Ty, y), d(x,Tx)+d(Ty,y)
2 }; for all (x, y) ∈ X×Y.

Then, T is said to be a generalized contravariant (α− ψ) Meir–Keeler contractive mapping.

Remark 2. From (23), we get α(x, Tx)α(Ty, y)ψ(d(Ty, Tx)) < ψ(M(x, y)), when x 6= y.
If x = y then α(x, y)ψ(d(Ty, Tx)) ≤ ψ(M(x, y)).

Theorem 3. Let (X, Y, d) be a complete bipolar metric space. Suppose that T : (X, Y) � (X, Y)
is a generalized contravariant (α− ψ) Meir–Keeler contractive mapping. If the following condi-
tions hold,

1. T is α-orbital admissible,
2. There exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
3. T is orbital continuous,

then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1. Construct sequences {xn} and {yn} by taking
yn = Txn and xn+1 = Tyn for all n ∈ N. Clearly {xn, yn} is a bisequence.

Since T is α-orbital admissible, from Theorem 1, we get

α(xn, yn) ≥ 1 and α(xn+1, yn) ≥ 1 f or all n ∈ N. (24)

Using Remark 2 and (24), we get

ψ(d(xn, yn)) = ψ(d(Tyn−1, Txn)) ≤ α(xn, Txn)α(Tyn−1, yn−1)ψ(d(Tyn−1, Txn)),

< ψ(M(xn, yn−1)),

= ψ(max{d(xn, yn−1), d(xn, Txn), d(Tyn−1, yn−1),
d(xn, Txn) + d(Tyn−1, yn−1)

2
}),

= ψ(max{d(xn, yn−1), d(xn, yn), d(xn, yn−1),
d(xn, yn) + d(xn, yn−1)

2
}),

≤ ψ(max{d(xn, yn), d(xn, yn−1)}).

Now, since ψ is a non-decreasing function, one has d(xn, yn)
≤ max{d(xn, yn), d(xn, yn−1)}.

If possible, suppose that d(xn, yn) > d(xn, yn−1), then d(xn, yn) < d(xn, yn),
a contradiction.

Hence,
d(xn, yn) ≤ d(xn, yn−1), f or all n ∈ N. (25)

Similarly, by using Remark 2 and (24), one can easily obtain

d(xn+1, yn) ≤ d(xn, yn), f or all n ∈ N. (26)

From (25) and (26), it is clear that {d(xn, yn)} and {d(xn+1, yn)} are monotonically
decreasing sequences of positive reals and hence convergent. Let {d(xn, yn)} → s1 and
{d(xn+1, yn)} → s2 as n→ ∞, where s1, s2 ≥ 0. This implies that

lim{psid(xn, yn)} = lim{ψ(M(xn, yn))} = ψ(s1) as n→ ∞. (27)
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and
lim{ψ(d(xn+1, yn))} = lim{ψ(M(xn+1, yn))} = ψ(s2) as n→ ∞. (28)

Now, we prove that s1 = 0 and s2 = 0.
Firstly, suppose that s1 > 0.
Clearly, d(xn, yn) ≥ s1 > 0 for all n ∈ N.
Let ε = s1. Then, by hypothesis, there exists δ > 0 and n0 ∈ N such that

ψ(ε) ≤ ψ(M(xn0 , yn0)) < ψ(ε) + δ. (29)

From (23), we have

ψ(d(xn0+1, yn0+1)) ≤ α(xn0+1, yn0+1)α(xn0+1, yn0)ψ(d(xn0+1, yn0+1)),

= α(Tyn0 , yn0)α(xn0+1, Txn0+1)ψ(d(Tyn0 , Txn0+1)) < ψ(ε).

Using non-decreasing nature of ψ, we get

d(xn0+1, yn0+1) < ε = s1. (30)

a contradiction. So, s1 = 0.
Similarly, one can prove easily that s2 = 0.
Now, we prove that {xn, yn} is a Cauchy bisequence; that is, limn,m→∞ d(xn, ym) = 0
Indeed, if we suppose that {xn, yn} is not a Cauchy bisequence, then there exists ε > 0

and subsequences {n(i)} and {n(i + 1)} of natural numbers such that

d(xn(i), yn(i+1)) > 2ε, (31)

for all i ∈ N. For this ε > 0 there exists δ > 0 such that ε ≤ ψ(M(x, y)) < ε + δ implies that
α(x, Tx)α(Ty, y)ψ(d(Ty, Tx)) < ε.

Set r = min{ε, δ}. Since d(xn, yn) and d(xn+1, yn)→ 0 as n→ ∞, there exists n1, n2 ∈
N such that

d(xn, yn) <
r
8

f or all n ≥ n1, and (32)

d(xn+1, yn) <
r
8

f or all n ≥ n2. (33)

Choose N = max{n1, n2}. Then, the above inequalities still hold for all n ≥ N.
Let n(i) > N. We get n(i) ≤ n(i + 1)− 1. If d(xn(i), yn(i+1)−1) ≤ ε + r

2 ; then, using the
definition of bipolar metric space, (32) and (33), we have

d(xn(i), yn(i+1)) ≤ d(xn(i), yn(i+1)−1) + d(xn(i+1), yn(i+1)−1) + d(xn(i+1), yn(i+1)),

< ε +
r
2
+

r
8
+

r
8

,

= ε +
3
4

r < 2ε,

a contradiction. So, there exists k such that n(i) ≤ k ≤ n(i + 1) and d(xn(i), yk) > ε + r
2 .

Now if d(xn(i)+1, yn(i)) ≥ ε + r
2 , then by (35), d(xn(i)+1, yn(i)) ≥ ε + r

2 > r + r
2 > r

8 ,
a contradiction.

So, there exist values of k such that n(i) ≤ k ≤ n(i + 1) such that d(xn(i), yk) <
ε + r

2 . Choose the smallest integer k with k ≥ n(i) such that d(xn(i), yk) ≥ ε + r
2 .Thus,

d(xn(i), yk−1) < ε + r
2 .

Using the definition of bipolar metric space and (33), we get

d(xn(i), yk) ≤ d(xn(i), yk−1) + d(xk, yk−1) + d(xk, yk)

≤ ε +
r
2
+

r
8
+

r
8
= ε +

3
4

r.
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Now, we can choose a natural number k satisfying n(i) ≤ l ≤ n(i + 1) such that

ε +
r
2
≤ d(xn(i), yk) < ε +

3
4

r. (34)

Therefore,

d(xn(i), yk) ≤ ε +
3
4

r < ε + r, (35)

d(xn(i), yn(i)) ≤
r
8
< ε + r, (36)

d(xk+1, yk) ≤
r
8
< ε + r. (37)

Now, (35)–(37) imply that ε ≤ M(xn(i), yk) < ε + r ≤ ε + δ and so ψ(ε)
≤ ψ(M(xn(i), yk)) < ψ(ε + r) ≤ ψ(ε + δ) ≤ ψ(ε) + ψ(δ).

Since T is a generalized (α− ψ) Meir–Keeler contractive mapping,

ψ(d(xk+1, yn(i))) ≤ α(xn(i), Txn(i))α(Tyk, yk)ψ(d(Tyk, Txn(i))) < ψ(ε).

This implies that
d(xk+1, yn(i)) < ε. (38)

Using the definition of bipolar metric space, we get

d(xn(i), yk) ≤ d(xn(i), yn(i)) + d(xk+1, yn(i)) + d(xk+1, yk),

which implies that

d(xn(i),yk
)− d(xn(i), yn(i))− d(xk+1, yk) ≤ d(xk+1, yn(i))

ε +
r
2
− r

8
− r

8
< d(xk+1, yn(i)).

This shows that
ε < d(xk+1, yn(i)). (39)

This contradicts (38).
So, {xn, yn} is a Cauchy bisequence. Since (X, Y, d) is a complete bipolar metric space,

then {xn, yn} biconverges. That is, there exists u ∈ X∩Y such that {xn} → u and {yn} → u
as n→ ∞. As T is an orbital continuous map,

{xn} → u implies that yn = Txn → Tu.

Combining yn = Txn → Tu with yn → u, we have Tu = u.

In the next theorem, we add a condition to get a unique fixed point.

Theorem 4. If in Theorems 1–3 we add the following hypothesis (H), then we get the unique fixed
point.
(H) If Tx = x then α(x, Tx) ≥ 1.

Proof. If possible, let us suppose that T has two distinct fixed points u and v. Then, from
the hypothesis (H),
α(u, Tu), α(v, Tv) ≥ 1.

Now, by Remark 1,

d(u, v) = d(Tu, Tv) ≤ α(u, Tu)α(v, Tv)d(Tu, Tv) < d(u, v)

which is a contradiction and so u = v. In a similar way, one can prove Theorems 2 and 3.
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Definition 12. Let (X, Y, d) be a bipolar metric space. Suppose T : (X, Y) ⇒ (X, Y) be a
covariant mapping and for every ε > 0 there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ⇒ d(Tx, Ty) < ε, (40)

for all (x, y) ∈ X×Y.
Then, T is said to be a covariant Meir–Keeler contractive mapping.

Remark 3. From (40), we get d(Tx, Ty) < d(x, y), whenever x 6= y. If x = y then d(Tx, Ty) ≤
d(x, y).

Theorem 5. Let (X, Y, d) be a complete bipolar metric space. Suppose that T : (X, Y) ⇒ (X, Y)
is a covariant Meir–Keeler contractive mapping. Then, T has a unique fixed point.

Proof. Using Remark 3 and (40), we get

d(xn, yn) = d(Txn−1, Tyn−1) ≤ d(xn−1, yn−1) (41)

Again, using Remark 3 and (40), we get

d(xn, yn) = d(Txn−1, Tyn−1) ≤ d(xn−1, yn−1) (42)

From (41) and (42), it is clear that {d(xn, yn)} and {d(xn, yn+1)} are monotonically
decreasing sequences of positive reals and hence convergent. Let {d(xn, yn)} → s1 and
{d(xn, yn+1)} → s2 as n→ ∞, where s1, s2 ≥ 0.

Now, we prove that s1 = 0 and s2 = 0.
Firstly, suppose, if possible that s1 > 0.
Clearly, d(xn, yn) ≥ s1 > 0 for all n ∈ N.
Let ε = s1. Then, by hypothesis, there exists δ > 0 and n0 ∈ N such that

ε ≤ d(xn0 , yn0) < ε + δ. (43)

From (40), we have

d(xn0+1, yn0+1) ≤ d(xn0+1, yn0+1),

= d(Txn0 , Tyn0) < ε = s1.

a contradiction. So s1 = 0.
Similarly, one can prove easily that s2 = 0.
Hence,

d(xn, yn)→ 0 and d(xn, yn+1)→ 0 as n→ ∞. (44)

For given ε > 0, by the hypothesis, there exists δ > 0 such that (40) holds. Without
loss of generality, let us assume that δ < ε.

Since d(xn, yn)→ 0 and d(xn, yn+1)→ 0, then there exists N1, N2 ∈ N such that

d(xn−1, yn−1) <
δ

3
f or all n ≥ N1, (45)

d(xn−1, yn) <
δ

3
f or all n ≥ N2. (46)

Now, we shall prove that
d(xn, yn+l) < ε (47)

and

d(xn+l , yn) < ε, f or all n ≥ N. (48)
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where N = max{N1, N2}.
Firstly, using mathematical induction, we prove (47), that is d(xn, yn+l) < ε.
From (44), the inequality clearly holds for l = 1.
Suppose that it is true for some l = k, that is

d(xn, yn+k) < ε, f or all n ≥ N. (49)

Now, by using the definition of bipolar metric space, (45), (46) and (49), we get

d(xn−1, yn+k) ≤ d(xn−1, yn) + d(xn, yn) + d(xn, yn+k)

≤ d(xn−1, yn) + d(xn, yn) + d(xn, yn+k)

<
δ

3
+

δ

3
+ ε =

2δ

3
+ ε < ε + δ. (50)

If d(xn−1, yn+k) ≥ ε, then by (40), we have

d(xn, yn+k+1) < ε.

Hence, (47) holds.
If d(xn+k, yn−1) ≤ ε, then by Remark 3, we have

d(xn+k+1, yn) < d(xn+k, yn−1) < ε

So, Equation (47) holds for l = k + 1.
Hence,

d(xn, ym) < ε f or all n > m ≥ N. (51)

Similarly, one can prove Equation (48), from which we conclude that

d(xn, ym) < ε f or all m > n ≥ N. (52)

From (51) and (52), we can say that {xn, yn} is a Cauchy bisequence. Since (X, Y, d) is
a complete bipolar metric space, then {xn, yn} biconverges. That is, there exists u ∈ X ∩Y
such that {xn} → u and {yn} → u as n→ ∞. Since,T is continuous,

{xn} → u implies that xn+1 = Txn → Tu,

We get Tu = u.
Uniqueness: If possible, suppose that u and v are two different fixed points of T. Then,

by Remark 3,
d(u, v) = d(Tu, Tv) < d(u, v),

which holds only when u = v.

Example 1. Let X = (−∞, 0], Y = [0, ∞) and d : (−∞, 0] × [0, ∞) → [0, ∞) as d(x, y) =
|x − y|. Then, (X, Y, d) is a complete bipolar metric space. Define T : (−∞, 0] ∪ [0, ∞) �
(−∞, 0] ∪ [0, ∞) by Tx = −x

3 , for all x ∈ (−∞, 0] ∪ [0, ∞), and ψ(t) = t
2 , α(x, y) = 1 for all

(x, y) ∈ X×Y. T((−∞, 0]) ⊂ [0, ∞) and T([0, ∞)) ⊂ (−∞, 0]. It is clear that T is a continuous
contravariant mapping.

As x ∈ (−∞, 0], there exists a ∈ [0, ∞) such that x = −a. Now,

ψ(d(x, y)) = ψ(|x− y|) = ψ(| − a− y|) = ψ(a + y) =
a + y

2
,

ψ(d(Ty, Tx)) = ψ(d(
−y
3

,
−x
3

)) = ψ(|−y
3

+ (
−x
3

)|) = a + y
6

.

Clearly, by taking δ = 2ε, (5) is satisfied. So, all the conditions of Theorem 1 hold and T has a
fixed point. Clearly, 0 is the fixed point of T.



Mathematics 2023, 11, 1310 12 of 14

4. Consequences

The following are the consequences of our main results.

Corollary 1. Let (X, Y, d) be a bipolar metric space and ψ ∈ Ψ. Suppose T : (X, Y) � (X, Y) be
a contravariant mapping and if for every ε > 0 there exists δ > 0 such that

ε ≤ ψ(d(x, y)) < ε + δ⇒ ψ(d(Ty, Tx)) <
ε

L
. (53)

where ψ ∈ Ψ and L ≥ 1. Then, T has a fixed point.

Proof. Taking α(x, y) =
√

L in Theorem 1, one can obtain the proof.

Corollary 2. Let (X, Y, d) be a bipolar metric space and ψ ∈ Ψ. Suppose T : (X, Y) � (X, Y) be
a contravariant mapping and if for every ε > 0 there exists δ > 0 such that

ε ≤ M(d(x, y)) < ε + δ⇒ ψ(d(Ty, Tx)) <
ε

L
. (54)

where ψ ∈ Ψ and L ≥ 1. Then, T has a fixed point.

Proof. Taking α(x, y) =
√

L in Theorem 3, one can obtain the proof.

5. Application

Theorem 6. Let us consider the following integral equation

w(β) = m(β) + λ1

∫
P1(β, ξ,w(ξ))dξ + λ2

∫
P2(β, ξ,w(ξ))dξ (55)

β ∈ F1 ∪ F2, F1 ∪ F2 is a Lebesgue measurable set with finite measure and λ1, λ2 are constants.
Suppose that P1 : F2

1 ∪ F2
2 × [0, ∞)→ [0, ∞) and P2 : F2

1 ∪ F2
2 × [0, ∞)→ [0, ∞).

There is a continuous function ζ : F2
1 ∪ F2

2 → [0, ∞) and k ∈ (0, 1) such that for all
(β, ξ) ∈ F2

1 ∪ F2
2 and m(β) ∈ L∞(F1) ∪ L∞(F2)

|λi(Pi(β, ξ,w(ξ)))− λi(Pi(β, ξ, y(ξ)))| ≤ k
4

ζ(β, ξ)|w(ξ)− y(ξ)|

for all i = 1, 2 and ||
∫

ζ(β, ξ)dξ|| ≤ 1 that is supβ∈F1∪F2

∫
|ζ(β, ξ)dξ| ≤ 1.

Then, (55) has a unique solution in L∞(F1) ∪ L∞(F2).

Proof. Let X = L∞(F1) and Y = L∞(F2) be two normed linear spaces, where F1 and F2 are
two Lebesgue measurable sets with m(F1 ∪ F2) < ∞.

Consider d : X × Y → [0, ∞) as d(x, y) = ||x − y||∞. (X, Y, d) is a complete bipolar
metric space. Define a covariant mapping as T(w(β)) = m(β) + λ1

∫
P1(β, ξ,w(ξ))dξ +

λ2
∫
P2(β, ξ,w(ξ))dξ.
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Now, for any ε > 0, there exists δ > 0 such that ε ≤ d(w(ξ), y(ξ)) < ε + δ.

d(Tw(ξ), Ty(ξ)) = ||Tw(ξ)− Ty(ξ)||

= ||m(ξ) + λ1

∫
P1(β, ξ,w(ξ))dξ + λ2

∫
P2(β, ξ,w(ξ))dξ

− m(ξ)− λ1

∫
P1(β, ξ, y(ξ))dξ − λ2

∫
P2(β, ξ, y(ξ))dξ||

≤ 1
2

ζ(β, ξ)|w(ξ)− y(ξ)|

≤ 1
2

d(w(ξ), y(ξ))

<
1
2
(ε + δ)

< ε.

Hence, all the conditions of Theorem 5 are satisfied. So, T has a unique fixed point,
and (55) has a unique solution.

Example 2. Consider the following integral equation:

w(β) = 0.01β + 0.2
∫ β

0

(
ξ

4
− 0.2β

)
w(β) dξ + sin(0.1)

(∫ β

0

(
−β +

ξ

3
+ 1
)
w(β) dξ

)
.

It can be verified that the solution of the above integral equation is given by

w(β) =
0.01β

0.0982β2 − 0.0998β + 1
.

This solution is depicted in Figure 1.

Figure 1. Solution of the integral equation in the example of Section 5.

6. Conclusions

In this paper, we have introduced a new notion of α-orbital admissible mappings, and
using this we have defined (α−ψ) Meir–Keeler Contractive mappings and established fixed
point results. Our results have generalized some proven results in the past. The derived
results have been supported with non-trivial examples. The results have been applied to
find analytical solutions of integral equation. It is an open problem to extend/generalize
our results in the setting of other topological spaces such as bipolar controlled metric space,
neutrosophic metric spaces, etc.
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