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Abstract

:

The stress–strength analysis is investigated for a multicomponent system, where all strength variables of components follow a generalized exponential distribution and are subject to the generalized exponential distributed stress. The estimation methods of the maximum likelihood and Bayesian are utilized to infer the system reliability. For the Bayesian estimation method, informative and non-informative priors combined with three loss functions are considered. Because the computational difficulty on working posteriors, the Markov chain Monte Carlo method is adopted to obtain the approximation of the reliability estimator posterior. In addition, the bootstrap method and highest probability density interval are used to obtain the reliability confidence intervals. The simulation study shows that the Bayes estimator with informative prior is superior to other competitors. Finally, two real examples are given to illustrate the proposed estimation methods.
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1. Introduction


Let strength and stress variables in a single-component system be presented by X and Y, respectively. The single-component system is survived if the strength is over its stress borne. Hence, the performance of the single-component system can be evaluated by the reliability,   R = P ( X > Y )  , which was connected to Mann–Whitney statistics by Birnbaum [1]. The aforementioned model was called the stress–strength model by Church and Harris [2] and has widely been used in industrial engineering, economics, psychology and medical research since then. Currently, many applications and inferences of the stress–strength model have appeared in the literature. For example, Kundu and Gupta [3] deduced the maximum likelihood, consistent minimum variance unbiased, and Bayes estimators of R based on the generalized exponential distributed stress and strength variables with different shape parameters. Given identical scale parameter for two Burr-type X distributions, Raqab and Kundu [4] investigated the stress–strength model and compared the maximum likelihood, uniformly minimum variance unbiased, and approximate Bayes estimators using simulation methods. Al-Mutairi et al. [5] proposed the uniformly minimum variance unbiased and maximum likelihood estimators of R under Lindley distributions with different shape parameters. Ali [6] derived the mathematical properties of the Lindley distribution and Bayesian method for the stress and strength analysis with different loss functions. Singh et al. [7] discussed the estimation problem of R via using the classical and Bayesian paradigms under generalized Lindley distribution. The Markov chain Monte Carlo (MCMC) technique was used to perform Bayesian calculation. Sadek et al. [8] studied the R estimation problem utilizing stress and strength samples taken from the quasi Lindley distributions, respectively, and provided the maximum likelihood and Bayes estimators, where the MCMC technique via the Metropolis–Hastings algorithm was used to implement Bayesian estimation.



In many cases, the system can be composed of multicomponents. Bhattacharyya and Johnson [9] mentioned that the performance of a multicomponent system depends on the specific minimum number of components that must operate simultaneously. Thus, they proposed a multicomponent stress–strength (MSS) model with k independent components of identically distributed random strength to model the MSS system. Components in a MSS model are subject to independent stress variables. A MSS system survives if at least   s ( ≤ k )   components work normally. They studied the uniformly minimum variance unbiased estimator and other relevant estimators under different exponential distributions. Pandey and Uddin [10] derived the maximum likelihood and Bayes estimators for the MSS parameters. Rao and Kantam [11] studied the performance of the reliability estimation in a MSS model by using different parameter estimation methods for the log-logistic distribution. Rao [12] used the maximum likelihood estimation method to obtain the asymptotic distribution and confidence interval of reliability in a MSS model for the generalized exponential distribution. Sharma and Sanku [13] studied the reliability estimation of the MSS model for the inverted exponentiated Rayleigh distribution.



All the aforementioned references for the MSS reliability inference methods were developed based on complete random lifetime observations. Due to technological advances, the component quality has been improved, and the component lifetime has been prolonged. Collecting complete lifetimes from all test components will no longer be easy. Producers suffer from cost restrictions or other reasons to utilize a complete lifetime sample for the reliability inference. The effects of incomplete data have been widely researched in recent years, and solutions have been proposed to deal with reliability problems. Gunasekera [14] established the maximum likelihood and Bayes estimators of the MSS reliability via using progressively type-II right-censored data from exponentiated inverted exponential distributions. Kohansal and Shoaee [15] considered the point and interval estimations of the MSS reliability based on the adaptive hybrid progressively censored data from Weibull distributions. Azhad et al. [16] proposed statistical methods to infer the MSS reliability by using upper recorded strength and stress samples that follow independent Pareto distributions with different shape parameters and common scale parameter.



Recently, a type-I hybrid censoring scheme was proposed to be used commonly; see, for example, Kundu and Prahan [17]. Let the component strength and corresponding stress observations be respectively collected from the life test with n and m items. The test is terminated as long as the predetermined number, r, of failures is obtained or the test time, T, is reached. Based on our best knowledge, the stress–strength inference of a muticomponent system based on type-I hybrid censored samples from generalized exponential distributions has not been studied in the literature. We are motivated to investigate the performance of the maximum likelihood and Bayes estimators for the MSS reliability when lifetime samples are collected using a type-I hybrid censoring scheme. The informative and non-informative priors with three loss functions are utilized to develop the Bayesian methods in this study.



The MSS reliability based on generalized exponential distributions is introduced in Section 2. Section 3 presents the maximum likelihood and two Bayesian estimation methods. Section 4 conducts a Monte Carlo simulation study to compare the performance of all proposed estimators. Next, two examples are presented in Section 5 for illustration. Conclusively, some remarks are addressed in Section 6.




2. Multicomponent Stress–Strength Model


Let   X ∼ G E ( α , λ )  , where   G E ( α , λ )   denotes the generalized exponential distribution. The probability density function (pdf) and cumulative distribution function (cdf) of   G E ( α , λ )   can be respectively expressed by


   f X   ( x )  ≡ f  ( x ; α , λ )  =  α λ   e  − x λ     1 −  e  − x λ     α − 1   ,  x > 0 ,  



(1)




and


   F X   ( x )  ≡ F  ( x ; α , λ )  =   1 −  e  − x λ    α  ,  x > 0 ,  



(2)




where   α ( > 0 )   and   λ ( > 0 )   are the shape and rate parameters. The 100pth percentile and survival function of GE(  α , λ  ) can be presented by


   q p  ≡  q p   ( α , λ )  = −  1 λ  log   1 −  p  1 α    ,  0 < p < 1  ,  



(3)




and


  S  ( x ; α , λ )  = 1 − F  ( x ; α , λ )  = 1 −   1 −  e  − x λ    α  ,  



(4)




respectively. Let k independent strength components in a MSS system follow   G E ( α ,  λ 1  )   and denoted by    X 1  ,   X 2  , … ,   X k  ∼ G E  ( α ,  λ 1  )    and the common random stress,   Y ∼ G E ( β ,  λ 2  )  . According to Rao [12], the MSS reliability can be addressed by


     R  s , k     ≡    P  at  least  s  of  the   X 1  ,  X 2  , … ,  X k   exceed  Y        =     ∑  i = s  k      k     i      ∫  − ∞  ∞     1 −  F X   ( y )   i     F X   ( y )    k − i   d  F Y   ( y )         =     ∑  i = s  k      k     i      ∫  0  ∞     1 −   1 −  e  − y  λ 1     α   i      1 −  e  − y  λ 1     α    k − i   ×            β  λ 2   e  − y  λ 2     1 −  e  − y  λ 2       β − 1   dy ,     



(5)




where   0 < s ≤ k  .




3. Type-I Hybrid Censoring and MSS Parameter Estimation Methods


Let n denote the number of items used for life testing,   n − r   denote the censored number in a type-II censoring scheme, and T denote the termination time of a type-I censoring scheme. A type-I hybrid censoring scheme is a hybrid scheme of the type-I censoring and type-II censoring schemes. Let the resulting failure times for strength variable be denoted by    x  1 : n   ≤  x  2 : n   ≤ … ≤  x   d 1  : n    , which are the realizations of    X  1 : n   ≤  X  2 : n   ≤ … ≤  X   d 1  : n     with   d 1   failures observed at T. Thus,   d 1   can also be expressed as


   d 1  =      r ,      x  r : n   ≤ T ,        m 1  ,      x  r : n   > T ,  x   m 1  : n   ≤ T  and   x   m 1  + 1 : n   > T .        



(6)







Moreover, let   c 1   denote the recorded lifetimes for all survived components, then   c 1   can also be expressed as


   c 1  =       x  r : n   ,     x  r : n   ≤ T ,       T ,       x  r : n   > T .        



(7)







Similarly, let the resulting failure times for stress variables be denoted by    y  1 : m   ≤  y  2 : m   ≤ … ≤  y   d 2  : m    , which are the realizations of    Y  1 : m   ≤  Y  2 : m   ≤ … ≤  Y   d 2  : m     with   d 2   failures observed at T. Thus,   d 2   can also be expressed as


   d 2  =      r ,       y  r : m   ≤ T ,                                  m 2  ,      y  r : m   > T ,  y   m 2  : m   ≤ T  and   y   m 2  + 1 : m   > T .        



(8)







Additionally, let   c 2   denote the recorded stress of the stress variables at T, and then   c 2   can also be expressed as


   c 2  =       y  r : m   ,     y  r : m   ≤ T ,       T ,       y  r : m   > T .        



(9)







Therefore, we can arrange the observations of the type-I hybrid censored sample into   D =   X  1 : n   , … ,  X   d 1  : n   ,  c 1  ,  Y 1  , … ,  Y   d 2  : m   ,  c 2    .



3.1. Maximum Likelihood Estimation


According to Kundu and Pradhan [17], the likelihood function based on the type-I hybrid samples can be represented by


     L  Θ | D     ∝      ∏  i = 1   d 1    f   x  i : n   ;  Θ 1      S   c 1   |    Θ 1     n −  d 1       ∏  j = 1   d 2    f   y  j : m   ;  Θ 2     S   c 2   |    Θ 2     m −  d 2            =      ( α  λ 1  )   d 1     ( β  λ 2  )   d 2    e  −  λ 1   d 1    x ¯   d 1      e  −  λ 2   d 2    y ¯   d 2           ×      1 −   1 −  e  −  λ 1   c 1     α    n −  d 1      1 −   1 −  e  −  λ 2   c 2     β    m −  d 2          ×     ∏  i = 1   d 1     1 −  e  −  x  i : n    λ 1      α − 1    ∏  j = 1   d 2     1 −  e  −  y  j : m    λ 2      β − 1   ,     



(10)




where   Θ = (  Θ 1  ,   Θ 2  )  ,    Θ 1  =  α ,  λ 1    ,    Θ 2  =  β ,  λ 2    ,


       x ¯   d 1   =    ∑  i = 1   d 1    x  i : n     d 1       








and


       y ¯   d 2   =    ∑  j = 1   d 2    y  j : m     d 2   .     











Taking logarithm transformation to Equation (10) and letting    ℓ 1  = log  ( L  ( Θ | D )  )   , we can obtain the following results:


     ℓ 1    ∝     d 1   ( log  ( α )  + log  (  λ 1  )  )  +  d 2   ( log  ( β )  + log  (  λ 2  )  )  −  d 1   λ 1     x ¯  d  −  d 2   λ 2    y ¯   d 2         +     ( α − 1 )   ∑  i = 1   d 1    log  1 −  e  −  λ 1   x  i : n       +  ( β − 1 )   ∑  j = 1   d 2    log  1 −  e  −  λ 2   y  j : m             +     n −  d 1   log  1 −   1 −  e  −  λ 1   c 1     α   +  m −  d 2   log  1 −   1 −  e  −  λ 2   c 2     β   .     



(11)







To obtain the maximum likelihood estimate (MLE) of  Θ , let the partial derivatives of the   ℓ 1   with respect to parameters respectively equate to zero. Then, the likelihood equations are given as


      ∂  ℓ 1    ∂ α     =      d 1  α  +  ∑  i = 1   d 1    log  1 −  e  −  λ 1   x  i : n               −  n −  d 1     log  1 −  e  −  λ 1   c 1       1 −  e  −  λ 1   c 1     α    1 −   1 −  e  −  λ 1   c 1     α    = 0 ,     



(12)






      ∂  ℓ 1    ∂ β     =      d 2  β  +  ∑  j = 1   d 2    log  1 −  e  −  λ 2   y  j : m               −  m −  d 2     log  1 −  e  −  λ 2   c 2       1 −  e  −  λ 2   c 2     β    1 −   1 −  e  −  λ 2   c 2     β    = 0 ,     



(13)






      ∂  ℓ 1    ∂  λ 1      =      d 1   λ 1   −  d 1    x ¯   d 1   +  ( α − 1 )   ∑  i = 1   d 1      x i   e  −  λ 1   x  i : n       1 −  e  −  λ 1   x  i : n               −  n −  d 1     α    c 1   e  −  λ 1   c 1     1 −  e  −  λ 1   c 1       α − 1     1 −   1 −  e  −  λ 1   c 1     α    = 0     



(14)




and


      ∂  ℓ 1    ∂  λ 2      =      d 2   λ 2   −  d 2    y ¯   d 2   +  ( β − 1 )   ∑  i = 1   d 2      y j   e  −  λ 2   y  j : m       1 −  e  −  λ 2   y  j : m               −  m −  d 2     β    c 2   e  −  λ 1   c 2     1 −  e  −  λ 2   c 2       β − 1     1 −   1 −  e  −  λ 2   c 2     β    = 0 .     



(15)







Therefore, the MLE of  Θ , denoted by    Θ ^  =  (  α ^  ,   λ ^  1  ,  β ^  ,   λ ^  2  )   , can be obtained using Equations (12)–(15) and a numerical computation method. Replacing  Θ  with   Θ ^   in Equation (5), the MLE of the MSS reliability can be expressed by


      R ^   s , k     =     ∑  i = s  k      k     i      ∫  0  ∞     1 −   1 −  e  − y   λ ^  1      α ^    i      1 −  e  − y   λ ^  1      α ^     k − i   ×             β ^    λ ^  2   e  − y   λ ^  2     1 −  e  − y   λ ^  2        β ^  − 1   d y .     



(16)







Because the expectations of the second derivatives of   ℓ 1   do not have an explicit expression and have different function forms when the values of parameters vary under the type-I hybrid censoring, the Fisher information matrix is not easily derived. Therefore, the asymptotic properties of the MLEs cannot be obtained via utilizing the Fisher information matrix. Bootstrap methods can be used in this study to obtain an approximate confidence interval of   R  s , k    instead of using the delta method with Fisher information matrix. In bootstrapping, a resampling procedure is used from a sample to generate an empirical distribution of the target statistic by repeatedly taking samples with replacement from the working sample. Based on the following parametric bootstrap procedure, an approximate confidence interval of   R  s , k    can be established as follows:




	Step 1:

	
Obtain the MLE,   Θ ^  , of  Θ  by solving Equations (12)–(15) simultaneously based on the type-I hybrid censored sample   D = {  x  1 : n   , … ,  x   d 1  : n   ,  c 1  ,  y 1  , … ,  y   d 2  : m   ,  c 2  }  . Then, using Equation (16) to obtain the MLE,    R ^   s , k   , of   R  s , k   .




	Step 2:

	
Generate a new type-I hybrid censored sample from two generalized exponential distributions but  Θ  is replaced by    Θ ^  =   α ^  ,    λ ^  1  ,   β ^  ,    λ ^  2    . Denote the new generated type-I hybrid censored sample by    D ∗  =   x  1 : n  ∗  , . . . ,  x   d 1  : n  ∗  ,  c 1 ∗  ,  y  1 : m  ∗  ,     . . . ,  y   d 2  : m  ∗  ,  c 2 ∗   




	Step 3:

	
Calculate the MLEs of  Θ  and   R  s , k    based on   D ∗  . Denoted them by     Θ ^   ∗   and    R ^   s , k  ∗  , respectively.




	Step 4:

	
Repeat Step 2 and Step 3 B times, and a bootstrap sample of size B,


       R ^   s , k  ∗  =  {   R ^   s , k , 1  ∗  ,   R ^   s , k , 2  ∗  , ⋯ ,   R ^   s , k , B  ∗  }  ,     








is collected. Let   G ∗   be the empirical distribution generated by    R ^   s , k  ∗  .




	Step 5:

	
The   100 × ( 1 − γ ) %   confidence interval of   R  s , k    can be presented as the following:


       R ^    s , k ,   γ 2  B   ∗  ,    R ^   s , k ,   1 −  γ 2   B   ∗    ,  



(17)




where   0 < γ < 1  ,      R ^    s , k ,   γ 2  B   ∗   and    R ^   s , k ,   1 −  γ 2   B   ∗   are the   ( γ / 2 )  th and   ( 1 − γ / 2 )  th quantiles of     G ^   ∗  , respectively.










3.2. Bayesian Methods


In this section, we present how to obtain the Bayes estimators of  Θ  and   R  s , k   . In the Bayesian estimation procedures, the prior distribution and loss function need to be selected first. The non-informative prior distribution and informative prior distribution are considered here to obtain Bayes estimators of the model parameters.



3.2.1. Bayesian Method with Non-Informative Prior Distribution


The constant prior information is considered to be the non-informative prior distribution, that is,


  g ( Θ ) ∝  const .  



(18)







Therefore, the form of the posterior distribution can be obtained as follows:


  π  Θ | D  = g  ( Θ )  L  Θ | D  ∝ const × L  Θ | D  .  



(19)







Based on Equation (19), we can find that the obtained Bayes estimators are close to the corresponding MLEs due to the posterior distribution being proportional to the likelihood function. The conditional posterior distributions of   α , β ,  λ 1    and   λ 2   are respectively presented as follows:


      π    λ 1      λ 1   |   Θ  − 1   , D      = g   λ 1   |   Θ  − 1   , D  L   λ 1   |   Θ  − 1   , D           ∝  λ  1   d 1    e  −  λ 1   d 1    x ¯   d 1       1 −   1 −  e  −  λ 1   c 1     α    n −  d 1     ∏  i = 1   d 1     1 −  e  −  x  i : n    λ 1      α − 1   ,     



(20)






      π   α     α |   Θ  − 2   , D      = g   α |   Θ  − 2   , D  L   α |   Θ  − 2   , D           ∝  α  d 1     1 −   1 −  e  −  λ 1   c 1     α    n −  d 1     ∏  i = 1   d 1     1 −  e  −  x  i : n    λ 1      α − 1   ,     



(21)






      π    λ 2      λ 2   |   Θ  − 3   , D      = g   λ 2   |   Θ  − 3   , D  L   λ 2   |   Θ  − 3   , D           ∝  λ  2   d 2    e  −  λ 2   d 2    y ¯   d 2       1 −   1 −  e  −  λ 2   c 2     β    m −  d 2     ∏  j = 1   d 2     1 −  e  −  y  j : m    λ 2      β − 1       



(22)




and


      π   β     β |   Θ  − 4   , D      = g   β |   Θ  − 4   , D  L   β |   Θ  − 4   , D           ∝  β  d 2   ×   1 −   1 −  e  −  λ 2   c 2     β    m −  d 2     ∏  j = 1   d 2     1 −  e  −  y  j : m    λ 2      β − 1   ,     



(23)




where    Θ  − 1   =  ( α , β ,  λ 2  )   ,    Θ  − 2   =  ( β ,  λ 1  ,  λ 2  )   ,    Θ  − 3   =  ( α , β ,  λ 1  )    and    Θ  − 4   =  ( α ,  λ 1  ,  λ 2  )   .



Because the conditional posterior distributions in Equations (20)–(23) do not have complete closed forms, the Bayes estimators cannot be obtained by utilizing the Gibbs sampling. Hence, the MCMC approach via using the Metropolis–Hastings algorithm described below is implemented.



	Step 0:

	
Propose    q i  , i = 1 , 2 , 3 , 4   as the transition probability distributions.




	Step 1:

	
Let the initial values, (   λ  1   ( 0 )   ,  α  ( 0 )   ,  λ  2   ( 0 )   ,    β   ( 0 )    ), be randomly selected from their respective domains, and let   U ( 0 , 1 )   be the uniform distribution over the   ( 0 , 1 )   interval.




	Step 2:

	
Set   t = 1  .




	Step 3:

	
Update   λ  1   ( t )   ,   α  ( t )   ,   λ  2   ( t )    and   β  ( t )    according to the following sub-steps:



	(a)

	
Generate    λ  1   ( ∗ )   ∼   q 1    λ  1   ( t )    |   λ  1   ( t − 1 )      and   u ∼ U ( 0 , 1 )  . Then,


   λ  1   ( t )   =          λ  1   ( ∗ )   ,      u ≤ min  1  ,    π   λ  1   ( ∗ )    |   α  ( t − 1 )   ,  λ  2   ( t − 1 )   ,    β   ( t − 1 )   ; D  q   λ  1   ( t − 1 )    |   λ  1   ( ∗ )      π   λ  1   ( t − 1 )    |   α  ( t − 1 )   ,  λ  2   ( t − 1 )   ,    β   ( t − 1 )   ; D  q   λ  1   ( ∗ )    |   λ  1   ( t − 1 )       ,              λ  1   ( t − 1 )   ,     otherwise .           












	(b)

	
Generate    α  ( ∗ )   ∼   q 2   (  α  ( t )   |  α  ( t − 1 )   )    and   u ∼ U ( 0 , 1 )  . Then,


   α  ( t )   =          α  ( ∗ )   ,      u ≤ min  1  ,    π   α  ( ∗ )    |   λ  1   ( t )   ,  λ  2   ( t − 1 )   ,    β   ( t − 1 )   ; D  q   α  ( t − 1 )    |   α  ( ∗ )      π   α  ( t − 1 )    |   λ  1   ( t )   ,  λ  2   ( t − 1 )   ,    β   ( t − 1 )   ; D  q   α  ( ∗ )    |   α  ( t − 1 )       ,              α  ( t − 1 )   ,     otherwise .           












	(c)

	
Generate    λ  2   ( ∗ )   ∼   q 3    λ  2   ( t )    |   λ  2   ( t − 1 )      and   u ∼ U ( 0 , 1 )  . Then,


   λ  2   ( t )   =          λ  2   ( ∗ )   ,      u ≤ min  1  ,    π   λ  2   ( ∗ )    |   α  ( t )   ,  λ  1   ( t )   ,    β   ( t − 1 )   ; D  q   λ  2   ( t − 1 )    |   λ  2   ( ∗ )      π   λ  2   ( t − 1 )    |   α  ( t )   ,  λ  1   ( t )   ,    β   ( t − 1 )   ; D  q   λ  2   ( ∗ )    |   λ  2   ( t − 1 )       ,              λ  2   ( t − 1 )   ,     otherwise .           












	(d)

	
Generate    β  ( ∗ )    ∼   q 4   (  β  ( t )   |  β  ( t − 1 )   )    and   u ∼ U ( 0 , 1 )  . Then,


   β  ( t )   =          β  ( ∗ )   ,      u ≤ min  1  ,    π   β  ( ∗ )    |   α  ( t )   ,  λ  1   ( t )   ,  λ  2   ( t )    ; D  q   β  ( t − 1 )    |   β  ( ∗ )      π   β  ( t − 1 )    |   α  ( t )   ,  λ  1   ( t )   ,  λ  2   ( t )   ; D  q   β  ( ∗ )    |   β  ( t − 1 )       ,              β  ( t − 1 )   ,     otherwise .           
















	Step 4:

	
Calculate   R  s , k   ( t )    according to (   α  ( t )   ,  λ  1   ( t )   ,    β   ( t )   ,  λ  2   ( t )    ).




	Step 5:

	
If   t = N  , go to Step 6, else   t = t + 1   and go to Step 3.




	Step 6:

	
Remove the first   N 1   Markov chains for burn-in.




	Step 7:

	
Replacing  Θ  with (   α  ( i )   ,  λ  1   ( i )   ,    β   ( i )   ,  λ  2   ( i )    ) in Equation (5), we can obtain   R  s , k   ( i )   ,   i =  N 1  + 1 ,  N 1  + 2 , … , N  .







Three Bayes estimators via using the general entropy, linear exponential, and squared error loss functions, labeled by GEF, LINEX, SEF, are applied, and the corresponding results are shown in Table 1.



To obtain the credible interval of   R  s , k    for the Bayesian method, the highest probability density interval (HPDI), proposed by Chen and Shao [18], is recommended, and three steps are provided as follows.



	Step 1:

	
Sort   R  s , k   ( i )   ,   i =  N 1  + 1 , … , N   in ascending order,   R  s , k , ( i )   ,   i =  N 1  + 1 , … , N  , where    R  s , k , ( i )   ≤  R  s , k , ( i + 1 )   , i =  N 1  + 1 , … , N  .




	Step 2:

	
All candidate credible intervals of   R  s , k    with the   1 − γ   confidence can be obtained by


       R  s , k , ( i )   ,    R  s , k ,  i + [  ( 1 − γ )   B 1  ]     ,  i =  N 1  + 1 , … , N −  [  ( 1 − γ )   ( N −  N 1  )  ]  ,     








where   [ y ]   is the maximum integer less than or equal to y.




	Step 3:

	
The candidate credible interval with the shortest length in Step 2 is the HPDI.








3.2.2. Bayesian Method with Informative Prior Distribution


According to the suggestions of Kundu and Pradha [17], we assume that all random parameters,   α , β ,  λ 1    and   λ 2  , are independent and follow the gamma prior distributions below:


   g   1    ( α )  =    b  1   a 1    α   a 1  − 1     Γ   a 1     exp  ( −  b 1  α )  ,  α > 0 ,  



(24)






   g   2    ( β )  =    b  2   a 2    β   a 2  − 1     Γ   a 2     exp  ( −  b 2  β )  ,  β > 0 ,  



(25)






   g   3     λ 1   =    b  3   a 3    λ  1    a 3  − 1     Γ   a 3     exp  ( −  b 3   λ 1  )  ,   λ 1  > 0 ,  



(26)




and


   g   4     λ 2   =    b  4   a 4    λ  2    a 4  − 1     Γ   a 4     exp  ( −  b 4   λ 2  )  ,   λ 2  > 0 ,  



(27)




where    a i  > 0 ,  b i  > 0 , i = 1 , 2 , 3 , 4   are known hyper-parameters. Hence, the joint prior distribution of   α , β ,  λ 1   and   λ 2    can be addressed by


     g ( α , β ,  λ 1  ,  λ 2  )    =      b  1   a 1    b  2   a 2    b  3   a 3    b  4   a 4     Γ   a 1   Γ   a 2   Γ   a 3   Γ   a 4            ×  α   a 1  − 1    β   a 2  − 1      λ 1     a 3  − 1      λ 2     a 4  − 1    e  −   b 1  α +  b 2  β +  b 3   λ 1  +  b 4   λ 2     ,  α , β ,  λ 1  ,  λ 2  > 0     



(28)




and the joint posterior is given as


     π ( α , β ,  λ 1  ,  λ 2  | x , y )    =     g  ( α , β ,  λ 1  ,  λ 2  )  L  ( α , β ,  λ 1  ,  λ 2  )     ∫  0  ∞    ∫  0  ∞    ∫  0  ∞    ∫  0  ∞   g  ( α , β ,  λ 1  ,  λ 2  )  L  ( α , β ,  λ 1  ,  λ 2  )  d α d β d  λ 1  d  λ 2             ∝     α   d 1  +  a 1  − 1    β   d 2  +  a 2  − 1    λ  1    d 1  +  a 3  − 1    λ  2    d 2  +  a 4  − 1    e  −  λ 1    b 3  +    d 1  λ  1    x ¯   d 1       e  −  λ 2    b 4  +    d 2   y ¯    d 2              ×  e  − α   b 1  −  ∑  i = 1   d 1    ln  1 −  e  −  λ 1   x  i : n           e  − β   b 2  −  ∑  j = 1   d 2    ln  1 −  e  −  λ 2   y  j : m                  ×  ∏  i = 1   d 1     1 −  e  −  λ 1   x  i : n       α − 1    ∏  j = 1   d 2     1 −  e  −  λ 2   y  j : m       β − 1           ×   1 −   1 −  e  −  λ 1   c 1     α    n −  d 1      1 −   1 −  e  −  λ 2   c 2     β    m −  d 2    ,            α , β ,  λ 1  ,  λ 2  > 0 .     



(29)







The conditional posterior of   α , β ,  λ 1   , and   λ 2   is respectively derived as follows:


   π   α    ( α |  λ 1  ,  x )   ∼  Gamma   d 1  +  a 1   ,   b 1  −  ∑  i = 1   d 1    ln  1 −  e  −  λ 1   x  i : n        ,  α ,  λ 1  > 0 ,  



(30)






   π   β    ( β |   λ 2  ,  y )   ∼  Gamma   d 2  +  a 2   ,  b 2  −  ∑  j = 1   d 2    ln  1 −  e  −  λ 2   y  j : m        ,  β ,  λ 2  > 0  



(31)






   π    λ 1     (  λ 1  |  x )   ∼  Gamma   d 1  +  a 3   ,  b 3  +  d 1    x ¯   d 1     ,   λ 1  > 0  



(32)




and


   π    λ 2     (  λ 2  |  y )   ∼  Gamma   d 2  +  a 4   ,  b 4  +  d 2    y ¯   d 2     ,   λ 2  > 0 .  



(33)







Therefore, the Bayes estimator and HPDI of   R  s , k    can be obtained through using the MCMC approach in Section 3.2.1, except replacing    π    λ 1      λ 1   |   Θ  − 1   , D   ,    π   α     α |   Θ  − 2   , D   ,    π    λ 2      λ 2   |   Θ  − 3   , D    and    π   β     β |   Θ  − 4   , D    by    π    λ 1     (  λ 1  |  x )   ,    π   α    ( α |  λ 1  ,  x )   ,    π    λ 2     (  λ 2  |  y )    and    π β   ( β |   λ 2  ,  y )   .






4. Monte Carlo Simulations


The performance of maximum likelihood and Bayesian estimation methods for estimating   R  s , k    is compared in terms of relative Bias (rBias) and relative mean squared error (rMSE) via Monte Carlo simulation in this section. The rBias and rMSE for each estimator are evaluated using 10,000 iterative runs. In the study,    α ,  λ 1  , β ,  λ 2   =  ( 2 , 2 , 2 , 3 )  ,  ( 1.5 , 1 , 2 , 1 )   ,   ( s , k ) = ( 1 , 4 ) , ( 2 , 7 )  ,   ( n , m )   = (30, 30), (35, 35), (40, 40), (45, 45), (50, 50),   T = 1 , 5  ,   N = 10,000  ,    N 1  = 1000   and   γ = 0.05   will be used along with the number of failures r as half amount of the sample size. We use the non-information prior (Prior-I) and the information prior (Prior-II) for the MCMC method to obtain the Bayes estimators. Then, we compare the performance of Bayes estimators under different loss functions. The hyper-parameter setting values of the Gamma prior distributions are given as those in Case 1 and Case 2.



Case 1:    a 1  = 2 ,  b 1  = 1 ,  a 2  = 2 ,  b 2  = 1 ,  a 3  = 2 ,  b 3  = 1 ,  a 4  = 3   and    b 4  = 1  ,



Case 2:    a 1  = 1.5 ,  b 1  = 1 ,  a 2  = 2 ,  b 2  = 1 ,  a 3  = 1 ,  b 3  = 1 ,  a 4  = 1   and    b 4  = 1  .



In addition, the parameters of LINEX and GE loss functions are respectively set as   a = b = − 0.5 , 1  . The simulation results for point estimators are presented in Table 2, Table 3, Table 4 and Table 5. In view of Table 2, Table 3, Table 4 and Table 5, the following results are given:




	
As the sample size increases, rBias and rMSE decrease.



	
Both MLE and Bayesian methods underestimate the nominal   R  s , k   .



	
The performance of Prior-II outperforms MLE and Prior-I for almost all simulation settings.



	
When   a = b = − 0.5  , the Bayes estimator obtained by using the LINEX performs the best and is followed by using the SEF.








The results of 95% confidence interval of   R  s , k    are presented in Table 6, Table 7, Table 8 and Table 9, where “LCB” and “UCB” refer to upper and lower bounds of confidence interval, respectively, “AL” refers to the average length of confidence interval, and “Cover” refers to the proportion of 10,000 95% confidence intervals that cover the parameter,   R  s , k   . In viewing Table 6, Table 7, Table 8 and Table 9, the following results are listed:




	
As the sample size increases, the AL decreases.



	
For AL, Prior I has the shortest interval length, followed by that of Prior II and MLE.



	
For Cover, the performance of Prior II is the best, followed by that of Prior I and MLE.








Based on the above findings, the MLE does not work well for estimating   R  s , k   . In addition, although the confidence interval of Prior I is shorter than that of Prior II, the coverage of Prior II for the parameters is closer to the nominal value. Therefore, the performance of Prior II is also competitive with Prior I.




5. Real Data Analysis


Two practical data sets will be provided to illustrate the proposed three estimation methods.



5.1. Strength Data of Carbon Fiber


Badar and Priest [19] provided a fiber strength testing example, where the strength under tension measured in GPA for single carbon fibers at the gauge lengths of 1, 10, 20, and 50 mm and impregnated 1000 carbon fiber tows. Raqab and Kundu [4] transformed the data sets using the 20 mm single fibers (with the size of   n = 69  ) and 10 mm single fibers (with the size of   m = 63  ) as the strength and stress samples, respectively. The two data sets are reported in Table 10 and Table 11. The generalized exponential distribution modeling is applied for these two data sets. The MLEs of the model parameters for these two data sets are given as    α ^  = 8.8284 ,     λ ^  1  = 1.8966 ,    β ^  = 3.1671 ,     λ ^  2  = 1.5753  , and the Kolmogorov–Smirnov (K-S) test value and associated P-value are 0.8321 and 0.2122, respectively. The results indicate that the generalized exponential distribution is good for modeling these two data sets. In addition,   ( s , k ) = ( 1 , 4 )   and (2, 7) are considered in this study for MSS reliability evaluation. Based on the complete data sets, we have     R ^   1 , 4   = 0.5515  ,     R ^   2 , 7   = 0.5165  , and the 95% confidence interval of   R  1 , 4    and   R  2 , 7    are   ( 0.4206 , 0.7170 )   and   ( 0.4151 , 0.7352 )  , respectively.



In order to make the data meet the conditions of the type-I hybrid censoring scheme, the two data sets are respectively cut into type-I hybrid censored samples. Considering that the number of failures r is half of the sample size, and the T of the strength and stress data are selected as 0.7 and 0.8 quantiles, respectively. The results of Bayesian estimation are displaced in Table 12, which shows the interval length using Prior I is shorter than that using Prior II, and the estimated result of Prior II is closer to the MLE result under complete data.




5.2. Waiting Time before Customer Service of the Bank


The data sets that were studied by Al-Mutairi et al. [5], Ali [6], Singh et al. [7] and Sadek et al. [8] are used. The data sets are composed of the customers’ waiting times (in minutes) before services in two banks, A and B, and are shown in Table 13 and Table 14, with sample sizes,   n = 100   and   m = 60  , respectively. The MLEs of the generalized exponential distribution parameters, based on these two data sets, are respectively represented as    α ^  = 2.1834 ,     λ ^  1  = 0.1592 ,    β ^  = 1.4071 ,     λ ^  2  = 0.2368  . The K-S test and the corresponding P-values are, respectively, 0.9996 and 0.0733. These results show the two data sets are fitted with the generalized exponential distributions. In addition,   ( s , k ) = ( 1 , 4 )   and (2, 7) are considered, then     R ^   1 , 4   = 0.4814  ,     R ^   2 , 7   = 0.4557  , and the 95% confidence intervals of   R  1 , 4    and   R  2 , 7    are   ( 0.3569 , 0.6157 )   and   ( 0.2935 , 0.6173 )  , respectively.



In order to make the data sets meet the conditions of the type-I hybrid censoring scheme, the two data sets are respectively converted to type-I hybrid censored samples with r as half of the sample size, and T as 0.7 and 0.8 quantiles. The results of the Bayesian estimations are given in Table 15 that again show that the interval length with Prior I is shorter than that with Prior II.





6. Concluding Remarks


The MSS reliability estimation problem based on type-I hybrid censored samples from generalized exponential distributions was investigated by the maximum likelihood estimation method and Bayesian approaches with informative or non-informative prior distribution. In the Bayesian estimation procedures, because the marginal posterior distributions do not have closed forms, it is impossible to use the Gibbs sampling algorithm to draw sample of posteriors to evaluate the Bayes estimators of the model parameters and the reliability   R  s , k    in Equation (5). The MCMC approach with the Metropolis–Hastings algorithm is used to implement the sampling for Bayesian estimation. Meanwhile linear exponential, general entropy, and squared error loss functions are used to obtain Bayes estimators of the MSS reliability.



To overcome the complexity of asymptotic normality based on the Fisher information matrix with the maximum likelihood estimation method, the HPDI based on the Bayesian estimation method is used to obtain the confidence interval of the MSS reliability   R  s , k   . According to the simulation results, the Bayes estimator with information prior performs better than the Bayes estimator with non-informative prior and the MLE in terms of the performance metrics of rBias and rMSE. However, the performance of the Bayes estimators based on the informative and non-informative prior distributions are competitive.



We also find that the performance of the maximum likelihood estimation is the worst among the three compared methods. The findings mean that if the prior distribution can be well selected, the Bayes estimator with informative prior distributions is more reliable. Otherwise, the Bayes estimator with using non-informative prior distributions is recommended. Two practical examples are used to illustrate the proposed estimation methods.



The MSS reliability inferences for different distributions and under other censoring schemes by using pivotal estimation methods and the robustness of reliability estimators are interesting and merit future investigations.
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Table 1. Three loss functions and corresponding Bayes estimator.






Table 1. Three loss functions and corresponding Bayes estimator.





	SE:
	      R ^     s , k  Se     =  E  Θ | x , y     R  s , k    ≅  1    N −  N 1      ∑  i =  N 1  + 1  N   R  s , k   ( i )      



	LINEX:
	     R ^   s   , k  L     =  −    1   a  log   E  Θ | x , y    exp  a  R  s , k     ≅  −    1   a  log   1    N −  N 1      ∑  i =  N 1  + 1  N   e  − a   R  s , k   ( i )        



	GEF:
	     R ^   s   , k  Ge     =     E  Θ | x , y     R  s , k   − k      −   1 b    ≅    1    N −  N 1      ∑  i =  N 1  + 1  N     R  s , k   ( i )     −  b     −   1 b      
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Table 2. The rBias and rMSE (in parentheses) for Case 1,    α ,  λ 1  , β ,  λ 2   =  ( 2 ,  2 ,  2 ,  3 )   and  T = 1  .






Table 2. The rBias and rMSE (in parentheses) for Case 1,    α ,  λ 1  , β ,  λ 2   =  ( 2 ,  2 ,  2 ,  3 )   and  T = 1  .





	

	

	

	
MCMC (Prior-I)

	
MCMC (Prior-II)




	
(s, k)

	
    n , m    

	
     R ^   s   , k  MLE       

	
     R ^   s   , k   Se         

	
     R ^   s   , k   L          

	
     R ^   s   , k   Ge           

	
     R ^   s   , k   L           

	
     R ^   s   , k  Ge          

	
      R ^   s   , k  Se           

	
     R ^   s   , k   L           

	
     R ^   s   , k   Ge           

	
      R ^   s   , k  L           

	
      R ^   s   , k  Ge           






	

	

	

	

	
   a = b = − 0 . 5   

	
   a = b = 1   

	

	
   a = b = − 0 . 5   

	
   a = b = 1   




	
(1, 4)

	
30,30

	
−0.1631

	
−0.0342

	
−0.0270

	
−0.0493

	
−0.0485

	
−0.1000

	
−0.0313

	
−0.0233

	
−0.0485

	
−0.0472

	
−0.1073




	

	

	
(0.1908)

	
(0.0504)

	
(0.0501)

	
(0.0530)

	
(0.0514)

	
(0.0650)

	
(0.0493)

	
(0.0488)

	
(0.0524)

	
(0.0505)

	
(0.0682)




	

	
35,35

	
−0.1577

	
−0.0338

	
−0.0274

	
−0.0464

	
−0.0906

	
−0.0470

	
−0.0271

	
−0.0202

	
−0.0410

	
−0.0912

	
−0.0418




	

	

	
(0.1620)

	
(0.0456)

	
(0.0453)

	
(0.0477)

	
(0.0464)

	
(0.0573)

	
(0.0443)

	
(0.0440)

	
(0.0468)

	
(0.0453)

	
(0.0586)




	

	
40,40

	
−0.1581

	
−0.0330

	
−0.0272

	
−0.0451

	
−0.0445

	
−0.0845

	
−0.0248

	
−0.0185

	
−0.0381

	
−0.0374

	
−0.0823




	

	

	
(0.1498)

	
(0.0413)

	
(0.0409)

	
(0.0431)

	
(0.0421)

	
(0.0514)

	
(0.0401)

	
(0.0397)

	
(0.0422)

	
(0.0410)

	
(0.0520)




	

	
45,45

	
−0.1599

	
−0.0370

	
−0.0316

	
−0.0481

	
−0.0477

	
−0.0845

	
−0.0276

	
−0.0218

	
−0.0398

	
−0.0392

	
−0.0803




	

	

	
(0.1423)

	
(0.0397)

	
(0.0393)

	
(0.0415)

	
(0.0406)

	
(0.0493)

	
(0.0384)

	
(0.0380)

	
(0.0404)

	
(0.0393)

	
(0.0494)




	

	
50,50

	
−0.1615

	
−0.0410

	
−0.0361

	
−0.0513

	
−0.0508

	
−0.0844

	
−0.0295

	
−0.0242

	
−0.0405

	
−0.0400

	
−0.0766




	

	

	
(0.1282)

	
(0.0369)

	
(0.0365)

	
(0.0386)

	
(0.0378)

	
(0.0455)

	
(0.0354)

	
(0.0350)

	
(0.0371)

	
(0.0362)

	
(0.0447)




	
(2, 7)

	
30,30

	
−0.1751

	
−0.0529

	
−0.0450

	
−0.0708

	
−0.0684

	
−0.1333

	
−0.0489

	
−0.0401

	
−0.0695

	
−0.0664

	
−0.1439




	

	

	
(0.2099)

	
(0.0560)

	
(0.0554)

	
(0.0599)

	
(0.0575)

	
(0.0790)

	
(0.0554)

	
(0.0547)

	
(0.0603)

	
(0.0573)

	
(0.0861)




	

	
35,35

	
−0.1712

	
−0.0519

	
−0.0450

	
−0.0676

	
−0.0657

	
−0.1208

	
−0.0444

	
−0.0367

	
−0.0620

	
−0.0597

	
−0.1240




	

	

	
(0.1803)

	
(0.0496)

	
(0.0491)

	
(0.0528)

	
(0.0510)

	
(0.0676)

	
(0.0488)

	
(0.0482)

	
(0.0526)

	
(0.0504)

	
(0.0717)




	

	
40,40

	
−0.1707

	
−0.0512

	
−0.0449

	
−0.0655

	
−0.0638

	
−0.1137

	
−0.0416

	
−0.0347

	
−0.0575

	
−0.0555

	
−0.1128




	

	

	
(0.1705)

	
(0.0468)

	
(0.0463)

	
(0.0497)

	
(0.0481)

	
(0.0627)

	
(0.0459)

	
(0.0453)

	
(0.0492)

	
(0.0473)

	
(0.0654)




	

	
45,45

	
−0.1712

	
−0.0530

	
−0.0472

	
−0.0662

	
−0.0646

	
−0.1105

	
−0.0421

	
−0.0357

	
−0.0567

	
−0.0549

	
−0.1069




	

	

	
(0.1556)

	
(0.0435)

	
(0.0430)

	
(0.0462)

	
(0.0448)

	
(0.0581)

	
(0.0424)

	
(0.0418)

	
(0.0454)

	
(0.0438)

	
(0.0597)




	

	
50,50

	
−0.1709

	
−0.0525

	
−0.0472

	
−0.0645

	
−0.0632

	
−0.1043

	
−0.0397

	
−0.0339

	
−0.0527

	
−0.0512

	
−0.0969




	

	

	
(0.1419)

	
(0.0409)

	
(0.0404)

	
(0.0433)

	
(0.0421)

	
(0.0536)

	
(0.0392)

	
(0.0387)

	
(0.0417)

	
(0.0404)

	
(0.0534)
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Table 3. The rBias and rMSE (in parentheses) for Case 1,    α ,  λ 1  , β ,  λ 2   =  ( 1.5 ,  1 ,  2 ,  1 )   and  T = 1  .






Table 3. The rBias and rMSE (in parentheses) for Case 1,    α ,  λ 1  , β ,  λ 2   =  ( 1.5 ,  1 ,  2 ,  1 )   and  T = 1  .





	

	

	

	
MCMC (Prior-I)

	
MCMC (Prior-II)




	
(s, k)

	
    n , m    

	
     R ^   s   , k  MLE       

	
     R ^   s   , k   Se         

	
     R ^   s   , k   L          

	
     R ^   s   , k   Ge           

	
     R ^   s   , k   L           

	
     R ^   s   , k  Ge          

	
      R ^   s   , k  Se           

	
     R ^   s   , k   L           

	
     R ^   s   , k   Ge           

	
      R ^   s   , k  L           

	
      R ^   s   , k  Ge           






	

	

	

	

	
   a = b = − 0 . 5   

	
   a = b = 1   

	

	
   a = b = − 0 . 5   

	
   a = b = 1   




	
(1, 4)

	
30,30

	
0.0045

	
−0.0987

	
−0.0934

	
−0.1065

	
−0.1096

	
−0.1345

	
−0.1053

	
−0.0995

	
−0.1140

	
−0.1174

	
−0.1455




	

	

	
(0.0613)

	
(0.0255)

	
(0.0244)

	
(0.0276)

	
(0.0280)

	
(0.0368)

	
(0.0249)

	
(0.0236)

	
(0.0274)

	
(0.0278)

	
(0.0382)




	

	
35,35

	
−0.0024

	
−0.0838

	
−0.0793

	
−0.0902

	
−0.0931

	
−0.1124

	
−0.0904

	
−0.0856

	
−0.0973

	
−0.1004

	
−0.1216




	

	

	
(0.0552)

	
(0.0209)

	
(0.0201)

	
(0.0224)

	
(0.0227)

	
(0.0285)

	
(0.0202)

	
(0.0192)

	
(0.0218)

	
(0.0222)

	
(0.0289)




	

	
40,40

	
−0.0003

	
−0.0768

	
−0.0728

	
−0.0824

	
−0.0850

	
−0.1013

	
−0.0828

	
−0.0786

	
−0.0887

	
−0.0915

	
−0.1089




	

	

	
(0.0489)

	
(0.0186)

	
(0.0180)

	
(0.0198)

	
(0.0201)

	
(0.0246)

	
(0.0177)

	
(0.0169)

	
(0.0190)

	
(0.0193)

	
(0.0243)




	

	
45,45

	
−0.0036

	
−0.0706

	
−0.0671

	
−0.0755

	
−0.0779

	
−0.0917

	
−0.0762

	
−0.0725

	
−0.0812

	
−0.0837

	
−0.0982




	

	

	
(0.0433)

	
(0.0169)

	
(0.0163)

	
(0.0178)

	
(0.0181)

	
(0.0215)

	
(0.0158)

	
(0.0152)

	
(0.0168)

	
(0.0171)

	
(0.0209)




	

	
50,50

	
−0.0085

	
−0.0616

	
−0.0585

	
−0.0659

	
−0.0681

	
−0.0799

	
−0.0674

	
−0.0642

	
−0.0718

	
−0.0740

	
−0.0862




	

	

	
(0.0409)

	
(0.0142)

	
(0.0138)

	
(0.0149)

	
(0.0152)

	
(0.0177)

	
(0.0133)

	
(0.0128)

	
(0.0141)

	
(0.0143)

	
(0.0171)




	
(2, 7)

	
30,30

	
0.0096

	
−0.1121

	
−0.1055

	
−0.1223

	
−0.1256

	
−0.1614

	
−0.1162

	
−0.1089

	
−0.1277

	
−0.1311

	
−0.1720




	

	

	
(0.0788)

	
(0.0317)

	
(0.0303)

	
(0.0347)

	
(0.0348)

	
(0.0493)

	
(0.0301)

	
(0.0285)

	
(0.0336)

	
(0.0338)

	
(0.0509)




	

	
35,35

	
0.0071

	
−0.0946

	
−0.0889

	
−0.1031

	
−0.1061

	
−0.1340

	
−0.0999

	
−0.0938

	
−0.1092

	
−0.1124

	
−0.1433




	

	

	
(0.0684)

	
(0.0260)

	
(0.0250)

	
(0.0281)

	
(0.0284)

	
(0.0380)

	
(0.0247)

	
(0.0235)

	
(0.0271)

	
(0.0274)

	
(0.0386)




	

	
40,40

	
0.0041

	
−0.0851

	
−0.0801

	
−0.0924

	
−0.0953

	
−0.1182

	
−0.0900

	
−0.0848

	
−0.0979

	
−0.1008

	
−0.1258




	

	

	
(0.0627)

	
(0.0235)

	
(0.0226)

	
(0.0251)

	
(0.0253)

	
(0.0322)

	
(0.0217)

	
(0.0208)

	
(0.0235)

	
(0.0238)

	
(0.0318)




	

	
45,45

	
−0.0010

	
−0.0784

	
−0.0740

	
−0.0849

	
−0.0876

	
−0.1071

	
−0.0829

	
−0.0782

	
−0.0896

	
−0.0924

	
−0.1130




	

	

	
(0.0547)

	
(0.0212)

	
(0.0205)

	
(0.0225)

	
(0.0227)

	
(0.0281)

	
(0.0194)

	
(0.0187)

	
(0.0209)

	
(0.0211)

	
(0.0270)




	

	
50,50

	
−0.0078

	
−0.0716

	
−0.0676

	
−0.0773

	
−0.0798

	
−0.0962

	
−0.0769

	
−0.0728

	
−0.0827

	
−0.0853

	
−0.1024




	

	

	
(0.0520)

	
(0.0192)

	
(0.0187)

	
(0.0203)

	
(0.0204)

	
(0.0245)

	
(0.0177)

	
(0.0171)

	
(0.0188)

	
(0.0190)

	
(0.0234)
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Table 4. The rBias and rMSE (in parentheses) for Case 2,    α ,  λ 1  , β ,  λ 2   =  ( 2 ,  2 ,  2 ,  3 )   and  T = 5  .






Table 4. The rBias and rMSE (in parentheses) for Case 2,    α ,  λ 1  , β ,  λ 2   =  ( 2 ,  2 ,  2 ,  3 )   and  T = 5  .





	

	

	

	
MCMC (Prior-I)

	
MCMC (Prior-II)




	
(s, k)

	
    n , m    

	
     R ^   s   , k  MLE       

	
     R ^   s   , k   Se         

	
     R ^   s   , k   L          

	
     R ^   s   , k   Ge           

	
     R ^   s   , k   L           

	
     R ^   s   , k  Ge          

	
      R ^   s   , k  Se           

	
     R ^   s   , k   L           

	
     R ^   s   , k   Ge           

	
      R ^   s   , k  L           

	
      R ^   s   , k  Ge           






	

	

	

	

	
   a = b = − 0 . 5   

	
   a = b = 1   

	

	
   a = b = − 0 . 5   

	
   a = b = 1   




	
(1, 4)

	
30,30

	
−0.1598

	
−0.0325

	
−0.0253

	
−0.0476

	
−0.0468

	
−0.0982

	
−0.0304

	
−0.0225

	
−0.0476

	
−0.0464

	
−0.1064




	

	

	
(0.1928)

	
(0.0509)

	
(0.0505)

	
(0.0534)

	
(0.0517)

	
(0.0651)

	
(0.0499)

	
(0.0494)

	
(0.0530)

	
(0.0511)

	
(0.0688)




	

	
35,35

	
−0.1567

	
0.1592

	
0.1627

	
0.1534

	
0.1523

	
0.1357

	
−0.0341

	
−0.0277

	
−0.0473

	
−0.0467

	
−0.0910




	

	

	
(0.1634)

	
(0.0458)

	
(0.0455)

	
(0.0479)

	
(0.0467)

	
(0.0575)

	
(0.0445)

	
(0.0441)

	
(0.0469)

	
(0.0455)

	
(0.0587)




	

	
40,40

	
−0.1640

	
−0.0377

	
−0.0319

	
−0.0498

	
−0.0493

	
−0.0895

	
−0.0293

	
−0.0230

	
−0.0426

	
−0.0419

	
−0.0870




	

	

	
(0.1500)

	
(0.0416)

	
(0.0412)

	
(0.0436)

	
(0.0426)

	
(0.0524)

	
(0.0403)

	
(0.0399)

	
(0.0425)

	
(0.0413)

	
(0.0528)




	

	
45,45

	
−0.1652

	
−0.0393

	
−0.0340

	
−0.0505

	
−0.0500

	
−0.0869

	
−0.0295

	
−0.0237

	
−0.0417

	
−0.0411

	
−0.0821




	

	

	
(0.1394)

	
(0.0385)

	
(0.0381)

	
(0.0403)

	
(0.0394)

	
(0.0482)

	
(0.0372)

	
(0.0368)

	
(0.0392)

	
(0.0382)

	
(0.0482)




	

	
50,50

	
−0.1515

	
−0.0344

	
−0.0295

	
−0.0446

	
−0.0442

	
−0.0775

	
−0.0229

	
−0.0176

	
−0.0338

	
−0.0334

	
−0.0696




	

	

	
(0.1254)

	
(0.0357)

	
(0.0353)

	
(0.0372)

	
(0.0364)

	
(0.0437)

	
(0.0342)

	
(0.0340)

	
(0.0358)

	
(0.0350)

	
(0.0428)




	
(2, 7)

	
30,30

	
−0.1803

	
−0.0541

	
−0.0463

	
−0.0719

	
−0.0695

	
−0.1338

	
−0.0509

	
−0.0422

	
−0.0715

	
−0.0684

	
−0.1457




	

	

	
(0.2131)

	
(0.0556)

	
(0.0551)

	
(0.0594)

	
(0.0571)

	
(0.0781)

	
(0.0555)

	
(0.0547)

	
(0.0603)

	
(0.0574)

	
(0.0862)




	

	
35,35

	
−0.1713

	
−0.0512

	
−0.0443

	
−0.0667

	
−0.0649

	
−0.1196

	
−0.0431

	
−0.0355

	
−0.0606

	
−0.0583

	
−0.1219




	

	

	
(0.1849)

	
(0.0512)

	
(0.0507)

	
(0.0543)

	
(0.0525)

	
(0.0691)

	
(0.0503)

	
(0.0497)

	
(0.0540)

	
(0.0518)

	
(0.0729)




	

	
40,40

	
−0.1739

	
−0.0538

	
−0.0475

	
−0.0681

	
−0.0664

	
−0.1163

	
−0.0441

	
−0.0372

	
−0.0600

	
−0.0580

	
−0.1153




	

	

	
(0.1686)

	
(0.0465)

	
(0.0459)

	
(0.0494)

	
(0.0478)

	
(0.0626)

	
(0.0453)

	
(0.0447)

	
(0.0487)

	
(0.0468)

	
(0.0650)




	

	
45,45

	
−0.1721

	
−0.0529

	
−0.0471

	
−0.0661

	
−0.0646

	
−0.1104

	
−0.0423

	
−0.0360

	
−0.0569

	
−0.0551

	
−0.1071




	

	

	
(0.1623)

	
(0.0449)

	
(0.0444)

	
(0.0476)

	
(0.0462)

	
(0.0595)

	
(0.0439)

	
(0.0434)

	
(0.0470)

	
(0.0453)

	
(0.0613)




	

	
50,50

	
−0.1728

	
−0.0518

	
−0.0465

	
−0.0637

	
−0.0625

	
−0.1032

	
−0.0390

	
−0.0333

	
−0.0520

	
−0.0505

	
−0.0958




	

	

	
(0.1387)

	
(0.0394)

	
(0.0388)

	
(0.0417)

	
(0.0405)

	
(0.0516)

	
(0.0380)

	
(0.0375)

	
(0.0405)

	
(0.0392)

	
(0.0519)
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Table 5. The rBias and rMSE (in parentheses) for Case 2,    α ,  λ 1  , β ,  λ 2   =  ( 1.5 ,  1 ,  2 ,  1 )   and  T = 5  .






Table 5. The rBias and rMSE (in parentheses) for Case 2,    α ,  λ 1  , β ,  λ 2   =  ( 1.5 ,  1 ,  2 ,  1 )   and  T = 5  .





	

	

	

	
MCMC (Prior-I)

	
MCMC (Prior-II)




	
(s, k)

	
    n , m    

	
     R ^   s   , k  MLE       

	
     R ^   s   , k   Se         

	
     R ^   s   , k   L          

	
     R ^   s   , k   Ge           

	
     R ^   s   , k   L           

	
     R ^   s   , k  Ge          

	
      R ^   s   , k  Se           

	
     R ^   s   , k   L           

	
     R ^   s   , k   Ge           

	
      R ^   s   , k  L           

	
      R ^   s   , k  Ge           






	

	

	

	

	
   a = b = − 0 . 5   

	
   a = b = 1   

	

	
   a = b = − 0 . 5   

	
   a = b = 1   




	
(1, 4)

	
30,30

	
−0.0025

	
−0.0932

	
−0.0885

	
−0.0998

	
−0.1029

	
−0.1220

	
−0.0890

	
−0.0841

	
−0.0958

	
−0.0990

	
−0.1190




	

	

	
(0.0450)

	
(0.0235)

	
(0.0227)

	
(0.0251)

	
(0.0255)

	
(0.0310)

	
(0.0198)

	
(0.0189)

	
(0.0212)

	
(0.0217)

	
(0.0271)




	

	
35,35

	
0.0071

	
−0.0787

	
−0.0748

	
−0.0840

	
−0.0867

	
−0.1015

	
−0.0763

	
−0.0723

	
−0.0817

	
−0.0845

	
−0.0995




	

	

	
(0.0377)

	
(0.0196)

	
(0.0190)

	
(0.0207)

	
(0.0210)

	
(0.0246)

	
(0.0166)

	
(0.0160)

	
(0.0176)

	
(0.0179)

	
(0.0214)




	

	
40,40

	
0.0071

	
−0.0787

	
−0.0748

	
−0.0840

	
−0.0867

	
−0.1015

	
−0.0763

	
−0.0723

	
−0.0817

	
−0.0845

	
−0.0995




	

	

	
(0.0377)

	
(0.0196)

	
(0.0190)

	
(0.0207)

	
(0.0210)

	
(0.0246)

	
(0.0166)

	
(0.0160)

	
(0.0176)

	
(0.0179)

	
(0.0214)




	

	
45,45

	
0.0217

	
−0.0688

	
−0.0656

	
−0.0730

	
−0.0753

	
−0.0866

	
−0.0683

	
−0.0651

	
−0.0725

	
−0.0748

	
−0.0861




	

	

	
(0.0311)

	
(0.0159)

	
(0.0155)

	
(0.0167)

	
(0.0169)

	
(0.0193)

	
(0.0137)

	
(0.0133)

	
(0.0144)

	
(0.0146)

	
(0.0169)




	

	
50,50

	
0.0257

	
−0.0598

	
−0.0569

	
−0.0635

	
−0.0655

	
−0.0751

	
−0.0600

	
−0.0572

	
−0.0636

	
−0.0657

	
−0.0751




	

	

	
(0.0271)

	
(0.0138)

	
(0.0135)

	
(0.0144)

	
(0.0146)

	
(0.0163)

	
(0.0119)

	
(0.0116)

	
(0.0125)

	
(0.0127)

	
(0.0143)




	
(2, 7)

	
30,30

	
−0.0288

	
−0.1109

	
−0.1050

	
−0.1196

	
−0.1229

	
−0.1502

	
−0.1022

	
−0.0959

	
−0.1113

	
−0.1148

	
−0.1439




	

	

	
(0.0607)

	
(0.0310)

	
(0.0298)

	
(0.0332)

	
(0.0335)

	
(0.0424)

	
(0.0251)

	
(0.0240)

	
(0.0272)

	
(0.0276)

	
(0.0364)




	

	
35,35

	
−0.0168

	
−0.0919

	
−0.0869

	
−0.0989

	
−0.1019

	
−0.1225

	
−0.0856

	
−0.0805

	
−0.0928

	
−0.0959

	
−0.1170




	

	

	
(0.0483)

	
(0.0252)

	
(0.0244)

	
(0.0266)

	
(0.0269)

	
(0.0324)

	
(0.0206)

	
(0.0199)

	
(0.0219)

	
(0.0222)

	
(0.0274)




	

	
40,40

	
−0.0104

	
−0.0845

	
−0.0800

	
0.0908

	
−0.0936

	
−0.1116

	
−0.0799

	
−0.0754

	
−0.0862

	
−0.0891

	
−0.1072




	

	

	
(0.0429)

	
(0.0227)

	
(0.0221)

	
(0.0240)

	
(0.0242)

	
(0.0287)

	
(0.0187)

	
(0.0181)

	
(0.0198)

	
(0.0201)

	
(0.0243)




	

	
45,45

	
−0.0052

	
−0.0789

	
−0.0748

	
−0.0845

	
−0.0871

	
−0.1029

	
−0.0757

	
−0.0716

	
−0.0813

	
−0.0839

	
−0.0997




	

	

	
(0.0391)

	
(0.0204)

	
(0.0199)

	
(0.0214)

	
(0.0217)

	
(0.0253)

	
(0.0169)

	
(0.0164)

	
(0.0178)

	
(0.0181)

	
(0.0214)




	

	
50,50

	
0.0023

	
−0.0686

	
−0.0650

	
−0.0735

	
−0.0759

	
−0.0891

	
−0.0667

	
−0.0632

	
−0.0715

	
−0.0739

	
−0.0869




	

	

	
(0.0336)

	
(0.0180)

	
(0.0176)

	
(0.0188)

	
(0.0189)

	
(0.0216)

	
(0.0151)

	
(0.0147)

	
(0.0158)

	
(0.0160)

	
(0.0184)
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Table 6. The 95% confidence intervals of   R  s , k    for Case 1,    α ,  λ 1  , β ,  λ 2   =  ( 2 ,  2 ,  2 ,  3 )    and   T = 1 .  






Table 6. The 95% confidence intervals of   R  s , k    for Case 1,    α ,  λ 1  , β ,  λ 2   =  ( 2 ,  2 ,  2 ,  3 )    and   T = 1 .  















	Estimator
	    ( s ,  k )    
	    R  s , k     
	(n, m)
	LCB
	UCB
	AL
	Cover





	MLE
	   ( 1 ,  4 )   
	0.5394
	(30, 30)
	0.1260
	07327
	0.6067
	0.6068



	Prior-I
	
	
	
	0.2823
	0.7570
	0.4747
	0.9381



	Prior-II
	
	
	
	0.2690
	0.7706
	0.5015
	0.9543



	MLE
	
	
	(35, 35)
	0.1355
	0.7153
	0.5798
	0.6053



	Prior-I
	
	
	
	0.2965
	0.7434
	0.4469
	0.9340



	Prior-II
	
	
	
	0.2879
	0.7569
	0.4690
	0.9483



	MLE
	
	
	(40, 40)
	0.1414
	0.6921
	0.5507
	0.5718



	Prior-I
	
	
	
	0.3063
	0.7340
	0.4277
	0.9349



	Prior-II
	
	
	
	0.2997
	0.7471
	0.4474
	0.9507



	MLE
	
	
	(45, 45)
	0.1465
	0.6823
	0.5358
	0.5743



	Prior-I
	
	
	
	0.3123
	0.7236
	0.4113
	0.9315



	Prior-II
	
	
	
	0.3073
	0.7366
	0.4293
	0.9478



	MLE
	
	
	(50, 50)
	0.1517
	0.6656
	0.5139
	0.5680



	Prior-I
	
	
	
	0.3184
	0.7134
	0.3950
	0.9329



	Prior-II
	
	
	
	0.3164
	0.7261
	0.4097
	0.9487



	MLE
	(2, 7)
	0.5151
	(30, 30)
	0.1054
	0.7254
	0.6200
	0.6260



	Prior-I
	
	
	
	0.2446
	0.7273
	0.4827
	0.9365



	Prior-II
	
	
	
	0.2300
	0.7430
	0.5131
	0.9538



	MLE
	
	
	(35, 35)
	0.1173
	0.7079
	0.5906
	0.6155



	Prior-I
	
	
	
	0.2593
	0.7145
	0.4552
	0.9387



	Prior-II
	
	
	
	0.2489
	0.7295
	0.4807
	0.9535



	MLE
	
	
	(40, 40)
	0.1221
	0.6824
	0.5604
	0.5943



	Prior-I
	
	
	
	0.2690
	0.7046
	0.4355
	0.9362



	Prior-II
	
	
	
	0.2615
	0.7192
	0.4577
	0.9545



	MLE
	
	
	(45, 45)
	0.1252
	0.6845
	0.5593
	0.5805



	Prior-I
	
	
	
	0.2764
	0.6953
	0.4190
	0.9386



	Prior-II
	
	
	
	0.2704
	0.7096
	0.4392
	0.9539



	MLE
	
	
	(50, 50)
	0.1369
	0.6589
	0.5220
	0.5743



	Prior-I
	
	
	
	0.2857
	0.6867
	0.4010
	0.9347



	Prior-II
	
	
	
	0.2827
	0.7005
	0.4179
	0.9512
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Table 7. The 95% confidence intervals of   R  s , k    for Case 2,    α ,  λ 1  , β ,  λ 2   =  ( 1.5 ,  1 ,  2 ,  1 )   ,   and  T = 1 .  






Table 7. The 95% confidence intervals of   R  s , k    for Case 2,    α ,  λ 1  , β ,  λ 2   =  ( 1.5 ,  1 ,  2 ,  1 )   ,   and  T = 1 .  















	Estimator
	    ( s ,  k )    
	    R  s , k     
	(n, m)
	LCB
	UCB
	AL
	Cover





	MLE
	   ( 1 ,  4 )   
	0.8654
	(30, 30)
	0.3211
	1.1171
	0.7960
	0.8750



	Prior-I
	
	
	
	0.5098
	1.0279
	0.5181
	0.9247



	Prior-II
	
	
	
	0.4900
	1.0357
	0.5457
	0.9461



	MLE
	
	
	(35, 35)
	0.3857
	1.1137
	0.7280
	0.8760



	Prior-I
	
	
	
	0.5450
	1.0226
	0.4776
	0.9296



	Prior-II
	
	
	
	0.5298
	1.0265
	0.4967
	0.9490



	MLE
	
	
	(40, 40)
	0.4154
	1.1094
	0.6940
	0.8803



	Prior-I
	
	
	
	0.5658
	1.0167
	0.4509
	0.9328



	Prior-II
	
	
	
	0.5546
	1.0180
	0.4634
	0.9523



	MLE
	
	
	(45, 45)
	0.4404
	1.1075
	0.6671
	0.8878



	Prior-I
	
	
	
	0.5851
	1.0104
	0.4253
	0.9331



	Prior-II
	
	
	
	0.5763
	1.0100
	0.4338
	0.9490



	MLE
	
	
	(50, 50)
	0.4808
	1.0991
	0.6184
	0.8740



	Prior-I
	
	
	
	0.6052
	1.0074
	0.4022
	0.9373



	Prior-II
	
	
	
	0.5980
	1.0053
	0.4072
	0.9538



	MLE
	   ( 2 ,  7 )   
	0.8267
	(30, 30)
	0.2386
	1.0857
	0.8470
	0.8493



	Prior-I
	
	
	
	0.4423
	1.0082
	0.5659
	0.9171



	Prior-II
	
	
	
	0.4226
	1.0204
	0.5978
	0.9438



	MLE
	
	
	(35, 35)
	0.2991
	1.0932
	0.7941
	0.8630



	Prior-I
	
	
	
	0.4785
	1.0040
	0.5255
	0.9275



	Prior-II
	
	
	
	0.4633
	1.0108
	0.5475
	0.9501



	MLE
	
	
	(40, 40)
	0.3264
	1.0864
	0.7600
	0.8643



	Prior-I
	
	
	
	0.5029
	0.9978
	0.4949
	0.9217



	Prior-II
	
	
	
	0.4918
	1.0018
	0.5100
	0.9472



	MLE
	
	
	(45, 45)
	0.3473
	1.0740
	0.7262
	0.8633



	Prior-I
	
	
	
	0.5221
	0.9914
	0.4693
	0.9274



	Prior-II
	
	
	
	0.5142
	0.9929
	0.4786
	0.9487



	MLE
	
	
	(50, 50)
	0.3882
	1.0664
	0.6783
	0.8613



	Prior-I
	
	
	
	0.5415
	0.9851
	0.4435
	0.9272



	Prior-II
	
	
	
	0.5344
	0.9839
	0.4495
	0.9479
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Table 8. The 95% confidence intervals of   R  s , k    for Case 1,    α ,  λ 1  , β ,  λ 2   =  ( 2 ,  2 ,  2 ,  3 )   ,   and  T = 5 .  






Table 8. The 95% confidence intervals of   R  s , k    for Case 1,    α ,  λ 1  , β ,  λ 2   =  ( 2 ,  2 ,  2 ,  3 )   ,   and  T = 5 .  















	Estimator
	    ( s ,  k )    
	    R  s , k     
	(n, m)
	LCB
	UCB
	AL
	Cover





	MLE
	   ( 1 ,  4 )   
	0.5394
	(30, 30)
	0.1296
	0.7321
	0.6026
	0.5820



	Prior-I
	
	
	
	0.2836
	0.7574
	0.4738
	0.9358



	Prior-II
	
	
	
	0.2699
	0.7708
	0.5009
	0.9539



	MLE
	
	
	(35, 35)
	0.1353
	0.7102
	0.5748
	0.5830



	Prior-I
	
	
	
	0.2967
	0.7431
	0.4464
	0.9345



	Prior-II
	
	
	
	0.2886
	0.7566
	0.4680
	0.9498



	MLE
	
	
	(40, 40)
	0.1516
	0.7211
	0.5695
	0.6010



	Prior-I
	
	
	
	0.3044
	0.7311
	0.4267
	0.9363



	Prior-II
	
	
	
	0.2980
	0.7443
	0.4463
	0.9522



	MLE
	
	
	(45, 45)
	0.1443
	0.6726
	0.5283
	0.5820



	Prior-I
	
	
	
	0.3117
	0.7220
	0.4103
	0.9367



	Prior-II
	
	
	
	0.3070
	0.7348
	0.4278
	0.9510



	MLE
	
	
	(50, 50)
	0.1568
	0.6649
	0.5081
	0.561



	Prior-I
	
	
	
	0.3223
	0.7166
	0.3942
	0.9373



	Prior-II
	
	
	
	0.3204
	0.7290
	0.4086
	0.9525



	MLE
	   ( 2 ,  7 )   
	0.5151
	(30, 30)
	0.1071
	0.7531
	0.6281
	0.6430



	Prior-I
	
	
	
	0.2454
	0.7256
	0.4802
	0.9362



	Prior-II
	
	
	
	0.2300
	0.7412
	0.5112
	0.9540



	MLE
	
	
	(35, 35)
	0.1416
	0.7183
	0.5766
	0.6050



	Prior-I
	
	
	
	0.2607
	0.7137
	0.4530
	0.9339



	Prior-II
	
	
	
	0.2510
	0.7288
	0.4778
	0.9516



	MLE
	
	
	(40, 40)
	0.1293
	0.6917
	0.5625
	0.5900



	Prior-I
	
	
	
	0.2685
	0.7026
	0.4340
	0.9340



	Prior-II
	
	
	
	0.2608
	0.7173
	0.4565
	0.9516



	MLE
	
	
	(45, 45)
	0.1299
	0.6707
	0.5407
	0.5890



	Prior-I
	
	
	
	0.2768
	0.6949
	0.4181
	0.9332



	Prior-II
	
	
	
	0.2710
	0.7090
	0.4380
	0.9487



	MLE
	
	
	(50, 50)
	0.1401
	0.6606
	0.5205
	0.5620



	Prior-I
	
	
	
	0.2869
	0.6861
	0.3992
	0.9389



	Prior-II
	
	
	
	0.2839
	0.6998
	0.4159
	0.9531
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Table 9. The 95% confidence intervals of   R  s , k    for Case 2,    α ,  λ 1  , β ,  λ 2   =  ( 1.5 ,  1 ,  2 ,  1 )   ,   and  T = 5 .  






Table 9. The 95% confidence intervals of   R  s , k    for Case 2,    α ,  λ 1  , β ,  λ 2   =  ( 1.5 ,  1 ,  2 ,  1 )   ,   and  T = 5 .  















	Estimator
	    ( s ,  k )    
	    R  s , k     
	(n, m)
	LCB
	UCB
	AL
	Cover





	MLE
	   ( 1 ,  4 )   
	0.8653
	(30, 30)
	0.3150
	1.1020
	0.7870
	0.8890



	Prior-I
	
	
	
	0.5332
	1.0235
	0.4903
	0.9189



	Prior-II
	
	
	
	0.5311
	1.0340
	0.5029
	0.9525



	MLE
	
	
	(35, 35)
	0.3659
	1.1020
	0.7361
	0.9020



	Prior-I
	
	
	
	0.5677
	1.0170
	0.4493
	0.9253



	Prior-II
	
	
	
	0.5670
	1.0231
	0.4561
	0.9502



	MLE
	
	
	(40, 40)
	0.4014
	1.1037
	0.7023
	0.9130



	Prior-I
	
	
	
	0.5677
	1.0170
	0.4493
	0.9253



	Prior-II
	
	
	
	0.5670
	1.0231
	0.4561
	0.9502



	MLE
	
	
	(45, 45)
	0.4180
	1.0961
	0.6781
	0.9170



	Prior-I
	
	
	
	0.5989
	1.0042
	0.4053
	0.9266



	Prior-II
	
	
	
	0.5995
	1.0061
	0.4066
	0.9474



	MLE
	
	
	(50, 50)
	0.4687
	1.0931
	0.6244
	0.9310



	Prior-I
	
	
	
	0.6193
	1.0009
	0.3816
	0.9265



	Prior-II
	
	
	
	0.6201
	1.0012
	0.3812
	0.9479



	MLE
	   ( 2 ,  7 )   
	0.8267
	(30, 30)
	0.2148
	1.0478
	0.8330
	0.8470



	Prior-I
	
	
	
	0.4622
	0.9993
	0.5371
	0.9023



	Prior-II
	
	
	
	0.4616
	1.0164
	0.5548
	0.9456



	MLE
	
	
	(35, 35)
	0.2816
	1.0589
	0.7773
	0.865



	Prior-I
	
	
	
	0.5013
	0.9949
	0.4935
	0.9116



	Prior-II
	
	
	
	0.5032
	1.0051
	0.5019
	0.9467



	MLE
	
	
	(40, 40)
	0.2828
	1.0416
	0.7588
	0.878



	Prior-I
	
	
	
	0.5194
	0.9892
	0.4698
	0.9166



	Prior-II
	
	
	
	0.5219
	0.9961
	0.4742
	0.9475



	MLE
	
	
	(45, 45)
	0.3265
	1.0484
	0.7219
	0.8860



	Prior-I
	
	
	
	0.5355
	0.9828
	0.4473
	0.9188



	Prior-II
	
	
	
	0.5379
	0.9870
	0.4491
	0.9483



	MLE
	
	
	(50, 50)
	0.3544
	1.0426
	0.6882
	0.8880



	Prior-I
	
	
	
	0.5578
	0.9783
	0.4205
	0.9198



	Prior-II
	
	
	
	0.5604
	0.9801
	0.4197
	0.9458
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Table 10. Breaking strength of a single carbon fiber with a gauge length of 20 mm.






Table 10. Breaking strength of a single carbon fiber with a gauge length of 20 mm.














	0.312
	0.314
	0.479
	0.552
	0.7
	0.803
	0.861



	0.865
	0.944
	0.958
	0.966
	0.997
	1.006
	1.021



	1.027
	1.055
	1.063
	1.098
	1.14
	1.179
	1.224



	1.24
	1.253
	1.27
	1.272
	1.274
	1.301
	1.301



	1.359
	1.382
	1.382
	1.426
	1.434
	1.435
	1.478



	1.49
	1.511
	1.514
	1.535
	1.554
	1.566
	1.57



	1.586
	1.629
	1.633
	1.642
	1.648
	1.684
	1.697



	1.726
	1.77
	1.773
	1.8
	1.809
	1.818
	1.821



	1.848
	1.88
	1.954
	2.012
	2.067
	2.084
	2.09



	2.096
	2.128
	2.233
	2.433
	2.585
	2.585
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Table 11. Breaking strength of a single carbon fiber with a gauge length of 10 mm.






Table 11. Breaking strength of a single carbon fiber with a gauge length of 10 mm.





	0.101
	0.332
	0.403
	0.428
	0.457
	0.55
	0.561



	0.596
	0.597
	0.645
	0.654
	0.674
	0.718
	0.722



	0.725
	0.732
	0.775
	0.814
	0.816
	0.818
	0.824



	0.859
	0.875
	0.938
	0.94
	1.056
	1.117
	1.128



	1.137
	1.137
	1.177
	1.196
	1.23
	1.325
	1.339



	1.345
	1.42
	1.423
	1.435
	1.443
	1.464
	1.472



	1.494
	1.532
	1.546
	1.577
	1.608
	1.635
	1.693



	1.701
	1.737
	1.754
	1.762
	1.828
	2.052
	2.071



	2.086
	2.171
	2.224
	2.227
	2.425
	2.595
	3.22
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Table 12. The result of Bayesian estimation for strength data.






Table 12. The result of Bayesian estimation for strength data.





	
Estimator

	
    ( s , k )    

	
     R ^   s   , k   Se         

	
     R ^   s   , k   L          

	
     R ^   s   , k   Ge           

	
     R ^   s   , k   L           

	
     R ^   s   , k  Ge          

	
Confidence




	

	

	

	
    a = b = − 0.5    

	
    a = b = 1    

	
Interval






	
Prior-I

	
(1, 4)

	
0.6118

	
0.6130

	
0.6097

	
0.6093

	
0.6033

	
(0.4705, 0.7446)




	
Prior-II

	

	
0.5734

	
0.5746

	
0.5713

	
0.5710

	
0.5649

	
(0.4356, 0.7042)




	
Prior-I

	
(2, 7)

	
0.5818

	
0.5830

	
0.5797

	
0.5793

	
0.5731

	
(0.4457, 0.714)




	
Prior-II

	

	
0.5389

	
0.5400

	
0.5368

	
0.5367

	
0.5303

	
(0.4098, 0.6721)
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Table 13. Bank A’s customer waiting time.






Table 13. Bank A’s customer waiting time.





	0.8
	0.8
	1.3
	1.5
	1.8
	1.9
	1.9
	2.1
	2.6
	2.7



	2.9
	3.1
	3.2
	3.3
	3.5
	3.6
	4
	4.1
	4.2
	4.2



	4.3
	4.3
	4.4
	4.4
	4.6
	4.7
	4.7
	4.8
	4.9
	4.9



	5
	5.3
	5.5
	5.7
	5.7
	6.1
	6.2
	6.2
	6.2
	6.3



	6.7
	6.9
	7.1
	7.1
	7.1
	7.1
	7.4
	7.6
	7.7
	8



	8.2
	8.6
	8.6
	8.6
	8.8
	8.8
	8.9
	8.9
	9.5
	9.6



	9.7
	9.8
	10.7
	10.9
	11
	11
	11.1
	11.2
	11.2
	11.5



	11.9
	12.4
	12.5
	12.9
	13
	13.1
	13.3
	13.6
	13.7
	13.9



	14.1
	15.4
	15.4
	17.3
	17.3
	18.1
	18.2
	18.4
	18.9
	19



	19.9
	20.6
	21.3
	21.4
	21.9
	23
	27
	31.6
	33.1
	38.5
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Table 14. Bank B’s customer waiting time.






Table 14. Bank B’s customer waiting time.





	0.1
	0.2
	0.3
	0.7
	0.9
	1.1
	1.2
	1.8
	1.9
	2



	2.2
	2.3
	2.3
	2.3
	2.5
	2.6
	2.7
	2.7
	2.9
	3.1



	3.1
	3.2
	3.4
	3.4
	3.5
	3.9
	4
	4.2
	4.5
	4.7



	5.3
	5.6
	5.6
	6.2
	6.3
	6.6
	6.8
	7.3
	7.5
	7.7



	7.7
	8
	8
	8.5
	8.5
	8.7
	9.5
	10.7
	10.9
	11



	12.1
	12.3
	12.8
	12.9
	13.2
	13.7
	14.5
	16
	16.5
	28
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Table 15. The result of Bayesian estimation for waiting time data.






Table 15. The result of Bayesian estimation for waiting time data.





	
Estimator

	
    ( s , k )    

	
     R ^   s   , k   Se         

	
     R ^   s   , k   L          

	
     R ^   s   , k   Ge           

	
     R ^   s   , k   L           

	
     R ^   s   , k  Ge          

	
Confidence




	

	

	

	
    a = b = − 0.5    

	
    a = b = 1    

	
Interval






	
Prior-I

	
(1, 4)

	
0.4740

	
0.4752

	
0.4714

	
0.4715

	
0.4634

	
(0.3416, 0.6110)




	
Prior-II

	

	
0.4873

	
0.4886

	
0.4847

	
0.4848

	
0.4764

	
(0.3565, 0.6351)




	
Prior-I

	
(2, 7)

	
0.4478

	
0.4489

	
0.4452

	
0.4456

	
0.4374

	
(0.3201, 0.5795)




	
Prior-II

	

	
0.4570

	
0.4583

	
0.4542

	
0.4545

	
0.4454

	
(0.3218, 0.5971)
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