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Abstract: This paper deals with the numerical solution of nonlocal boundary-value problem for
two-dimensional pseudoparabolic equation which arise in many physical phenomena. A three-layer
alternating direction implicit method is investigated for the solution of this problem. This method
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1. Introduction and Formulation of the Problem

In the past decades, the solution of the boundary-value problems with nonlocal bound-
ary conditions has been an important and intensively investigated research area of numeri-
cal analysis and applied mathematics. We consider the third-order linear pseudoparabolic
equation (η > 0) with nonlocal integral conditions in the domain D := (0, Lx)× (0, Ly)

∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 + η

∂

∂t

(
∂2u
∂x2 +

∂2u
∂y2

)
+ f (x, y, t), (x, y, t) ∈ D× (0, T], (1)

subject to the initial and boundary conditions (BC)

u(0, y, t) = γ0

∫ Lx

0
u(x, y, t)dx + vl(y, t), (y, t) ∈ [0, Ly]× [0, T], (2)

u(Lx, y, t) = γ1

∫ Lx

0
u(x, y, t)dx + vr(y, t), (y, t) ∈ [0, Ly]× [0, T], (3)

u(x, 0, t) = vb(x, t), u(x, Ly, t) = vt(x, t), (x, t) ∈ [0, Lx]× [0, T], (4)

u(x, y, 0) = u0(x, y), (x, y) ∈ D̄ := [0, Lx]× [0, Ly]. (5)

We have local Dirichlet BCs (4) in the y-direction and integral nonlocal boundary conditions
(NBC) (2) and (3) in the x-direction.

Local and nonlocal boundary-value problems for the pseudoparabolic equations are
the subject of intensive studies and a topic of great practical and theoretical interest, because
many applied problems in physics, mechanics, and biology can be modelled using such
equations.
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For example, in the paper [1] the one-dimensional pseudoparabolic equation

∂u
∂t
− ∂2u

∂x2 − η
∂3u

∂x2∂t
= F(x, t, u), (6)

(x, t) ∈ (0, 1)× [0, T] subject to the initial conditions

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (7)

and to the integral conditions∫ 1

0
u(x, t)dx = E(t),

∫ 1

0
xu(x, t)dx = G(t), 0 ≤ t ≤ T, (8)

was considered. From a physical point of view, the problem (6)–(8) can be interpreted in
the context of soil thermophysics. In this sense, (6) describes the dynamics of moisture in a
subsoil layer 0 < x < 1, while (8) represent the moisture moments [1,2].

Equations of type (6) with variable coefficients and additional terms also have many
other applications in various physical situations, for example, in the theory of the two
temperatures [3], in the study of the aggregation of population [4], or in the diffusion of
imprisoned resonant radiation through a gas [5].

Theoretical research of pseudoparabolic equations with NBCs was started due to its
applications for complex problems of science and technology. One of the first results for the
third-order pseudoparabolic equations with NBCs for problems of soil dampness dynamics
was considered in [6] (see also [1,7]). In the paper [8], the global existence of the weak
solution for pseudoparabolic equation with the nonlocal source was considered.

A number of papers devoted to underground water flow dynamics modelled by pseu-
doparabolic equations with NBCs were published later, see [9,10]. Implicit finite difference
schemes (FDS) for linear or nonlinear pseudoparabolic equations with Dirichlet BCs were
introduced in the early 1970s [11,12]. Numerical methods for pseudoparabolic equations
with NBCs have been of permanent interest for researchers during the last decades. Nu-
merical methods for solving a one-dimensional nonlinear pseudoparabolic equation with
integral conditions were introduced in [13,14]. FDS for linear 1D and 2D pseudoparabolic
equations with various integral conditions were investigated in [15–21]. A separate class of
pseudoparabolic equations consists of fractional pseudoparabolic equations, which were
recently intensively studied [22–24].

Motivated by the works mentioned above, we study a class of two-dimensional
pseudoparabolic equations with integral conditions (1)–(5). The goal of this paper is to
generalize and investigate the Peaceman–Rachford alternating direction implicit (ADI)
method [25] for pseudoparabolic Equation (1) with NBCs (2)–(5).

For the investigation of the stability of the ADI method, we study the structure of
the spectrum of the corresponding difference operator. The structure of the spectrum of
the differential and difference operators in the case of various nonlocal conditions were
investigated in many papers (see, for example, [26–29]). Note that the presence of an
integral term in the boundary condition can complicate the theoretical investigation of
the numerical method. In this case, the matrix of the system of the difference equations
is not symmetric or positive definite. The structure of the spectrum of such matrix is
more complicated (and more substantive and informative) even in the case of Dirichlet or
Neumann boundary value conditions. Furthermore, this structure strongly depends not
only on the type of boundary conditions, but also on values of the parameters (or functions)
included in the boundary conditions.

The first articles about the ADI method for the two-dimensional parabolic equations
(η = 0 in (1)) with NBCs showed that this method was also quite effective [30,31] in the case
of NBC. In article [32], the proof of the stability of the ADI method for a parabolic equation
was based on the analysis of the structure of the spectrum for a difference operator with
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nonlocal conditions. That approach was also relevant for the analysis of the convergence of
the ADI method for elliptic equations with NBCs [33].

The presented ADI method is also suitable for solving an inverse problem for anoma-
lous diffusion equation with a Riemann–Liouville derivative as well as parameter identifi-
cation in fractional systems [34–36].

To the best of the authors’ knowledge, for the first time, a splitting method for pseu-
doparabolic Equation (1) with Dirichlet BCs was researched in articles [37,38].

The paper is organized as follows. In Section 2, we introduce the three-layer ADI
method. Section 3 is devoted to the eigenvalue problem and in Section 4, we prove the main
result of the present paper: the stability of the obtained three-layer difference scheme. In
Section 5 the results of the numerical experiment are presented to demonstrate the accuracy
and effectiveness of the finite difference scheme.

2. Alternating Direction Implicit (ADI) Method

Our goal is to construct a finite difference scheme for the pseudoparabolic problem
and investigate its stability. The Peaceman–Rachford ADI method is used for developing a
new ADI scheme for the third-order pseudoparabolic equation with NBC. The ADI method
was introduced in 1955 by D.W. Peaceman and H.H. Rachford [25] and J. Douglas and H.H.
Rachford [39] as a technique for the numerical solution of elliptic and parabolic differential
equations. The theoretical and practical aspects of the ADI method led to extensions,
generalizations, and ensuing applications far beyond the original application of a reservoir
simulation. The advantage of the ADI method is that the equations that have to be solved at
each step have a simpler structure and can be solved efficiently with the tridiagonal matrix
algorithm. The ADI method is a predictor–corrector scheme where part of the difference
operator is implicit in the initial prediction step and another part is implicit in the final
correction step.

2.1. Notation

According to the standard technique of solving such problems by discretizations, we in-
vestigate finite difference schemes. We introduce grids with uniform steps (1 < N, M, L ∈ N):

ωh
x := {x0 = 0, x1, . . . , xN = Lx}, hx = xi − xi−1 = Lx/N, i = 1, N;

ωh
y := {y0 = 0, y1, . . . , yM = Ly}, hy = yj − yj−1 = Ly/M, j = 1, M;

ωτ := {t0 = 0, t1, . . . , tL = T}, τ = tk − tk−1 = T/L, k = 1, L;

ωτ
1/2 := {t1/2, . . . , tL−1/2 : tk−1/2 = (tk + tk−1)/2, k = 1, L};
ωh

x := {x1, . . . , xN−1}; ωh
y := {y1, . . . , yM−1}; ωτ := {t1, . . . , tL}.

We use the notation Uk
ij := U(xi, yj, tk) for functions defined on the grid (or parts of this

grid) ω × ωτ and Uk−1/2
ij := U(xi, yj, tk−1/2) on the grid ω × ωτ

1/2, where ω := ωh
x × ωh

y.
We omit indices if they are the same in the whole equation.

We use notation Mk×l for the set of k× l matrices whose elements are real numbers,
k, l ∈ N. For any vector u ∈Mm×1 and matrix A ∈Mm×m, discrete `2-norms are defined as

‖u‖2 =

(
m

∑
i=1

u2
i

)1/2

, ‖A‖2 =

(
max

i
|λi(A∗A)|

)1/2
, (9)

where A∗ is an adjoint matrix and λi(A) are eigenvalues of the matrix A.
For functions Ui = U(xi) on the grid ωh

x, we use the notation:

δ2
xUi :=

Ui−1 − 2Ui + Ui+1

h2
x

, (U, V) :=
N−1

∑
i=1

UiVihx

[U, V] := U0V0hx/2 + (U, V) + UnVnhx/2.
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We introduce operators δ2
x, δ2

y for a function on the grid ω:

δ2
xUij :=

Ui−1,j − 2Uij + Ui+1,j

h2
x

, δ2
yUij :=

Ui,j−1 − 2Uij + Ui,j+1

h2
y

,

and for the approximation integrals in the NBC, we define

[U, V]j := U0jV0jhx/2 + (U, V)j + UnjVnjhx/2, (U, V)j :=
N−1

∑
i=1

UijVijhx.

In a space H of grid functions Uij := U(xi, yj) on the grid ωh
x ×ωh

y , we introduce an
inner product

(U, V)H :=
M−1

∑
j=1

(U, V)jhy.

Each such function is related to matrix U = (Uij) ∈M(N−1)×(M−1). We choose one of the
most obvious orderings and set a vector

U := (U11, . . . , UN−1,1, U12, . . . , UN−1,M−1)
T = vec(U) ∈M(N−1)(M−1)×1

for U ∈ H.

2.2. The ADI Method

Before writing down the solution method, we note that while using any splitting
method for pseudoparabolic Equation (1), a one term with the third-order derivative utxx
or utyy has to be approximated in a lower layer, and for that we need at least two layers
for each term. Therefore, we cannot write two-layer splitting FDS for two-dimensional
pseudoparabolic equation, because the smallest number of layers is three.

Let us write the ADI method for pseudoparabolic Equation (1)

Uk+1/2 −Uk

0.5τ
= δ2

xUk+1/2 + δ2
yUk

+
η

0.5τ

(
δ2

xUk+1/2 − δ2
xUk + δ2

yUk − δ2
yUk−1/2)+ Fk+1/2, (10)

Uk+1 −Uk+1/2

0.5τ
= δ2

xUk+1/2 + δ2
yUk+1

+
η

0.5τ

(
δ2

xUk+1/2 − δ2
xUk + δ2

yUk+1 − δ2
yUk+1/2)+ Fk+1/2. (11)

In the case η = 0, Equations (10) and (11) coincide with the classical Peaceman–Rachford
method [25]. The truncation error of Equations (10) and (11) isO(τ + h2

x + h2
y) if the solution

of the differential problem (1)–(5) is smooth enough.
In order to start the calculation with this method, it is necessary to know the values

of Uk
ij in the two initial layers k = 0 and k = 1/2. The values of U0

ij are found from the

initial condition (5). The values of U1/2
ij can be found by solving the system of difference

equations written for the problem (1)–(5) using two layers. One can take Ũ1/2
ij = U0

ij; in this

case, we have error |U1/2
ij − Ũ1/2

ij | = O(τ).
Tridiagonal system (10) of order N − 1 is solved for j = 1, M− 1 with nonlocal

boundary conditions

Uk+1/2|i=0 = γ0[1, Uk+1/2] + Vk+1/2
l , (12)

Uk+1/2|i=N = γ1[1, Uk+1/2] + Vk+1/2
r . (13)

The truncation error of the nonlocal boundary condition is O(h2
x).
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After the calculation of Uk+1/2, system (11) of order M− 1 is solved for i = 1, N − 1
with the Dirichlet BC

Uk+1|j=0 = Vk+1
b , Uk+1|j=M = Vk+1

t . (14)

In order to investigate the stability of the ADI method (10)–(14), we rewrite this
method in the most concise operator form. To this end, nonlocal conditions (12) and (13)
are interpreted as a linear system with unknowns Uk+1/2

0j and Uk+1/2
Nj for every value of j.

We express from conditions (12) and (13), the values Uk+1/2
0j and Uk+1/2

Nj via the remaining
unknowns:

Uk+1/2|i=0 = γ̃0(1, Uk+1/2) + Ṽk+1/2
l , (15)

Uk+1/2|i=N = γ̃1(1, Uk+1/2) + Ṽk+1/2
r , (16)

where γ̃0 := γ0d−1, γ̃1 := γ1d−1, Ṽl := (Vl + hxc)d−1, Ṽr := (Vr − hxc)d−1, c := (γ0Vr −
γ1Vl)/2, d := 1− γhx/2, γ := γ0 + γ1. We can write Formulas (15) and (16) in all cases
when d 6= 0. Note, if γhx < 2, then d > 0.

Let us define square matrices Λx ∈M(N−1)×(N−1) and Λy ∈M(M−1)×(M−1) as

Λx :=
1
h2

x


2− γ̃0hx −1− γ̃0hx −γ̃0hx · · · −γ̃0hx
−1 2 −1 · · · 0

. . . . . . . . .
−1 2 −1

−γ̃1hx · · · −γ̃1hx −1− γ̃1hx 2− γ̃1hx

,

Λy :=
1
h2

y


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

.

Let Ix ∈ M(N−1)×(N−1), Iy ∈ M(M−1)×(M−1) be the identity matrices and I := Iy ⊗ Ix,
where A⊗ B denotes the Kronecker product of matrices A and B. Then, we define matrices

L1 := Iy ⊗Λx = diag(Λx, . . . , Λx) ∈M(M−1)(N−1)×(M−1)(N−1),

L2 := Λy ⊗ Ix =


2Iy −Iy
−Iy 2Iy −Iy

. . . . . . . . .
−Iy 2Iy −Iy

−Iy 2Iy

 ∈M(M−1)(N−1)×(M−1)(N−1),

which will be useful to rewrite the method (10) and (11), (14)–(16) in the operator form.

Lemma 1 (see, [33]). The matrices L1 and L2 commute:

L1L2 = L2L1 = Λy ⊗Λx. (17)

Proof. From the properties of the Kronecker product, we have

L1L2 = (Iy ⊗Λx)(Λy ⊗ Ix) = (IyΛy)⊗ (ΛxIx) = Λy ⊗Λx,

L1L2 = (Λy ⊗ Ix)(Iy ⊗Λx) = (ΛyIy)⊗ (IxΛx) = Λy ⊗Λx.
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Let us substitute expression (15) for Uk+1/2
0j and expression (16) for Uk+1/2

nj into
Equation (10). Then, we can rewrite (10) in the matrix form

A1Uk+1/2 + B1Uk + C1Uk−1/2 = 0.5τF̃k+1/2
1 , (18)

where

A1 = I + (η + 0.5τ)L1, B1 = −I + (η + 0.5τ)L2 − ηL1, C1 = −ηL2. (19)

We rewrite Equation (11) using BC (14) in the form

A2Uk+1 + B2Uk+1/2 + C2Uk = 0.5τF̃k+1/2
2 , (20)

where

A2 = I + (η + 0.5τ)L2, B2 = −I + (η + 0.5τ)L1 − ηL2, C2 = −ηL1. (21)

We can write F̃k+1/2
1 and F̃k+1/2

2 in terms of known values (Fk+1/2, Vk+1
b , Vk+1

t , Ṽk+1/2
l ,

Ṽk+1/2
r ), but the expressions of these functions are not important for the investigation of

the stability of FDS. Each of Equations (18) and (20) separately corresponds to three-layer
FDS (both together to four-layer FDS).

Lemma 2. The matrices As, Bs, Cs, and A−1
s , s = 1, 2, commute (if the inverse matrices exist).

Proof. The matrices L1 and L2 commute (see Lemma 1). Thus, the matrices As, Bs, and
Cs, defined by (19) and (21) also commute. If AB = BA and A−1 exists, then A−1B =
A−1BAA−1 = A−1ABA−1 = BA−1. Therefore, it follows that matrices As, Bs, and Cs
commute with A−1

s .

Remark 1. We note that matrices A−1
1 and A−1

2 exist, as matrices A1 and A2 are strictly diagonally
dominant.

Corollary 1. The matrices A−1
1 B1 and A−1

1 C1 + µI commute for all µ ∈ C.

Lemma 3. The following equalities

As + Bs + Cs = 0.5τ(L1 + L2) = 2I + B1 + B2, s = 1, 2, (22)

As + Cs = 2I + B3−s, As + C3−s = I + 0.5τLl , s = 1, 2, (23)

(A1 + C1)(A2 + C2) = B1B2 + τ(L1 + L2) (24)

are valid.

Proof. The equalities (22) and (23) are obvious. Finally,

(A1 + C1)(A2 + C2) = (2I + B2)(2I + B1) = 4I + 2B1 + 2B2 + B2B1

= B2B1 + τ(L1 + L2) = B1B2 + τ(L1 + L2).

Corollary 2. The following equality

−B1B2 + A1C2 + A2C1 = −A1A2 − C1C2 + τ(L1 + L2)

is valid.
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The methodology of the investigation of the stability of three-layer schemes for the
second-order parabolic equation with Dirichlet boundary conditions is created in mono-
graph [40]. According to that methodology, the three-layer difference scheme (18) or (20)
must be rewritten in the canonical form. For example, the canonical form for (18) is

B̃
Uk+1/2 −Uk−1/2

τ
+ R̃(Uk+1/2 − 2Uk + Uk−1/2) + ÃUk = F̃k+1/2

1 ,

where

B̃ = I + (η + 0.5τ)L1 + ηL2, τR̃ = I + (η + 0.5τ)L1 − ηL2, Ã = L1 + L2.

For the stability of difference scheme (18), the matrices R̃ and Ã must be positive def-
inite [40]. However, in the case of nonlocal conditions (3) and (4), these matrices are
nonsymmetric because of nonsymmetrical matrix Λx. Furthermore, the symmetric ma-
trix R̃ is not positive definite in the case of pseudoparabolic equation (η 6= 0). Thus, we
investigate the stability of difference scheme (18) by using the other approach.

2.3. Reduction of the Three-Layer Scheme to a Two-Layer Scheme

In order to reduce the three-layer difference scheme to a two-layer system, we define
vectors in M2(N−1)(M−1)×1:

Yk =

(
Uk

Uk−1/2

)
, Fk+1/2

s =

(
τ
2 A−1

s F̃k+1/2
s

0

)
, s = 1, 2.

Then, we rewrite Equations (18) and (20) as

Yk+1/2 = S1Yk + Fk+1/2
1 , Yk+1 = S2Yk+1/2 + Fk+1/2

2 ,

where

Sl =

(
−A−1

l Bl −A−1
l Cl

I 0

)
∈M2(N−1)(M−1)×2(N−1)(M−1), l = 1, 2.

From this, we obtain
Yk+1 = SYk + Fk+1/2, (25)

where

S = S2S1 =

(
A−1

2 B2A−1
1 B1 −A−1

2 C2 A−1
2 B2A−1

1 C1
−A−1

1 B1 −A−1
1 C1

)
, (26)

and Fk+1/2 = S2Fk+1/2
1 + Fk+1/2

2 .

3. Eigenvalues of Matrix S
3.1. Eigenvalues of the Matrices Λx and Λy

It is known that the eigenvalues of Λy are positive and the corresponding eigenvectors
are orthogonal and linearly independent:

λm(Λy) =
4
h2

y
sin2 πmhy

2Ly
, Wm = (Wm

1 , . . . , Wm
M−1)

T , m = 1, M− 1,

where

Wm
j = sin

πmjhy

Ly
, j = 1, M− 1.
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The eigenvalue problem for matrix Λx is equivalent to problem

−δ2
xVi = λVi, i = 1, N − 1,

V0 = γ0[1, V], Vn = γ1[1, V].

All eigenvalues λn(Λy), n = 1, N − 1, of this problem are real numbers and eigenvectors

Vn = (Vn
1 , . . . , Vn

N−1)
T , n = 1, N − 1,

are linearly independent. Furthermore, if γ0 + γ1 < 2, then all eigenvalues λn(Λx),
n = 1, N − 1, are positive, more precisely, λn(Λx) ∈ (0, 4/h2

x) [28].

3.2. Eigenvalues and Eigenvectors of the Matrices L1 and L2

Vectors
Um,n = Wm ⊗Vn, n = 1, N − 1, m = 1, M− 1, (27)

are linearly independent in the vector space R2(N−1)(M−1) according to the Kronecker
product properties [41].

Since L1 = Iy ⊗Λx and L2 = Λy ⊗ Ix, we have

(Iy ⊗Λx)(Wm ⊗Vn) = (IyWm)⊗ (ΛxVn) = λn(Λx)Wm ⊗Vn,

(Λy ⊗ Ix)(Wm ⊗Vn) = (ΛyWm)⊗ (IxVn) = λm(Λy)Wm ⊗Vn,

and we get
L1Um,n = λn(Λx)Um,n, L2Um,n = λm(Λy)Um,n. (28)

Therefore, matrices L1 and L2 have the same system of eigenvectors. The eigenvalues
of matrix L1 are λ

(1)
n = λn(Λx), n = 1, N − 1, and the geometric multiplicity of each

eigenvalue is M− 1; the eigenvalues of matrix L2 are λ
(2)
m = λm(Λy), m = 1, M− 1, and

the geometric multiplicity of each eigenvalue is N − 1.

Lemma 4. The matrices As, Bs, Cs, and Ls, s = 1, 2, commute and have a common system of
linearly independent eigenvectors.

Proof. The matrices Λ1 and Λ2 commute and have the same system of eigenvectors. Thus,
according to (19) and (21), vectors Um,n are eigenvectors of matrices As, Bs, Cs, too.

3.3. Eigenvalues of the Matrix S

The equation for the eigenvalues of matrix S is∣∣∣∣ A−1
2 B2A−1

1 B1 −A−1
2 C2 − µI A−1

2 B2A−1
1 C1

−A−1
1 B1 −A−1

1 C1 − µI

∣∣∣∣ = 0.

The determinant on the left side is equal to∣∣∣∣ −A−1
2 C2 − µI −µA−1

2 B2
−A−1

1 B1 −A−1
1 C1 − µI

∣∣∣∣ = 1
det(A1A2)

∣∣∣∣ C2 + µA2 µB2
B1 C1 + µA1

∣∣∣∣.
Using Lemma 2 and Corollary 3, we get equation

det
(

µ2A + µB + C
)
= 0, (29)
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where

A = A1A2, C = C1C2, (30)

B = −B1B2 + A1C2 + A2C1 = −A1A2 − C1C2 + τ(L1 + L2). (31)

The last equality follows from Corollary 2. Equation (29) is the characteristic equation of
the general nonlinear eigenvalue problem

µ2AU + µBU + CU = 0. (32)

Thus, the second order eigenvalue problem has 2(N − 1)(M− 1) eigenvalues. As a result,
the next lemma is valid.

Lemma 5. The eigenvalues of matrix S coincide with the eigenvalues of the nonlinear eigenvalue
problem (32).

The nonlinear eigenvalue problem of such type when matrices A, B, and C are sym-
metric is well known and has been considered in many works (see, [42]). In our case,
these matrices are nonsymmetric, but it is possible to investigate nonlinear eigenvalue
problem (32) using another useful property of these matrices. Namely, matrices A, B, and
C have the same system of eigenvectors.

We can find the eigenvalues of nonlinear problem (32). Substituting U = Um,n into
Equation (32) and taking into account that Um,n 6≡ 0, we obtain

µ2λmn(A) + µλmn(B) + λmn(C) = 0, m = 1, M− 1, n = 1, N − 1. (33)

The eigenvalues of matrix S are roots of Equation (33). We rewrite (33) as

amnµ2 + bmnµ + cmn = 0, m = 1, M− 1, n = 1, N − 1, (34)

where

amn =
(
1 + (η + 0.5τ)λ

(1)
n
)(

1 + (η + 0.5τ)λ
(2)
m
)
, (35)

bmn = −amn − cmn + τ
(
λ
(1)
n + λ

(2)
m
)
, (36)

cmn = η2λ
(1)
n λ

(2)
m . (37)

If λ
(1)
n > 0, λ

(2)
m > 0, then taking into account η > 0, we get that cmn > 0. From (35), we get

amn > cmn, amn > 0.5τ
(
λ
(1)
n + λ

(2)
m
)
.

Thus, we estimate

bmn < −amn − cmn + 2amn = anm − cmn < anm + cmn.

From (36), we have −bmn < amn + cmn. Finally, we prove

|cmn| < amn, |bmn| < cmn + amn.

Lemma 6. If γ0 + γ1 < 2, then for the roots of Equation (34), we have |µ| < 1.

Proof. If γ0 + γ1 < 2, then λn(Λx) > 0, n = 1, N − 1. Eigenvalues λm(Λy), m = 1, M− 1,

are positive. Thus, we have λ
(1)
n > 0, λ

(2)
m > 0 for m = 1, M− 1, n = 1, N − 1. According

to Hurwitz’s criterion [43], the roots of polynomial µ2 + bµ + c satisfy condition |µ| < 1 if
and only if |c| < 1, |b| < c + 1. Therefore, the conditions of Hurwitz’s criterion are fulfilled
for b = a−1

mnbmn, c = a−1
mncmn, and we get that |µ| < 1.
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Remark 2. In the case η = 0, we have cmn = 0, and the roots are µ1 = 0, µ2 = −bmna−1
mn =(

1− 0.5τλ
(1)
n
)(

1− 0.5τλ
(2)
m
)(

1 + 0.5τλ
(1)
n
)−1(1 + 0.5τλ

(2)
m
)−1, and |µ2| < 1.

In the limit case τ = 0, we have equation amnµ2 − (amn + cmn)µ + cmn = 0. The roots of
this equation are µ1 = cmna−1

mn = η2λ
(1)
n λ

(2)
m
(
1 + ηλ

(1)
n
)−1(1 + ηλ

(2)
m
)−1, µ2 = 1, and |µ1| < 1.

4. Investigation of the Stability of Finite Difference Scheme

We examine, based on Lemma 6, the stability of the ADI method (10)–(11) or otherwise
the difference scheme (25).

From Lemma 6, we can formulate the following proposition.

Proposition 1. If |µ| < 1, where µ is the eigenvalue of matrix S, then the difference scheme
Yn+1 = SYn + Fn+1/2 is stable regardless of whether the matrix S is symmetric or not.

This proposition on the stability of the two-layer difference scheme for a parabolic
equation has been known for a long time and was formulated before solving problems
with nonlocal conditions (see, [44]). In order to understand the influence of nonlocal
conditions on the stability of the difference scheme, we study in detail the case when S is a
nonsymmetric matrix.

If γ1 = γ2 = 0 in problem (10)–(13), then matrix S is symmetric. In this case, all
eigenvalues of S are real and it follows from |µ| < 1 that

$(S) := max |µ(S)| < 1. (38)

If S is symmetric, we have

‖S‖2 =

(
max

i
|λi(S2)|

)1/2
= $(S). (39)

Thus, the condition of the stability of the finite difference scheme (25) can be formulated as
the following theorem.

Theorem 1. If γ1 = γ2 = 0, then
‖S‖2 < 1 (40)

and ADI method (9)–(12) is stable in the discrete vector `2-norm.

Let us assume on the contrary that either γ1 or γ2 is nonzero in problem (1)–(5).
Thus, we investigate the stability of difference scheme (10)–(13) or the system (25) with
nonsymmetric matrix S. In this case, the equality (39) does not follow from the definition of
the norm (9). That is, for nonsymmetric matrix S, the spectral radius $(S) is not the matrix
norm. For this, we use the statement from linear algebra about the norm of the matrix.

Proposition 2 (see, [45], Th. 7.8). Let $(A) be a spectral radius of an arbitrary square matrix A.
If ε > 0 is given, then there exists a matrix norm ‖A‖∗ for which

‖A‖∗ ≤ $(A) + ε. (41)

We can formulate some corollary of this proposition.

Corollary 3. For any square matrix A, there exists a matrix norm ‖A‖∗ < 1 if and only if
$(A) < 1.

However, the proof of Proposition 2, as well as a construction of norm ‖A‖∗, is
nontrivial (see, [46] p. 12, or [47] Chapter 11.2, Section 3.4).
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Now, we assume that matrix S has a system of linearly independent eigenvectors. In
this case, we use the following proposition from linear algebra [48].

Proposition 3. Let ‖A‖ and ‖u‖ be compatible matrix and vector norms and P be a nonsingular
matrix (det P 6= 0). Then,

‖A‖∗ = ‖P−1AP‖ (42)

and
‖u‖∗ = ‖P−1u‖ (43)

are also compatible matrix and vector norms.

Using the assumption that the eigenvectors of matrix S are linearly independent, we
define matrix P, whose columns are eigenvectors of S. We use the `2-norm ‖ · ‖2 in (42) and
(43). Therefore, we get

‖u‖∗ = ‖P−1u‖2 = (P−1u, P−1u)1/2 = (Du, u)1/2, D = (PP∗)−1, (44)

‖S‖∗ = ‖P−1SP‖2 = ‖J‖2 = max
i
|µi(S)| = $(S), (45)

where D is a positive defined matrix and J is the Jordan form of S.
Now, we can generalize Theorem 1.

Theorem 2. If γ1 + γ2 < 2, then the ADI method (10) and (11) with nonlocal conditions (12)
and (13) is stable in some vector norm. If additionally, the eigenvectors of matrix S are linearly
independent, then the ADI method is stable in norm ‖u‖∗ = (Du, u)1/2, generated by the self-
adjoint positive defined operator (matrix) D = (PP∗)−1, where P is a matrix whose columns are
linearly independent eigenvectors of S.

Remark 3. As far as the authors know, the eigenvectors of a matrix S are linearly independent if
there are some additional conditions. For example, in the case when the eigenvalues of S are real. In
this article, we leave this question open.

5. Numerical Examples

One of the aims of our numerical simulations was to demonstrate the theoretical results
obtained in the previous sections. Two numerical examples illustrate the effectiveness
of the present ADI scheme. Another aim was to investigate numerically the influence of
parameter τ, T, and η on the accuracy of the solution.

Problem 1. We consider the model problem in the domain D := (0, 1)× (0, 1)

∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 + η

∂

∂t

(
∂2u
∂x2 +

∂2u
∂y2

)
+ f (x, y, t), (x, y, t) ∈ D× (0, T],

where
f (x, y, t) = e−t sin(πx) sin(πy)

(
− 1 + 2π2(1− η)

)
,

subject to the initial and boundary conditions

u(0, y, t) = γ0

∫ 1

0
u(x, y, t)dx− 2

γ0

π
e−t sin(πy), (y, t) ∈ [0, 1]× [0, T],

u(1, y, t) = γ1

∫ 1

0
u(x, y, t)dx− 2

γ1

π
e−t sin(πy), (y, t) ∈ [0, 1]× [0, T],

u(x, 0, t) = 0, u(x, 1, t) = 0, (x, t) ∈ [0, 1]× [0, T],

u(x, y, 0) = sin(πx) sin(πy), (x, y) ∈ [0, 1]× [0, 1].
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The right-hand side function f in the differential equation and the initial and boundary conditions
were prescribed to satisfy the given exact solution

u∗(x, y, t) = e−t sin(πx) sin(πy)

of problem (1)–(5) (see, Figure 1a).

(a) Problem 1 (b) Problem 2

Figure 1. Solutions of Problems 1 and 2.

We calculated the maximum norm of the error of the numerical solution with respect to the
exact solution and relative error

E = max
i=0,··· ,M

|UN
i − u∗(xi, tN)|, Er = E/|u∗(xi, tN)|.

The results of the numerical experiment are presented in Table 1. Note that the errors wereO(τ + h2)
with a sufficient accuracy for all τ and h. The ratio τ/h2 was equal to 1.

The errors E for a different ratio of step sizes τ and h are given in Table 2. Now, τ/h2 = 1/h
and the error was O(τ) as expected (independent of τ/h2 which varied from 4 to 64). The plots of
the error distribution at mesh points for T = 2 are presented in Figure 2a for the classical problem
and in Figure 2b for the problem with nonlocal boundary conditions.

Problem 2. In the second example, we considered the model problem (1)–(5) in the domain D :=
(0, 1)× (0, 1). The right-hand side function f and the initial and boundary conditions were chosen
so that the function

u∗(x, y, t) = ex+yeαt+1

was the exact solution of the problem (see, Figure 1b), i.e.,

f (x, y, t) = 2αex+yeαt+1(ex+yeαt+1 − η
)

u(0, y, t) = γ0

∫ 1

0
u(x, y, t)dx− γ0(−eαt+y+1 + eαt+y+2) + eαt+y+1, (y, t) ∈ [0, 1]× [0, T],

u(1, y, t) = γ1

∫ 1

0
u(x, y, t)dx− γ1(−eαt+y+1 + eαt+y+2) + eαt+y+2, (y, t) ∈ [0, 1]× [0, T],

u(x, 0, t) = eαt+x+1; , u(x, 1, t) = eαt+x+2, (x, t) ∈ [0, 1]× [0, T],

u(x, y, 0) = ex+y, (x, y) ∈ [0, 1]× [0, 1].

We set α = 0.1.
In Table 3, E tends to O(τ + h2) as τ and h decreases but is larger for large values of τ and h.

It may happen because u∗ grows rapidly for large x, y, t. However, there might be other reasons.
Tables 4 and 5 show how the error depends on T and η. We can see that it should be proportional

to the length of interval [0, T] but does not depend too much on η. The plots of the error distribution
for time T = 2 are presented in Figure 3a for the classical problem and in Figure 3b for the problem
with nonlocal boundary conditions.
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(a) γ0 = γ1 = 0 (b) γ0 = 1, γ1 = −1

Figure 2. (Problem 1) Errors for the discrete solution on the 64 × 64 grids for a problem solved with
different values of parameters γ0, γ1.

Table 1. (Problem 1) The errors for different h, τ = h2 ( η = 1, γ0 = 1, γ1 = −1, T = 2).

h τ E

2−2 6.2500 · 10−2 4.832 · 10−3

2−3 1.5625 · 10−2 1.226 · 10−3

2−4 3.9063 · 10−4 3.071 · 10−4

2−5 9.7660 · 10−5 7.778 · 10−5

2−6 2.4414 · 10−5 1.966 · 10−5

Table 2. (Problem 1) The errors for different h, τ = h ( η = 1, γ0 = 1, γ1 = −1, T = 2).

h 2−2 2−3 2−4 2−5 2−6

E 0.0166 0.0103 0.0056 0.0028 0.0013

(a) γ0 = γ1 = 0 (b) γ0 = 11, γ1 = −10

Figure 3. (Problem 2) Errors for the discrete solution on the 64 × 64 grids for a problem solved with
different values of parameters γ0, γ1.
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Table 3. (Problem 2) The errors for different h, τ 6= h2 ( η = 0.1, γ0 = 11, γ1 = −10, T = 2).

h τ E Er

0.0625 0.005 5.044557 · 10−2 8.22822 · 10−3

0.03125 0.00125 1.40017 · 10−2 2.31612 · 10−3

0.015625 0.00031250 3.68602 · 10−3 6.1332 · 10−4

0.0078125 0.00007813 9.4561 · 10−4 1.5773 · 10−4

0.00390625 0.00001953 2.4045 · 10−4 4.011 · 10−5

Table 4. (Problem 2) The errors for different T, α = 0.1 η = 1, γ0 = 11, γ1 = −10, h = 0.1, τ = h2.

T 0.5 1 2 5 10
E 0.0011 0.0018 0.0027 0.0042 0.0069

Table 5. (Problem 2) The errors for different η, α = 0.1 T = 2, γ0 = 11, γ1 = −10, h = 2−6, τ = h2.

η 0.1 0.5 1 2 5 10
E 6.10 · 10−4 5.22 · 10−4 3.82 · 10−4 1.63 · 10−4 4.78 · 10−4 8.03 · 10−4

6. Conclusions and Remarks

In the article, we investigated the stability of the ADI method for the third-order 2D
linear pseudoparabolic equation with boundary integral conditions (2) and (3). The ADI
method defined by Formulas (10)–(13) had not been previously studied by other authors
for pseudoparabolic equations.

As is well known, one of the most important properties for any numerical method
to solve differential equations with boundary and initial conditions is the stability of
the method. As mentioned in the introduction, for nonlocal boundary conditions, the
differential problem is not self-adjoint. Therefore, the theoretical study of the method
(proof of stability and convergence) usually becomes more complicated. In other words, it
is not always possible to immediately apply the well-known theoretical conclusion that
convergence follows from approximation and stability. In this paper, the spectrum structure
of the nonsymmetric matrix S was used for the theoretical study of the ADI method written
in (25). In Section 4, it was proved that the stability of the differential scheme in the vector
norm || · ||∗ follows from the condition $(S) < 1. We note that the convergence of the
difference method would follow from this condition, if we proved the equivalence of the
norms || · ||∗ and || · ||2, i.e., that the inequalities C1|| · ||∗ ≤ || · ||2 ≤ C2|| · ||∗ were valid
with constants C1 and C2 independent of h and τ. This approach was applied in [49]. We
could not claim whether that approach was valid for pseudoparabolic 2D equations with
nonlocal conditions (2) and (3).

Therefore, we chose another path. As a first step, we considered a differential equation
with nonlocal conditions of a new form or a new numerical method, and we chose an
approach that gave us only stability (see [21,31,49,50]). Such a methodology often works
when the differential equation is with constant coefficients, and the approach is related to
the spectrum structure of the differential problem.

The convergence of the ADI method is in our immediate plans but requires additional
research or assumptions (see Remark 3).
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15. Jachimavičienė, J.; Ž. Jesevičiūtė.; Sapagovas, M. The stability of finite-difference schemes for a pseudoparabolic equation with

nonlocal conditions. Numer. Funct. Anal. Optim. 2009, 30, 988–1001. [CrossRef]
16. Guezane-Lakoud, A.; Belakroum, D. Time-discretization schema for an integrodifferential Sobolev type equation with integral

conditions. Appl. Math. Comput. 2012, 218, 4695–4702. [CrossRef]
17. Beshtokov, M. Boundary value problems for a loaded modified fractional-order moisture transfer equation with the Bessel

operator and difference methods for their solution. Vestn. Udmurt. Univ. Mat. Mekhanika Komp’yuternye Nauk. 2020, 30, 158–175.
[CrossRef]

18. Beshtokov, M. A numerical method for solving the second initial-boundary value problem for a multidimensional third-order
pseudoparabolic equation. Vestn. Udmurt. Univ. Mat. Mekhanika Komp’yuternye Nauk. 2021, 31, 384–408. [CrossRef]

19. Beshtokov, M. Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of
the third kind. Vestn. Udmurt. Univ. Mat. Mekhanika Komp’yuternye Nauk. 2022, 32, 502–527. [CrossRef]
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