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Abstract: The stress–strength analysis is investigated for a multicomponent system, where all strength
variables of components follow a generalized exponential distribution and are subject to the general-
ized exponential distributed stress. The estimation methods of the maximum likelihood and Bayesian
are utilized to infer the system reliability. For the Bayesian estimation method, informative and
non-informative priors combined with three loss functions are considered. Because the computational
difficulty on working posteriors, the Markov chain Monte Carlo method is adopted to obtain the
approximation of the reliability estimator posterior. In addition, the bootstrap method and highest
probability density interval are used to obtain the reliability confidence intervals. The simulation
study shows that the Bayes estimator with informative prior is superior to other competitors. Finally,
two real examples are given to illustrate the proposed estimation methods.

Keywords: multicomponent stress–strength model; generalized exponential distribution; Bayesian
method; Markov chain Monte Carlo method; highest probability density interval
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1. Introduction

Let strength and stress variables in a single-component system be presented by X
and Y, respectively. The single-component system is survived if the strength is over its
stress borne. Hence, the performance of the single-component system can be evaluated
by the reliability, R = P(X > Y), which was connected to Mann–Whitney statistics
by Birnbaum [1]. The aforementioned model was called the stress–strength model by
Church and Harris [2] and has widely been used in industrial engineering, economics,
psychology and medical research since then. Currently, many applications and inferences
of the stress–strength model have appeared in the literature. For example, Kundu and
Gupta [3] deduced the maximum likelihood, consistent minimum variance unbiased,
and Bayes estimators of R based on the generalized exponential distributed stress and
strength variables with different shape parameters. Given identical scale parameter for two
Burr-type X distributions, Raqab and Kundu [4] investigated the stress–strength model
and compared the maximum likelihood, uniformly minimum variance unbiased, and
approximate Bayes estimators using simulation methods. Al-Mutairi et al. [5] proposed the
uniformly minimum variance unbiased and maximum likelihood estimators of R under
Lindley distributions with different shape parameters. Ali [6] derived the mathematical
properties of the Lindley distribution and Bayesian method for the stress and strength
analysis with different loss functions. Singh et al. [7] discussed the estimation problem of R
via using the classical and Bayesian paradigms under generalized Lindley distribution. The
Markov chain Monte Carlo (MCMC) technique was used to perform Bayesian calculation.
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Sadek et al. [8] studied the R estimation problem utilizing stress and strength samples taken
from the quasi Lindley distributions, respectively, and provided the maximum likelihood
and Bayes estimators, where the MCMC technique via the Metropolis–Hastings algorithm
was used to implement Bayesian estimation.

In many cases, the system can be composed of multicomponents. Bhattacharyya and
Johnson [9] mentioned that the performance of a multicomponent system depends on the
specific minimum number of components that must operate simultaneously. Thus, they
proposed a multicomponent stress–strength (MSS) model with k independent components
of identically distributed random strength to model the MSS system. Components in a MSS
model are subject to independent stress variables. A MSS system survives if at least s(≤ k)
components work normally. They studied the uniformly minimum variance unbiased esti-
mator and other relevant estimators under different exponential distributions. Pandey and
Uddin [10] derived the maximum likelihood and Bayes estimators for the MSS parameters.
Rao and Kantam [11] studied the performance of the reliability estimation in a MSS model
by using different parameter estimation methods for the log-logistic distribution. Rao [12]
used the maximum likelihood estimation method to obtain the asymptotic distribution and
confidence interval of reliability in a MSS model for the generalized exponential distribu-
tion. Sharma and Sanku [13] studied the reliability estimation of the MSS model for the
inverted exponentiated Rayleigh distribution.

All the aforementioned references for the MSS reliability inference methods were de-
veloped based on complete random lifetime observations. Due to technological advances,
the component quality has been improved, and the component lifetime has been prolonged.
Collecting complete lifetimes from all test components will no longer be easy. Producers
suffer from cost restrictions or other reasons to utilize a complete lifetime sample for the
reliability inference. The effects of incomplete data have been widely researched in recent
years, and solutions have been proposed to deal with reliability problems. Gunasekera [14]
established the maximum likelihood and Bayes estimators of the MSS reliability via using
progressively type-II right-censored data from exponentiated inverted exponential distribu-
tions. Kohansal and Shoaee [15] considered the point and interval estimations of the MSS
reliability based on the adaptive hybrid progressively censored data from Weibull distribu-
tions. Azhad et al. [16] proposed statistical methods to infer the MSS reliability by using
upper recorded strength and stress samples that follow independent Pareto distributions
with different shape parameters and common scale parameter.

Recently, a type-I hybrid censoring scheme was proposed to be used commonly; see,
for example, Kundu and Prahan [17]. Let the component strength and corresponding stress
observations be respectively collected from the life test with n and m items. The test is
terminated as long as the predetermined number, r, of failures is obtained or the test time, T,
is reached. Based on our best knowledge, the stress–strength inference of a muticomponent
system based on type-I hybrid censored samples from generalized exponential distributions
has not been studied in the literature. We are motivated to investigate the performance of
the maximum likelihood and Bayes estimators for the MSS reliability when lifetime samples
are collected using a type-I hybrid censoring scheme. The informative and non-informative
priors with three loss functions are utilized to develop the Bayesian methods in this study.

The MSS reliability based on generalized exponential distributions is introduced
in Section 2. Section 3 presents the maximum likelihood and two Bayesian estimation
methods. Section 4 conducts a Monte Carlo simulation study to compare the performance
of all proposed estimators. Next, two examples are presented in Section 5 for illustration.
Conclusively, some remarks are addressed in Section 6.
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2. Multicomponent Stress–Strength Model

Let X ∼ GE(α, λ), where GE(α, λ) denotes the generalized exponential distribu-
tion. The probability density function (pdf) and cumulative distribution function (cdf) of
GE(α, λ) can be respectively expressed by

fX(x) ≡ f (x; α, λ) = αλe−xλ
(

1− e−xλ
)α−1

, x > 0, (1)

and
FX(x) ≡ F(x; α, λ) =

(
1− e−xλ

)α
, x > 0, (2)

where α(> 0) and λ(> 0) are the shape and rate parameters. The 100pth percentile and
survival function of GE(α, λ) can be presented by

qp ≡ qp(α, λ) = − 1
λ

log
(

1− p
1
α

)
, 0 < p < 1, (3)

and
S(x; α, λ) = 1− F(x; α, λ) = 1−

(
1− e−xλ

)α
, (4)

respectively. Let k independent strength components in a MSS system follow GE(α, λ1) and
denoted by X1, X2, . . . , Xk ∼ GE(α, λ1) and the common random stress, Y ∼ GE(β, λ2).
According to Rao [12], the MSS reliability can be addressed by

Rs,k ≡ P(at least s of the X1, X2, . . . , Xk exceed Y)

=
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1− FX(y)]

i[FX(y)]
k−idFY(y)

=
k

∑
i=s

(
k
i

) ∫ ∞

0

[
1−

(
1− e−yλ1

)α]i[(
1− e−yλ1

)α]k−i
×

βλ2e−yλ2
(

1− e−yλ2
)β−1

dy, (5)

where 0 < s ≤ k.

3. Type-I Hybrid Censoring and MSS Parameter Estimation Methods

Let n denote the number of items used for life testing, n − r denote the censored
number in a type-II censoring scheme, and T denote the termination time of a type-I
censoring scheme. A type-I hybrid censoring scheme is a hybrid scheme of the type-
I censoring and type-II censoring schemes. Let the resulting failure times for strength
variable be denoted by x1:n ≤ x2:n ≤ . . . ≤ xd1 :n, which are the realizations of X1:n ≤
X2:n ≤ . . . ≤ Xd1 :n with d1 failures observed at T. Thus, d1 can also be expressed as

d1 =

{
r, xr:n ≤ T,

m1, xr:n > T, xm1 :n ≤ T and xm1+1:n > T.
(6)

Moreover, let c1 denote the recorded lifetimes for all survived components, then c1 can also
be expressed as

c1 =

{
xr:n, xr:n ≤ T,
T, xr:n > T.

(7)

Similarly, let the resulting failure times for stress variables be denoted by y1:m ≤ y2:m ≤
. . . ≤ yd2 :m, which are the realizations of Y1:m ≤ Y2:m ≤ . . . ≤ Yd2 :m with d2 failures
observed at T. Thus, d2 can also be expressed as

d2 =

{
r, yr:m ≤ T,

m2, yr:m > T, ym2 :m ≤ T and ym2+1:m > T.
(8)
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Additionally, let c2 denote the recorded stress of the stress variables at T, and then c2 can
also be expressed as

c2 =

{
yr:m, yr:m ≤ T,
T, yr:m > T.

(9)

Therefore, we can arrange the observations of the type-I hybrid censored sample into
D =

{
X1:n, . . . , Xd1 :n, c1, Y1, . . . , Yd2 :m, c2

}
.

3.1. Maximum Likelihood Estimation

According to Kundu and Pradhan [17], the likelihood function based on the type-I
hybrid samples can be represented by

L(Θ|D) ∝

[
d1

∏
i=1

f (xi:n; Θ1)(S(c1| Θ1))
n−d1

][
d2

∏
j=1

f
(
yj:m; Θ2

)
(S(c2| Θ2))

m−d2

]
= (αλ1)

d1(βλ2)
d2 e−λ1d1xd1 e−λ2d2yd2

×
(

1−
(

1− e−λ1c1
)α)n−d1

(
1−

(
1− e−λ2c2

)β
)m−d2

×
d1

∏
i=1

(
1− e−xi:nλ1

)α−1 d2

∏
j=1

(
1− e−yj:mλ2

)β−1
, (10)

where Θ = (Θ1, Θ2), Θ1 = (α, λ1), Θ2 = (β, λ2),

xd1 =
∑d1

i=1 xi:n

d1

and

yd2
=

∑d2
j=1 yj:m

d2
.

Taking logarithm transformation to Equation (10) and letting `1 = log(L(Θ|D)), we can
obtain the following results:

`1 ∝ d1(log(α) + log(λ1)) + d2(log(β) + log(λ2))− d1λ1 xd − d2λ2yd2

+ (α− 1)
d1

∑
i=1

log
(

1− e−λ1xi:n
)
+ (β− 1)

d2

∑
j=1

log
(

1− e−λ2yj:m
)

+ (n− d1) log
(

1−
(

1− e−λ1c1
)α)

+ (m− d2) log
(

1−
(

1− e−λ2c2
)β
)

. (11)

To obtain the maximum likelihood estimate (MLE) of Θ, let the partial derivatives of
the `1 with respect to parameters respectively equate to zero. Then, the likelihood equations
are given as

∂`1

∂α
=

d1

α
+

d1

∑
i=1

log
(

1− e−λ1xi:n
)

−(n− d1)
log
(
1− e−λ1c1

)(
1− e−λ1c1

)α

1−
(
1− e−λ1c1

)α = 0, (12)
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∂`1

∂β
=

d2

β
+

d2

∑
j=1

log
(

1− e−λ2yj:m
)

−(m− d2)
log
(
1− e−λ2c2

)(
1− e−λ2c2

)β

1−
(
1− e−λ2c2

)β
= 0, (13)

∂`1

∂λ1
=

d1

λ1
− d1xd1 + (α− 1)

d1

∑
i=1

xie−λ1xi:n

1− e−λ1xi:n

−(n− d1)
αc1e−λ1c1

(
1− e−λ1c1

)α−1

1−
(
1− e−λ1c1

)α = 0 (14)

and

∂`1

∂λ2
=

d2

λ2
− d2yd2

+ (β− 1)
d2

∑
i=1

yje
−λ2yj:m

1− e−λ2yj:m

−(m− d2)
βc2e−λ1c2

(
1− e−λ2c2

)β−1

1−
(
1− e−λ2c2

)β
= 0. (15)

Therefore, the MLE of Θ, denoted by Θ̂ = (α̂, λ̂1, β̂, λ̂2), can be obtained using
Equations (12)–(15) and a numerical computation method. Replacing Θ with Θ̂ in Equation (5),
the MLE of the MSS reliability can be expressed by

R̂s,k =
k

∑
i=s

(
k
i

) ∫ ∞

0

[
1−

(
1− e−yλ̂1

)α̂
]i[(

1− e−yλ̂1
)α̂
]k−i
×

β̂λ̂2e−yλ̂2
(

1− e−yλ̂2
)β̂−1

dy. (16)

Because the expectations of the second derivatives of `1 do not have an explicit
expression and have different function forms when the values of parameters vary under the
type-I hybrid censoring, the Fisher information matrix is not easily derived. Therefore, the
asymptotic properties of the MLEs cannot be obtained via utilizing the Fisher information
matrix. Bootstrap methods can be used in this study to obtain an approximate confidence
interval of Rs,k instead of using the delta method with Fisher information matrix. In
bootstrapping, a resampling procedure is used from a sample to generate an empirical
distribution of the target statistic by repeatedly taking samples with replacement from the
working sample. Based on the following parametric bootstrap procedure, an approximate
confidence interval of Rs,k can be established as follows:

Step 1: Obtain the MLE, Θ̂, of Θ by solving Equations (12)–(15) simultaneously based on
the type-I hybrid censored sample D = {x1:n, . . . , xd1 :n, c1, y1, . . . , yd2 :m, c2}. Then,
using Equation (16) to obtain the MLE, R̂s,k, of Rs,k.

Step 2: Generate a new type-I hybrid censored sample from two generalized exponential
distributions but Θ is replaced by Θ̂ =

(
α̂, λ̂1, β̂, λ̂2

)
. Denote the new generated

type-I hybrid censored sample by D∗ =
{

x∗1:n, ..., x∗d1 :n, c∗1 , y∗1:m, ..., y∗d2 :m, c∗2
}

Step 3: Calculate the MLEs of Θ and Rs,k based on D∗. Denoted them by Θ̂∗ and R̂∗s,k,
respectively.

Step 4: Repeat Step 2 and Step 3 B times, and a bootstrap sample of size B,

R̂∗s,k = {R̂
∗
s,k,1, R̂∗s,k,2, · · · , R̂∗s,k,B},

is collected. Let G∗ be the empirical distribution generated by R̂∗s,k.
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Step 5: The 100× (1− γ)% confidence interval of Rs,k can be presented as the following:(
R̂
∗
s,k,[ γ

2 B], R̂∗s,k,[(1− γ
2 )B]

)
, (17)

where 0 < γ < 1, R̂
∗
s,k,[ γ

2 B] and R̂∗
s,k,[(1− γ

2 )B]
are the (γ/2)th and (1 − γ/2)th

quantiles of Ĝ∗, respectively.

3.2. Bayesian Methods

In this section, we present how to obtain the Bayes estimators of Θ and Rs,k. In
the Bayesian estimation procedures, the prior distribution and loss function need to be
selected first. The non-informative prior distribution and informative prior distribution are
considered here to obtain Bayes estimators of the model parameters.

3.2.1. Bayesian Method with Non-Informative Prior Distribution

The constant prior information is considered to be the non-informative prior distribu-
tion, that is,

g(Θ) ∝ const. (18)

Therefore, the form of the posterior distribution can be obtained as follows:

π(Θ|D) = g(Θ)L(Θ|D) ∝ const× L(Θ|D). (19)

Based on Equation (19), we can find that the obtained Bayes estimators are close to the
corresponding MLEs due to the posterior distribution being proportional to the likeli-
hood function. The conditional posterior distributions of α, β, λ1 and λ2 are respectively
presented as follows:

π
λ1
(λ1|Θ−1, D) = g(λ1|Θ−1, D)L(λ1|Θ−1, D)

∝ λd1
1 e−λ1d1xd1

(
1−

(
1− e−λ1c1

)α)n−d1
d1

∏
i=1

(
1− e−xi:nλ1

)α−1
, (20)

πα(α|Θ−2, D) = g(α|Θ−2, D)L(α|Θ−2, D)

∝ αd1
(

1−
(

1− e−λ1c1
)α)n−d1

d1

∏
i=1

(
1− e−xi:nλ1

)α−1
, (21)

π
λ2
(λ2|Θ−3, D) = g(λ2|Θ−3, D)L(λ2|Θ−3, D)

∝ λd2
2 e−λ2d2yd2

(
1−

(
1− e−λ2c2

)β
)m−d2 d2

∏
j=1

(
1− e−yj:mλ2

)β−1
(22)

and

π
β
(β|Θ−4, D) = g(β|Θ−4, D)L(β|Θ−4, D)

∝ βd2 ×
(

1−
(

1− e−λ2c2
)β
)m−d2 d2

∏
j=1

(
1− e−yj:mλ2

)β−1
, (23)

where Θ−1 = (α, β, λ2), Θ−2 = (β, λ1, λ2), Θ−3 = (α, β, λ1) and Θ−4 = (α, λ1, λ2).
Because the conditional posterior distributions in Equations (20)–(23) do not have

complete closed forms, the Bayes estimators cannot be obtained by utilizing the Gibbs
sampling. Hence, the MCMC approach via using the Metropolis–Hastings algorithm
described below is implemented.
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Step 0: Propose qi, i = 1, 2, 3, 4 as the transition probability distributions.

Step 1: Let the initial values, (λ(0)
1 , α(0), λ

(0)
2 , β(0)), be randomly selected from their respec-

tive domains, and let U(0, 1) be the uniform distribution over the (0, 1) interval.

Step 2: Set t = 1.

Step 3: Update λ
(t)
1 , α(t), λ

(t)
2 and β(t) according to the following sub-steps:

(a) Generate λ
(∗)
1 ∼ q1

(
λ
(t)
1 |λ

(t−1)
1

)
and u ∼ U(0, 1). Then,

λ
(t)
1 =

λ
(∗)
1 , u ≤ min

[
1

π
(

λ
(∗)
1 |α

(t−1),λ(t−1)
2 , β(t−1);D

)
q
(

λ
(t−1)
1

∣∣∣λ(∗)
1

)
π
(

λ
(t−1)
1 |α(t−1),λ(t−1)

2 , β(t−1);D
)

q
(

λ
(∗)
1

∣∣∣λ(t−1)
1

)
]

,

λ
(t−1)
1 , otherwise.

(b) Generate α(∗) ∼ q2(α
(t)|α(t−1)) and u ∼ U(0, 1). Then,

α(t) =

α(∗), u ≤ min

[
1

π
(

α(∗) |λ(t)
1 ,λ(t−1)

2 , β(t−1);D
)

q(α(t−1)|α(∗))
π
(

α(t−1) |λ(t)
1 ,λ(t−1)

2 , β(t−1);D
)

q(α(∗)|α(t−1))

]
,

α(t−1), otherwise.

(c) Generate λ
(∗)
2 ∼ q3

(
λ
(t)
2 |λ

(t−1)
2

)
and u ∼ U(0, 1). Then,

λ
(t)
2 =

λ
(∗)
2 , u ≤ min

[
1

π
(

λ
(∗)
2 |α

(t),λ(t)
1 , β(t−1);D

)
q
(

λ
(t−1)
2

∣∣∣λ(∗)
2

)
π
(

λ
(t−1)
2 |α(t),λ(t)

1 , β(t−1);D
)

q
(

λ
(∗)
2

∣∣∣λ(t−1)
2

)
]

,

λ
(t−1)
2 , otherwise.

(d) Generate β(∗) ∼ q4(β(t)|β(t−1)) and u ∼ U(0, 1). Then,

β(t) =

β(∗), u ≤ min

[
1

π
(

β(∗) |α(t),λ(t)
1 ,λ(t)

2 ;D
)

q(β(t−1)|β(∗))
π
(

β(t−1) |α(t),λ(t)
1 ,λ(t)

2 ;D
)

q(β(∗)|β(t−1))

]
,

β(t−1), otherwise.

Step 4: Calculate R(t)
s,k according to (α(t), λ

(t)
1 , β(t), λ

(t)
2 ).

Step 5: If t = N, go to Step 6, else t = t + 1 and go to Step 3.

Step 6: Remove the first N1 Markov chains for burn-in.

Step 7: Replacing Θ with (α(i), λ
(i)
1 , β(i), λ

(i)
2 ) in Equation (5), we can obtain R(i)

s,k , i = N1 +
1, N1 + 2, . . . , N.

Three Bayes estimators via using the general entropy, linear exponential, and squared
error loss functions, labeled by GEF, LINEX, SEF, are applied, and the corresponding results
are shown in Table 1.

Table 1. Three loss functions and corresponding Bayes estimator.

SE: R̂s,kSe
= EΘ|x,y

(
Rs,k

) ∼= 1
N−N1

∑N
i=N1+1 R(i)

s,k

LINEX:
R̂s,kL

= − 1
a log EΘ|x,y

[
exp

(
aRs,k

)] ∼=
− 1

a log
[

1
N−N1

∑N
i=N1+1 e−a R(i)

s,k

]
GEF: R̂s,kGe

=
[

EΘ|x,y

(
R−k

s,k

)]− 1
b ∼=

[
1

N−N1
∑N

i=N1+1

(
R(i)

s,k

)− b
]− 1

b
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To obtain the credible interval of Rs,k for the Bayesian method, the highest probability
density interval (HPDI), proposed by Chen and Shao [18], is recommended, and three steps
are provided as follows.

Step 1: Sort R(i)
s,k , i = N1 + 1, . . . , N in ascending order, Rs,k,(i), i = N1 + 1, . . . , N, where

Rs,k,(i) ≤ Rs,k,(i+1), i = N1 + 1, . . . , N.

Step 2: All candidate credible intervals of Rs,k with the 1− γ confidence can be obtained by(
Rs,k,(i), Rs,k,(i+[(1−γ)B1])

)
, i = N1 + 1, . . . , N − [(1− γ)(N − N1)],

where [y] is the maximum integer less than or equal to y.

Step 3: The candidate credible interval with the shortest length in Step 2 is the HPDI.

3.2.2. Bayesian Method with Informative Prior Distribution

According to the suggestions of Kundu and Pradha [17], we assume that all random pa-
rameters, α, β, λ1 and λ2, are independent and follow the gamma prior distributions below:

g1(α) =
ba1

1 αa1−1

Γ(a1)
exp(−b1α), α > 0, (24)

g2(β) =
ba2

2 βa2−1

Γ(a2)
exp(−b2β), β > 0, (25)

g3(λ1) =
ba3

3 λa3−1
1

Γ(a3)
exp(−b3λ1), λ1 > 0, (26)

and

g4(λ2) =
ba4

4 λa4−1
2

Γ(a4)
exp(−b4λ2), λ2 > 0, (27)

where ai > 0, bi > 0, i = 1, 2, 3, 4 are known hyper-parameters. Hence, the joint prior
distribution of α, β, λ1 and λ2 can be addressed by

g(α, β, λ1, λ2) =
ba1

1 ba2
2 ba3

3 ba4
4

Γ(a1)Γ(a2)Γ(a3)Γ(a4)

×αa1−1βa2−1λ1
a3−1λ2

a4−1e−(b1α+b2β+b3λ1+b4λ2), α, β, λ1, λ2 > 0(28)

and the joint posterior is given as

π(α, β, λ1, λ2|x, y) =
g(α, β, λ1, λ2)L(α, β, λ1, λ2)∫ ∞

0

∫ ∞
0

∫ ∞
0

∫ ∞
0 g(α, β, λ1, λ2)L(α, β, λ1, λ2)dαdβdλ1dλ2

∝ αd1+a1−1βd2+a2−1λd1+a3−1
1 λd2+a4−1

2 e−λ1

(
b3+d1λ1xd1

)
e−λ2

(
b4+d2yd2

)

×e−α
(

b1−∑
d1
i=1 ln(1−e−λ1xi:n)

)
e−β

(
b2−∑

d2
j=1 ln

(
1−e−λ2yj:m

))

×
d1

∏
i=1

(
1− e−λ1xi:n

)α−1 d2

∏
j=1

(
1− e−λ2yj:m

)β−1

×
(

1−
(

1− e−λ1c1
)α)n−d1

(
1−

(
1− e−λ2c2

)β
)m−d2

,

α, β, λ1, λ2 > 0. (29)
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The conditional posterior of α, β, λ1, and λ2 is respectively derived as follows:

πα(α|λ1, x) ∼ Gamma

(
d1 + a1 b1 −

d1

∑
i=1

ln
(

1− e−λ1xi:n
))

, α, λ1 > 0, (30)

π
β
(β| λ2, y) ∼ Gamma

(
d2 + a2 b2 −

d2

∑
j=1

ln
(

1− e−λ2yj:m
))

, β, λ2 > 0 (31)

π
λ1
(λ1| x) ∼ Gamma

(
d1 + a3 b3 + d1xd1

)
, λ1 > 0 (32)

and
π

λ2
(λ2| y) ∼ Gamma

(
d2 + a4 b4 + d2yd2

)
, λ2 > 0. (33)

Therefore, the Bayes estimator and HPDI of Rs,k can be obtained through using the MCMC
approach in Section 3.2.1, except replacing π

λ1
(λ1|Θ−1, D), πα(α|Θ−2, D), π

λ2
(λ2|Θ−3, D)

and π
β
(β|Θ−4, D) by π

λ1
(λ1| x), πα(α|λ1, x), π

λ2
(λ2| y) and πβ(β| λ2, y).

4. Monte Carlo Simulations

The performance of maximum likelihood and Bayesian estimation methods for esti-
mating Rs,k is compared in terms of relative Bias (rBias) and relative mean squared error
(rMSE) via Monte Carlo simulation in this section. The rBias and rMSE for each estimator
are evaluated using 10,000 iterative runs. In the study, (α, λ1, β, λ2) = (2, 2, 2, 3), (1.5, 1, 2, 1),
(s, k) = (1, 4), (2, 7), (n, m) = (30, 30), (35, 35), (40, 40), (45, 45), (50, 50), T = 1, 5, N = 10, 000,
N1 = 1, 000 and γ = 0.05 will be used along with the number of failures r as half amount
of the sample size. We use the non-information prior (Prior-I) and the information prior
(Prior-II) for the MCMC method to obtain the Bayes estimators. Then, we compare the
performance of Bayes estimators under different loss functions. The hyper-parameter
setting values of the Gamma prior distributions are given as those in Case 1 and Case 2.

Case 1: a1 = 2, b1 = 1, a2 = 2, b2 = 1, a3 = 2, b3 = 1, a4 = 3 and b4 = 1,
Case 2: a1 = 1.5, b1 = 1, a2 = 2, b2 = 1, a3 = 1, b3 = 1, a4 = 1 and b4 = 1.

In addition, the parameters of LINEX and GE loss functions are respectively set as
a = b = −0.5, 1. The simulation results for point estimators are presented in Tables 2–5. In
view of Tables 2–5, the following results are given:

• As the sample size increases, rBias and rMSE decrease.
• Both MLE and Bayesian methods underestimate the nominal Rs,k.
• The performance of Prior-II outperforms MLE and Prior-I for almost all simulation

settings.
• When a = b = −0.5, the Bayes estimator obtained by using the LINEX performs the

best and is followed by using the SEF.

The results of 95% confidence interval of Rs,k are presented in Tables 6–9, where “LCB”
and “UCB” refer to upper and lower bounds of confidence interval, respectively, “AL”
refers to the average length of confidence interval, and “Cover” refers to the proportion of
10,000 95% confidence intervals that cover the parameter, Rs,k. In viewing Tables 6–9, the
following results are listed:

• As the sample size increases, the AL decreases.
• For AL, Prior I has the shortest interval length, followed by that of Prior II and MLE.
• For Cover, the performance of Prior II is the best, followed by that of Prior I and MLE.

Based on the above findings, the MLE does not work well for estimating Rs,k. In
addition, although the confidence interval of Prior I is shorter than that of Prior II, the
coverage of Prior II for the parameters is closer to the nominal value. Therefore, the
performance of Prior II is also competitive with Prior I.
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Table 2. The rBias and rMSE (in parentheses) for Case 1, (α, λ1, β, λ2) = (2, 2, 2, 3) and T = 1.

MCMC (Prior-I) MCMC (Prior-II)

(s, k) n, m R̂s,kMLE
R̂s,kSe

R̂s,kL
R̂s,kGe

R̂s,kL
R̂s,kGe

R̂s,kSe
R̂s,kL

R̂s,kGe
R̂s,kL

R̂s,kGe
a = b = −0.5 a = b = 1 a = b = −0.5 a = b = 1

(1, 4) 30,30 −0.1631 −0.0342 −0.0270 −0.0493 −0.0485 −0.1000 −0.0313 −0.0233 −0.0485 −0.0472 −0.1073
(0.1908) (0.0504) (0.0501) (0.0530) (0.0514) (0.0650) (0.0493) (0.0488) (0.0524) (0.0505) (0.0682)

35,35 −0.1577 −0.0338 −0.0274 −0.0464 −0.0906 −0.0470 −0.0271 −0.0202 −0.0410 −0.0912 −0.0418
(0.1620) (0.0456) (0.0453) (0.0477) (0.0464) (0.0573) (0.0443) (0.0440) (0.0468) (0.0453) (0.0586)

40,40 −0.1581 −0.0330 −0.0272 −0.0451 −0.0445 −0.0845 −0.0248 −0.0185 −0.0381 −0.0374 −0.0823
(0.1498) (0.0413) (0.0409) (0.0431) (0.0421) (0.0514) (0.0401) (0.0397) (0.0422) (0.0410) (0.0520)

45,45 −0.1599 −0.0370 −0.0316 −0.0481 −0.0477 −0.0845 −0.0276 −0.0218 −0.0398 −0.0392 −0.0803
(0.1423) (0.0397) (0.0393) (0.0415) (0.0406) (0.0493) (0.0384) (0.0380) (0.0404) (0.0393) (0.0494)

50,50 −0.1615 −0.0410 −0.0361 −0.0513 −0.0508 −0.0844 −0.0295 −0.0242 −0.0405 −0.0400 −0.0766
(0.1282) (0.0369) (0.0365) (0.0386) (0.0378) (0.0455) (0.0354) (0.0350) (0.0371) (0.0362) (0.0447)

(2, 7) 30,30 −0.1751 −0.0529 −0.0450 −0.0708 −0.0684 −0.1333 −0.0489 −0.0401 −0.0695 −0.0664 −0.1439
(0.2099) (0.0560) (0.0554) (0.0599) (0.0575) (0.0790) (0.0554) (0.0547) (0.0603) (0.0573) (0.0861)

35,35 −0.1712 −0.0519 −0.0450 −0.0676 −0.0657 −0.1208 −0.0444 −0.0367 −0.0620 −0.0597 −0.1240
(0.1803) (0.0496) (0.0491) (0.0528) (0.0510) (0.0676) (0.0488) (0.0482) (0.0526) (0.0504) (0.0717)

40,40 −0.1707 −0.0512 −0.0449 −0.0655 −0.0638 −0.1137 −0.0416 −0.0347 −0.0575 −0.0555 −0.1128
(0.1705) (0.0468) (0.0463) (0.0497) (0.0481) (0.0627) (0.0459) (0.0453) (0.0492) (0.0473) (0.0654)

45,45 −0.1712 −0.0530 −0.0472 −0.0662 −0.0646 −0.1105 −0.0421 −0.0357 −0.0567 −0.0549 −0.1069
(0.1556) (0.0435) (0.0430) (0.0462) (0.0448) (0.0581) (0.0424) (0.0418) (0.0454) (0.0438) (0.0597)

50,50 −0.1709 −0.0525 −0.0472 −0.0645 −0.0632 −0.1043 −0.0397 −0.0339 −0.0527 −0.0512 −0.0969
(0.1419) (0.0409) (0.0404) (0.0433) (0.0421) (0.0536) (0.0392) (0.0387) (0.0417) (0.0404) (0.0534)

Table 3. The rBias and rMSE (in parentheses) for Case 1, (α, λ1, β, λ2) = (1.5, 1, 2, 1) and T = 1.

MCMC (Prior-I) MCMC (Prior-II)

(s, k) n, m R̂s,kMLE
R̂s,kSe

R̂s,kL
R̂s,kGe

R̂s,kL
R̂s,kGe

R̂s,kSe
R̂s,kL

R̂s,kGe
R̂s,kL

R̂s,kGe
a = b = −0.5 a = b = 1 a = b = −0.5 a = b = 1

(1, 4) 30,30 0.0045 −0.0987 −0.0934 −0.1065 −0.1096 −0.1345 −0.1053 −0.0995 −0.1140 −0.1174 −0.1455
(0.0613) (0.0255) (0.0244) (0.0276) (0.0280) (0.0368) (0.0249) (0.0236) (0.0274) (0.0278) (0.0382)

35,35 −0.0024 −0.0838 −0.0793 −0.0902 −0.0931 −0.1124 −0.0904 −0.0856 −0.0973 −0.1004 −0.1216
(0.0552) (0.0209) (0.0201) (0.0224) (0.0227) (0.0285) (0.0202) (0.0192) (0.0218) (0.0222) (0.0289)

40,40 −0.0003 −0.0768 −0.0728 −0.0824 −0.0850 −0.1013 −0.0828 −0.0786 −0.0887 −0.0915 −0.1089
(0.0489) (0.0186) (0.0180) (0.0198) (0.0201) (0.0246) (0.0177) (0.0169) (0.0190) (0.0193) (0.0243)

45,45 −0.0036 −0.0706 −0.0671 −0.0755 −0.0779 −0.0917 −0.0762 −0.0725 −0.0812 −0.0837 −0.0982
(0.0433) (0.0169) (0.0163) (0.0178) (0.0181) (0.0215) (0.0158) (0.0152) (0.0168) (0.0171) (0.0209)

50,50 −0.0085 −0.0616 −0.0585 −0.0659 −0.0681 −0.0799 −0.0674 −0.0642 −0.0718 −0.0740 −0.0862
(0.0409) (0.0142) (0.0138) (0.0149) (0.0152) (0.0177) (0.0133) (0.0128) (0.0141) (0.0143) (0.0171)

(2, 7) 30,30 0.0096 −0.1121 −0.1055 −0.1223 −0.1256 −0.1614 −0.1162 −0.1089 −0.1277 −0.1311 −0.1720
(0.0788) (0.0317) (0.0303) (0.0347) (0.0348) (0.0493) (0.0301) (0.0285) (0.0336) (0.0338) (0.0509)

35,35 0.0071 −0.0946 −0.0889 −0.1031 −0.1061 −0.1340 −0.0999 −0.0938 −0.1092 −0.1124 −0.1433
(0.0684) (0.0260) (0.0250) (0.0281) (0.0284) (0.0380) (0.0247) (0.0235) (0.0271) (0.0274) (0.0386)

40,40 0.0041 −0.0851 −0.0801 −0.0924 −0.0953 −0.1182 −0.0900 −0.0848 −0.0979 −0.1008 −0.1258
(0.0627) (0.0235) (0.0226) (0.0251) (0.0253) (0.0322) (0.0217) (0.0208) (0.0235) (0.0238) (0.0318)

45,45 −0.0010 −0.0784 −0.0740 −0.0849 −0.0876 −0.1071 −0.0829 −0.0782 −0.0896 −0.0924 −0.1130
(0.0547) (0.0212) (0.0205) (0.0225) (0.0227) (0.0281) (0.0194) (0.0187) (0.0209) (0.0211) (0.0270)

50,50 −0.0078 −0.0716 −0.0676 −0.0773 −0.0798 −0.0962 −0.0769 −0.0728 −0.0827 −0.0853 −0.1024
(0.0520) (0.0192) (0.0187) (0.0203) (0.0204) (0.0245) (0.0177) (0.0171) (0.0188) (0.0190) (0.0234)

Table 4. The rBias and rMSE (in parentheses) for Case 2, (α, λ1, β, λ2) = (2, 2, 2, 3) and T = 5.

MCMC (Prior-I) MCMC (Prior-II)

(s, k) n, m R̂s,kMLE
R̂s,kSe

R̂s,kL
R̂s,kGe

R̂s,kL
R̂s,kGe

R̂s,kSe
R̂s,kL

R̂s,kGe
R̂s,kL

R̂s,kGe
a = b = −0.5 a = b = 1 a = b = −0.5 a = b = 1

(1, 4) 30,30 −0.1598 −0.0325 −0.0253 −0.0476 −0.0468 −0.0982 −0.0304 −0.0225 −0.0476 −0.0464 −0.1064
(0.1928) (0.0509) (0.0505) (0.0534) (0.0517) (0.0651) (0.0499) (0.0494) (0.0530) (0.0511) (0.0688)

35,35 −0.1567 0.1592 0.1627 0.1534 0.1523 0.1357 −0.0341 −0.0277 −0.0473 −0.0467 −0.0910
(0.1634) (0.0458) (0.0455) (0.0479) (0.0467) (0.0575) (0.0445) (0.0441) (0.0469) (0.0455) (0.0587)

40,40 −0.1640 −0.0377 −0.0319 −0.0498 −0.0493 −0.0895 −0.0293 −0.0230 −0.0426 −0.0419 −0.0870
(0.1500) (0.0416) (0.0412) (0.0436) (0.0426) (0.0524) (0.0403) (0.0399) (0.0425) (0.0413) (0.0528)

45,45 −0.1652 −0.0393 −0.0340 −0.0505 −0.0500 −0.0869 −0.0295 −0.0237 −0.0417 −0.0411 −0.0821
(0.1394) (0.0385) (0.0381) (0.0403) (0.0394) (0.0482) (0.0372) (0.0368) (0.0392) (0.0382) (0.0482)

50,50 −0.1515 −0.0344 −0.0295 −0.0446 −0.0442 −0.0775 −0.0229 −0.0176 −0.0338 −0.0334 −0.0696
(0.1254) (0.0357) (0.0353) (0.0372) (0.0364) (0.0437) (0.0342) (0.0340) (0.0358) (0.0350) (0.0428)
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Table 4. Cont.

MCMC (Prior-I) MCMC (Prior-II)

(s, k) n, m R̂s,kMLE
R̂s,kSe

R̂s,kL
R̂s,kGe

R̂s,kL
R̂s,kGe

R̂s,kSe
R̂s,kL

R̂s,kGe
R̂s,kL

R̂s,kGe
a = b = −0.5 a = b = 1 a = b = −0.5 a = b = 1

(2, 7) 30,30 −0.1803 −0.0541 −0.0463 −0.0719 −0.0695 −0.1338 −0.0509 −0.0422 −0.0715 −0.0684 −0.1457
(0.2131) (0.0556) (0.0551) (0.0594) (0.0571) (0.0781) (0.0555) (0.0547) (0.0603) (0.0574) (0.0862)

35,35 −0.1713 −0.0512 −0.0443 −0.0667 −0.0649 −0.1196 −0.0431 −0.0355 −0.0606 −0.0583 −0.1219
(0.1849) (0.0512) (0.0507) (0.0543) (0.0525) (0.0691) (0.0503) (0.0497) (0.0540) (0.0518) (0.0729)

40,40 −0.1739 −0.0538 −0.0475 −0.0681 −0.0664 −0.1163 −0.0441 −0.0372 −0.0600 −0.0580 −0.1153
(0.1686) (0.0465) (0.0459) (0.0494) (0.0478) (0.0626) (0.0453) (0.0447) (0.0487) (0.0468) (0.0650)

45,45 −0.1721 −0.0529 −0.0471 −0.0661 −0.0646 −0.1104 −0.0423 −0.0360 −0.0569 −0.0551 −0.1071
(0.1623) (0.0449) (0.0444) (0.0476) (0.0462) (0.0595) (0.0439) (0.0434) (0.0470) (0.0453) (0.0613)

50,50 −0.1728 −0.0518 −0.0465 −0.0637 −0.0625 −0.1032 −0.0390 −0.0333 −0.0520 −0.0505 −0.0958
(0.1387) (0.0394) (0.0388) (0.0417) (0.0405) (0.0516) (0.0380) (0.0375) (0.0405) (0.0392) (0.0519)

Table 5. The rBias and rMSE (in parentheses) for Case 2, (α, λ1, β, λ2) = (1.5, 1, 2, 1) and T = 5.

MCMC (Prior-I) MCMC (Prior-II)

(s, k) n, m R̂s,kMLE
R̂s,kSe

R̂s,kL
R̂s,kGe

R̂s,kL
R̂s,kGe

R̂s,kSe
R̂s,kL

R̂s,kGe
R̂s,kL

R̂s,kGe
a = b = −0.5 a = b = 1 a = b = −0.5 a = b = 1

(1, 4) 30,30 −0.0025 −0.0932 −0.0885 −0.0998 −0.1029 −0.1220 −0.0890 −0.0841 −0.0958 −0.0990 −0.1190
(0.0450) (0.0235) (0.0227) (0.0251) (0.0255) (0.0310) (0.0198) (0.0189) (0.0212) (0.0217) (0.0271)

35,35 0.0071 −0.0787 −0.0748 −0.0840 −0.0867 −0.1015 −0.0763 −0.0723 −0.0817 −0.0845 −0.0995
(0.0377) (0.0196) (0.0190) (0.0207) (0.0210) (0.0246) (0.0166) (0.0160) (0.0176) (0.0179) (0.0214)

40,40 0.0071 −0.0787 −0.0748 −0.0840 −0.0867 −0.1015 −0.0763 −0.0723 −0.0817 −0.0845 −0.0995
(0.0377) (0.0196) (0.0190) (0.0207) (0.0210) (0.0246) (0.0166) (0.0160) (0.0176) (0.0179) (0.0214)

45,45 0.0217 −0.0688 −0.0656 −0.0730 −0.0753 −0.0866 −0.0683 −0.0651 −0.0725 −0.0748 −0.0861
(0.0311) (0.0159) (0.0155) (0.0167) (0.0169) (0.0193) (0.0137) (0.0133) (0.0144) (0.0146) (0.0169)

50,50 0.0257 −0.0598 −0.0569 −0.0635 −0.0655 −0.0751 −0.0600 −0.0572 −0.0636 −0.0657 −0.0751
(0.0271) (0.0138) (0.0135) (0.0144) (0.0146) (0.0163) (0.0119) (0.0116) (0.0125) (0.0127) (0.0143)

(2, 7) 30,30 −0.0288 −0.1109 −0.1050 −0.1196 −0.1229 −0.1502 −0.1022 −0.0959 −0.1113 −0.1148 −0.1439
(0.0607) (0.0310) (0.0298) (0.0332) (0.0335) (0.0424) (0.0251) (0.0240) (0.0272) (0.0276) (0.0364)

35,35 −0.0168 −0.0919 −0.0869 −0.0989 −0.1019 −0.1225 −0.0856 −0.0805 −0.0928 −0.0959 −0.1170
(0.0483) (0.0252) (0.0244) (0.0266) (0.0269) (0.0324) (0.0206) (0.0199) (0.0219) (0.0222) (0.0274)

40,40 −0.0104 −0.0845 −0.0800 0.0908 −0.0936 −0.1116 −0.0799 −0.0754 −0.0862 −0.0891 −0.1072
(0.0429) (0.0227) (0.0221) (0.0240) (0.0242) (0.0287) (0.0187) (0.0181) (0.0198) (0.0201) (0.0243)

45,45 −0.0052 −0.0789 −0.0748 −0.0845 −0.0871 −0.1029 −0.0757 −0.0716 −0.0813 −0.0839 −0.0997
(0.0391) (0.0204) (0.0199) (0.0214) (0.0217) (0.0253) (0.0169) (0.0164) (0.0178) (0.0181) (0.0214)

50,50 0.0023 −0.0686 −0.0650 −0.0735 −0.0759 −0.0891 −0.0667 −0.0632 −0.0715 −0.0739 −0.0869
(0.0336) (0.0180) (0.0176) (0.0188) (0.0189) (0.0216) (0.0151) (0.0147) (0.0158) (0.0160) (0.0184)

Table 6. The 95% confidence intervals of Rs,k for Case 1, (α, λ1, β, λ2) = (2, 2, 2, 3) and T = 1.

Estimator (s, k) Rs,k (n, m) LCB UCB AL Cover

MLE (1, 4) 0.5394 (30, 30) 0.1260 07327 0.6067 0.6068
Prior-I 0.2823 0.7570 0.4747 0.9381
Prior-II 0.2690 0.7706 0.5015 0.9543
MLE (35, 35) 0.1355 0.7153 0.5798 0.6053
Prior-I 0.2965 0.7434 0.4469 0.9340
Prior-II 0.2879 0.7569 0.4690 0.9483
MLE (40, 40) 0.1414 0.6921 0.5507 0.5718
Prior-I 0.3063 0.7340 0.4277 0.9349
Prior-II 0.2997 0.7471 0.4474 0.9507
MLE (45, 45) 0.1465 0.6823 0.5358 0.5743
Prior-I 0.3123 0.7236 0.4113 0.9315
Prior-II 0.3073 0.7366 0.4293 0.9478
MLE (50, 50) 0.1517 0.6656 0.5139 0.5680
Prior-I 0.3184 0.7134 0.3950 0.9329
Prior-II 0.3164 0.7261 0.4097 0.9487
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Table 6. Cont.

Estimator (s, k) Rs,k (n, m) LCB UCB AL Cover

MLE (2, 7) 0.5151 (30, 30) 0.1054 0.7254 0.6200 0.6260
Prior-I 0.2446 0.7273 0.4827 0.9365
Prior-II 0.2300 0.7430 0.5131 0.9538
MLE (35, 35) 0.1173 0.7079 0.5906 0.6155
Prior-I 0.2593 0.7145 0.4552 0.9387
Prior-II 0.2489 0.7295 0.4807 0.9535
MLE (40, 40) 0.1221 0.6824 0.5604 0.5943
Prior-I 0.2690 0.7046 0.4355 0.9362
Prior-II 0.2615 0.7192 0.4577 0.9545
MLE (45, 45) 0.1252 0.6845 0.5593 0.5805
Prior-I 0.2764 0.6953 0.4190 0.9386
Prior-II 0.2704 0.7096 0.4392 0.9539
MLE (50, 50) 0.1369 0.6589 0.5220 0.5743
Prior-I 0.2857 0.6867 0.4010 0.9347
Prior-II 0.2827 0.7005 0.4179 0.9512

Table 7. The 95% confidence intervals of Rs,k for Case 2, (α, λ1, β, λ2) = (1.5, 1, 2, 1), and T = 1.

Estimator (s, k) Rs,k (n, m) LCB UCB AL Cover

MLE (1, 4) 0.8654 (30, 30) 0.3211 1.1171 0.7960 0.8750
Prior-I 0.5098 1.0279 0.5181 0.9247
Prior-II 0.4900 1.0357 0.5457 0.9461
MLE (35, 35) 0.3857 1.1137 0.7280 0.8760
Prior-I 0.5450 1.0226 0.4776 0.9296
Prior-II 0.5298 1.0265 0.4967 0.9490
MLE (40, 40) 0.4154 1.1094 0.6940 0.8803
Prior-I 0.5658 1.0167 0.4509 0.9328
Prior-II 0.5546 1.0180 0.4634 0.9523
MLE (45, 45) 0.4404 1.1075 0.6671 0.8878
Prior-I 0.5851 1.0104 0.4253 0.9331
Prior-II 0.5763 1.0100 0.4338 0.9490
MLE (50, 50) 0.4808 1.0991 0.6184 0.8740
Prior-I 0.6052 1.0074 0.4022 0.9373
Prior-II 0.5980 1.0053 0.4072 0.9538

MLE (2, 7) 0.8267 (30, 30) 0.2386 1.0857 0.8470 0.8493
Prior-I 0.4423 1.0082 0.5659 0.9171
Prior-II 0.4226 1.0204 0.5978 0.9438
MLE (35, 35) 0.2991 1.0932 0.7941 0.8630
Prior-I 0.4785 1.0040 0.5255 0.9275
Prior-II 0.4633 1.0108 0.5475 0.9501
MLE (40, 40) 0.3264 1.0864 0.7600 0.8643
Prior-I 0.5029 0.9978 0.4949 0.9217
Prior-II 0.4918 1.0018 0.5100 0.9472
MLE (45, 45) 0.3473 1.0740 0.7262 0.8633
Prior-I 0.5221 0.9914 0.4693 0.9274
Prior-II 0.5142 0.9929 0.4786 0.9487
MLE (50, 50) 0.3882 1.0664 0.6783 0.8613
Prior-I 0.5415 0.9851 0.4435 0.9272
Prior-II 0.5344 0.9839 0.4495 0.9479
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Table 8. The 95% confidence intervals of Rs,k for Case 1, (α, λ1, β, λ2) = (2, 2, 2, 3), and T = 5.

Estimator (s, k) Rs,k (n, m) LCB UCB AL Cover

MLE (1, 4) 0.5394 (30, 30) 0.1296 0.7321 0.6026 0.5820
Prior-I 0.2836 0.7574 0.4738 0.9358
Prior-II 0.2699 0.7708 0.5009 0.9539
MLE (35, 35) 0.1353 0.7102 0.5748 0.5830
Prior-I 0.2967 0.7431 0.4464 0.9345
Prior-II 0.2886 0.7566 0.4680 0.9498
MLE (40, 40) 0.1516 0.7211 0.5695 0.6010
Prior-I 0.3044 0.7311 0.4267 0.9363
Prior-II 0.2980 0.7443 0.4463 0.9522
MLE (45, 45) 0.1443 0.6726 0.5283 0.5820
Prior-I 0.3117 0.7220 0.4103 0.9367
Prior-II 0.3070 0.7348 0.4278 0.9510
MLE (50, 50) 0.1568 0.6649 0.5081 0.561
Prior-I 0.3223 0.7166 0.3942 0.9373
Prior-II 0.3204 0.7290 0.4086 0.9525

MLE (2, 7) 0.5151 (30, 30) 0.1071 0.7531 0.6281 0.6430
Prior-I 0.2454 0.7256 0.4802 0.9362
Prior-II 0.2300 0.7412 0.5112 0.9540
MLE (35, 35) 0.1416 0.7183 0.5766 0.6050
Prior-I 0.2607 0.7137 0.4530 0.9339
Prior-II 0.2510 0.7288 0.4778 0.9516
MLE (40, 40) 0.1293 0.6917 0.5625 0.5900
Prior-I 0.2685 0.7026 0.4340 0.9340
Prior-II 0.2608 0.7173 0.4565 0.9516
MLE (45, 45) 0.1299 0.6707 0.5407 0.5890
Prior-I 0.2768 0.6949 0.4181 0.9332
Prior-II 0.2710 0.7090 0.4380 0.9487
MLE (50, 50) 0.1401 0.6606 0.5205 0.5620
Prior-I 0.2869 0.6861 0.3992 0.9389
Prior-II 0.2839 0.6998 0.4159 0.9531

Table 9. The 95% confidence intervals of Rs,k for Case 2, (α, λ1, β, λ2) = (1.5, 1, 2, 1), and T = 5.

Estimator (s, k) Rs,k (n, m) LCB UCB AL Cover

MLE (1, 4) 0.8653 (30, 30) 0.3150 1.1020 0.7870 0.8890
Prior-I 0.5332 1.0235 0.4903 0.9189
Prior-II 0.5311 1.0340 0.5029 0.9525
MLE (35, 35) 0.3659 1.1020 0.7361 0.9020
Prior-I 0.5677 1.0170 0.4493 0.9253
Prior-II 0.5670 1.0231 0.4561 0.9502
MLE (40, 40) 0.4014 1.1037 0.7023 0.9130
Prior-I 0.5677 1.0170 0.4493 0.9253
Prior-II 0.5670 1.0231 0.4561 0.9502
MLE (45, 45) 0.4180 1.0961 0.6781 0.9170
Prior-I 0.5989 1.0042 0.4053 0.9266
Prior-II 0.5995 1.0061 0.4066 0.9474
MLE (50, 50) 0.4687 1.0931 0.6244 0.9310
Prior-I 0.6193 1.0009 0.3816 0.9265
Prior-II 0.6201 1.0012 0.3812 0.9479

MLE (2, 7) 0.8267 (30, 30) 0.2148 1.0478 0.8330 0.8470
Prior-I 0.4622 0.9993 0.5371 0.9023
Prior-II 0.4616 1.0164 0.5548 0.9456
MLE (35, 35) 0.2816 1.0589 0.7773 0.865
Prior-I 0.5013 0.9949 0.4935 0.9116
Prior-II 0.5032 1.0051 0.5019 0.9467
MLE (40, 40) 0.2828 1.0416 0.7588 0.878
Prior-I 0.5194 0.9892 0.4698 0.9166
Prior-II 0.5219 0.9961 0.4742 0.9475
MLE (45, 45) 0.3265 1.0484 0.7219 0.8860
Prior-I 0.5355 0.9828 0.4473 0.9188
Prior-II 0.5379 0.9870 0.4491 0.9483
MLE (50, 50) 0.3544 1.0426 0.6882 0.8880
Prior-I 0.5578 0.9783 0.4205 0.9198
Prior-II 0.5604 0.9801 0.4197 0.9458
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5. Real Data Analysis

Two practical data sets will be provided to illustrate the proposed three estimation
methods.

5.1. Strength Data of Carbon Fiber

Badar and Priest [19] provided a fiber strength testing example, where the strength
under tension measured in GPA for single carbon fibers at the gauge lengths of 1, 10, 20, and
50 mm and impregnated 1000 carbon fiber tows. Raqab and Kundu [4] transformed the data
sets using the 20 mm single fibers (with the size of n = 69) and 10 mm single fibers (with
the size of m = 63) as the strength and stress samples, respectively. The two data sets are
reported in Tables 10 and 11. The generalized exponential distribution modeling is applied
for these two data sets. The MLEs of the model parameters for these two data sets are given
as α̂ = 8.8284, λ̂1 = 1.8966, β̂ = 3.1671, λ̂2 = 1.5753, and the Kolmogorov–Smirnov (K-S)
test value and associated P-value are 0.8321 and 0.2122, respectively. The results indicate
that the generalized exponential distribution is good for modeling these two data sets. In
addition, (s, k) = (1, 4) and (2, 7) are considered in this study for MSS reliability evaluation.
Based on the complete data sets, we have R̂1,4 = 0.5515, R̂2,7 = 0.5165, and the 95%
confidence interval of R1,4 and R2,7 are (0.4206, 0.7170) and (0.4151, 0.7352), respectively.

In order to make the data meet the conditions of the type-I hybrid censoring scheme,
the two data sets are respectively cut into type-I hybrid censored samples. Considering
that the number of failures r is half of the sample size, and the T of the strength and stress
data are selected as 0.7 and 0.8 quantiles, respectively. The results of Bayesian estimation
are displaced in Table 12, which shows the interval length using Prior I is shorter than
that using Prior II, and the estimated result of Prior II is closer to the MLE result under
complete data.

Table 10. Breaking strength of a single carbon fiber with a gauge length of 20 mm.

0.312 0.314 0.479 0.552 0.7 0.803 0.861
0.865 0.944 0.958 0.966 0.997 1.006 1.021
1.027 1.055 1.063 1.098 1.14 1.179 1.224
1.24 1.253 1.27 1.272 1.274 1.301 1.301

1.359 1.382 1.382 1.426 1.434 1.435 1.478
1.49 1.511 1.514 1.535 1.554 1.566 1.57

1.586 1.629 1.633 1.642 1.648 1.684 1.697
1.726 1.77 1.773 1.8 1.809 1.818 1.821
1.848 1.88 1.954 2.012 2.067 2.084 2.09
2.096 2.128 2.233 2.433 2.585 2.585

Table 11. Breaking strength of a single carbon fiber with a gauge length of 10 mm.

0.101 0.332 0.403 0.428 0.457 0.55 0.561
0.596 0.597 0.645 0.654 0.674 0.718 0.722
0.725 0.732 0.775 0.814 0.816 0.818 0.824
0.859 0.875 0.938 0.94 1.056 1.117 1.128
1.137 1.137 1.177 1.196 1.23 1.325 1.339
1.345 1.42 1.423 1.435 1.443 1.464 1.472
1.494 1.532 1.546 1.577 1.608 1.635 1.693
1.701 1.737 1.754 1.762 1.828 2.052 2.071
2.086 2.171 2.224 2.227 2.425 2.595 3.22
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Table 12. The result of Bayesian estimation for strength data.

Estimator (s, k) R̂s,kSe
R̂s,kL

R̂s,kGe
R̂s,kL

R̂s,kGe
Confidence

a = b = −0.5 a = b = 1 Interval

Prior-I (1, 4) 0.6118 0.6130 0.6097 0.6093 0.6033 (0.4705, 0.7446)
Prior-II 0.5734 0.5746 0.5713 0.5710 0.5649 (0.4356, 0.7042)

Prior-I (2, 7) 0.5818 0.5830 0.5797 0.5793 0.5731 (0.4457, 0.714)
Prior-II 0.5389 0.5400 0.5368 0.5367 0.5303 (0.4098, 0.6721)

5.2. Waiting Time before Customer Service of the Bank

The data sets that were studied by Al-Mutairi et al. [5], Ali [6], Singh et al. [7] and
Sadek et al. [8] are used. The data sets are composed of the customers’ waiting times (in
minutes) before services in two banks, A and B, and are shown in Table 13 and Table 14, with
sample sizes, n = 100 and m = 60, respectively. The MLEs of the generalized exponential
distribution parameters, based on these two data sets, are respectively represented as
α̂ = 2.1834, λ̂1 = 0.1592, β̂ = 1.4071, λ̂2 = 0.2368. The K-S test and the corresponding
P-values are, respectively, 0.9996 and 0.0733. These results show the two data sets are fitted
with the generalized exponential distributions. In addition, (s, k) = (1, 4) and (2, 7) are
considered, then R̂1,4 = 0.4814, R̂2,7 = 0.4557, and the 95% confidence intervals of R1,4 and
R2,7 are (0.3569, 0.6157) and (0.2935, 0.6173), respectively.

In order to make the data sets meet the conditions of the type-I hybrid censoring
scheme, the two data sets are respectively converted to type-I hybrid censored samples
with r as half of the sample size, and T as 0.7 and 0.8 quantiles. The results of the Bayesian
estimations are given in Table 15 that again show that the interval length with Prior I is
shorter than that with Prior II.

Table 13. Bank A’s customer waiting time.

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7
2.9 3.1 3.2 3.3 3.5 3.6 4 4.1 4.2 4.2
4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9
5 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3

6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8
8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6
9.7 9.8 10.7 10.9 11 11 11.1 11.2 11.2 11.5

11.9 12.4 12.5 12.9 13 13.1 13.3 13.6 13.7 13.9
14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19
19.9 20.6 21.3 21.4 21.9 23 27 31.6 33.1 38.5

Table 14. Bank B’s customer waiting time.

0.1 0.2 0.3 0.7 0.9 1.1 1.2 1.8 1.9 2
2.2 2.3 2.3 2.3 2.5 2.6 2.7 2.7 2.9 3.1
3.1 3.2 3.4 3.4 3.5 3.9 4 4.2 4.5 4.7
5.3 5.6 5.6 6.2 6.3 6.6 6.8 7.3 7.5 7.7
7.7 8 8 8.5 8.5 8.7 9.5 10.7 10.9 11

12.1 12.3 12.8 12.9 13.2 13.7 14.5 16 16.5 28

Table 15. The result of Bayesian estimation for waiting time data.

Estimator (s, k) R̂s,kSe
R̂s,kL

R̂s,kGe
R̂s,kL

R̂s,kGe
Confidence

a = b = −0.5 a = b = 1 Interval

Prior-I (1, 4) 0.4740 0.4752 0.4714 0.4715 0.4634 (0.3416, 0.6110)
Prior-II 0.4873 0.4886 0.4847 0.4848 0.4764 (0.3565, 0.6351)

Prior-I (2, 7) 0.4478 0.4489 0.4452 0.4456 0.4374 (0.3201, 0.5795)
Prior-II 0.4570 0.4583 0.4542 0.4545 0.4454 (0.3218, 0.5971)
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6. Concluding Remarks

The MSS reliability estimation problem based on type-I hybrid censored samples
from generalized exponential distributions was investigated by the maximum likelihood
estimation method and Bayesian approaches with informative or non-informative prior
distribution. In the Bayesian estimation procedures, because the marginal posterior distri-
butions do not have closed forms, it is impossible to use the Gibbs sampling algorithm to
draw sample of posteriors to evaluate the Bayes estimators of the model parameters and
the reliability Rs,k in Equation (5). The MCMC approach with the Metropolis–Hastings
algorithm is used to implement the sampling for Bayesian estimation. Meanwhile linear
exponential, general entropy, and squared error loss functions are used to obtain Bayes
estimators of the MSS reliability.

To overcome the complexity of asymptotic normality based on the Fisher information
matrix with the maximum likelihood estimation method, the HPDI based on the Bayesian
estimation method is used to obtain the confidence interval of the MSS reliability Rs,k.
According to the simulation results, the Bayes estimator with information prior performs
better than the Bayes estimator with non-informative prior and the MLE in terms of the
performance metrics of rBias and rMSE. However, the performance of the Bayes estimators
based on the informative and non-informative prior distributions are competitive.

We also find that the performance of the maximum likelihood estimation is the worst
among the three compared methods. The findings mean that if the prior distribution can be
well selected, the Bayes estimator with informative prior distributions is more reliable. Oth-
erwise, the Bayes estimator with using non-informative prior distributions is recommended.
Two practical examples are used to illustrate the proposed estimation methods.

The MSS reliability inferences for different distributions and under other censoring
schemes by using pivotal estimation methods and the robustness of reliability estimators
are interesting and merit future investigations.
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