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Abstract: Software-defined networks (SDN) can use the control plane to manage heterogeneous de-
vices efficiently, improve network resource utilization, and optimize Mobile Edge-Cloud Computing
Networks (MECCN) network performance through decisions based on global information. However,
network traffic in MECCNs can change over time and affect the performance of the SDN control
plane. Moreover, the MECCN network may need to temporarily add network access points when
the network load is excessive, and it is difficult for the control plane to form effective management
of temporary nodes. This paper investigates the dynamic controller placement problem (CPP) in
SDN-enabled Mobile Edge-Cloud Computing Networks (SD-MECCN) to enable the control plane to
continuously and efficiently serve the network under changing network load and network access
points. We consider the deployment of a two-layer structure with a control plane and construct the
CPP based on this control plane. Subsequently, we solve this problem based on multi-agent DQN
(MADQN), in which multiple agents cooperate to solve CPP and adjust the number of controllers
according to the network load. The experimental results show that the proposed dynamic controller
deployment algorithm based on MADQN for node-variable networks in this paper can achieve
better performance in terms of delay, load difference, and control reliability than the Louvain-based
algorithm, single-agent DQN-based algorithm, and MADQN- (without node-variable networks
consideration) based algorithm.

Keywords: Multi-Agent Deep Q-Network; software-defined networks; controller placement problem;
Mobile Edge-Cloud Computing Networks; node-variable network

MSC: 68M10; 68M14; 68T05

1. Introduction

With the development of mobile internet, mobile devices with limited hardware
performance cannot meet the demand of mobile applications for device performance [1].
Cloud computing can leverage abundant computing and storage resources for mobile
devices. However, the problem is that cloud computing centers and mobile devices have
high propagation latency, which makes it impossible to provide ultra-low latency services.
Mobile Edge Computing (MEC) can serve devices at the edge of the network close to the
mobile device, thus meeting the ultra-low latency needs of mobile applications. The re-
sources of edge servers are limited, so overloading is possible. The cloud-edge collaboration
system combines the advantages of cloud computing and edge computing. On-demand
scheduling of cloud or edge computing resources to serve mobile devices can provide
sufficient computing resources while meeting the ultra-low latency requirements of mobile
applications [2].

However, there is a large number of heterogeneous movable devices in MECCN.
MECCN cannot fully utilize the network resources to provide QoS for huge amounts of
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data [3]. The SDN can use the control plane to achieve flexible and efficient management of
devices and make network-wide decisions to improve network resource utilization and
optimize network performance [4].

The control plane makes all network decisions in SD-MECCN. Therefore, it is impor-
tant to deploy a high-performance and highly reliable control plane for SD-MECCN. Con-
strained by the performance bottleneck of a single controller, distributed multi-controller
control plane should be deployed in massive networks. Moreover, dynamic deployment of
the control plane in mobile networks is necessary to adapt to network changes [5]. How-
ever, MECCN is a large-scale network with wide coverage, and the network topology is
constantly changing. The flat control plane in the MECCN will face high synchronization
overhead due to the frequently synchronized state information between controllers. In
the hierarchical control plane, there is no need to synchronize state information between
controllers of the same layer, which can reduce the state synchronization overhead [6].

To improve the performance of the control plane in a wide area network (WAN),
Hou et al. [7] proposed a two-layer control plane to ensure load balancing and high
reliability while reducing latency. Maity et al. [8] proposed a hierarchical dynamic control
plane deployment strategy that allows the control plane to adjust its performance as the
network traffic changes dynamically. However, most of the existing dynamic deployment
algorithms are based on heuristic algorithms, which have poor real-time performance
and cannot adapt to the real-time requirements of control plane adjustment due to rapid
changes in network state.

Deep Reinforcement Learning (DRL) can be used to learn and build network knowledge
using neural networks for fast decision-making [9]. Li et al. [10] proposed a three-layer control
plane dynamic deployment strategy based on multi-agent deep reinforcement learning, which
can adjust the control plane performance with the change of network state in time.

However, hotspot areas in the MECCN may sometimes have insufficient network
capacity, thus requiring additional temporary network access points and access to new
switches to meet user requirements. However, the existing controller deployment strategy
can rarely cope with the scenario where the number of switches changes.

1.1. Motivation

The network access points need to be added temporarily when network resources in
the hotspot areas are insufficient, and these new access points must also be managed by the
controllers. However, none of the existing controller deployment strategies considers the
impact of the temporary access points on the network and cannot adjust the deployment
scheme of the controller according to the temporary access points. Therefore, the neglection
of temporary access points will affect the ability of the control plane to regulate the network,
thereby affecting the quality of network service, especially the quality of network service
provided by the temporary access point. Table 1 compares the differences between this
paper and some important papers.

Table 1. Comparison with important papers.

Research Hierarchical Control Plane DRL Consider Node Variability Consider Control Reliability

Hou et al. [7] Yes No No No
Wu et al. [11] No Yes No No
Li et al. [10] Yes Yes No Yes
This paper Yes Yes Yes Yes

1.2. Contribution

In this paper, we study the dynamic deployment strategy of the hierarchical control
plane in the variable number of switches scenario to reduce the state synchronization
overhead between controllers. Moreover, MECCN has high requirements for latency and
reliability, and we construct a controller deployment model that considers latency, load
balancing, and control reliability. Finally, we solve the problem based on multi-agent
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deep reinforcement learning to ensure real-time control plane adjustment. The specific
contributions are as follows.

1. We study a two-layer control plane containing area controllers and root controllers.
We construct demand-aware latency, loading difference, and control reliability models
to deploy the control plane.

2. We design a dynamic controller deployment algorithm based on multi-agent deep
reinforcement learning to solve the controller deployment problem in networks with
a variable number of switches.

3. We dynamically adjust the number of controllers according to the controller load to
solve the problem of scattered choices among agents in a multi-agent body system.

4. The numerical results show that the CRADCPH-MADQN (Controller Requirement Aware
Dynamic Controller Placement for Hierarchical Architecture based on Multi-agent Deep
Q-network) algorithm outperforms the other three baselines, including Louvain-based
algorithm [7], single-agent DQN-based algorithm [11], and MADQN- [10] (without node-
variable networks consideration) based algorithm in terms of delay, load balance, and
reliability.

The remainder of the paper is organized as follows. In Section 2, we present the
relevant research work. In Section 3, we describe the system model and problem formula-
tion. In Section 4, we present the dynamic controller placement algorithm for SD-MECCN.
Section 5 presents simulation results, and Section 6 concludes the paper.

2. Related Work

Heller et al. [12] proposed to solve CPP in SDN first. This approach finds the ap-
propriate number and location of controller deployments in the network with the goal of
latency minimization. In a wide area network (WAN), the long distances between network
nodes lead to high data interaction latency between network devices. To address this
problem, T. Zhang et al. [13] studied the impact of controller-to-controller and controller-to-
switch interaction traffic on the controller deployment problem. Controller deployment
needs to satisfy latency constraints and controller deployment costs. To address this issue,
Han et al. [14] proposed to maximize the number of devices that can be managed by the
controller, thereby achieving guaranteed latency requirements and reduced deployment
costs. In WAN, the latency between controllers and switches is not only the propagation
latency but also the end-to-end latency and the queuing latency of controllers. Therefore,
Wang et al. [15] investigated the overall latency between controllers and switches. It reduces
the queuing latency of a single controller by using a multi-controller deployment strategy.
It also used a clustering algorithm to partition the network so as to reduce the end-to-end
latency between controllers and switches. Liyanage et al. [16] proposed a hierarchical
distributed controller deployment strategy for vehicular networking. The latency induced
by the system is reduced by deploying the controllers in Road Side Units (RSUs). The above
study proposes a deployment strategy based on latency. However, the load of different
controllers in a large-scale network can vary greatly, affecting controllers’ response speed
to network requests.

Since there are load differences between controllers, while changes in network traffic
lead to changes in controller load, many research works consider both latency and load
balancing. Hu et al. [17] proposed a controller deployment strategy. This policy minimizes
controllers’ average or worst latency with guaranteed load balancing. In vehicular net-
working, uneven distribution of network nodes generates load imbalance problems. In
vehicular networking, uneven distribution of network nodes generates load imbalance
problems. Kaur et al. [18] proposed a heuristic approach based on the incremental expan-
sion of candidate space to achieve energy minimization and load balancing under latency
constraints. G. Schütz et al. [19] proposed a comprehensive mathematical formalization
and a heuristic approach. The method is used to find the minimum number of controller
deployments and the optimal deployment location. Thus, load balancing is achieved in the
case of satisfying the latency constraint. The above research results consider both latency
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and load so that the control plane can satisfy the latency constraint and load balancing
among different controllers. However, the above schemes cannot adapt to the dynamic
changes of the network because the controller deployment scheme cannot be adjusted in
real time as the network state changes.

3. System Model

In this section, we first introduce the two-layer architecture control plane for SD-
MECCN. Then the latency, load difference, and control reliability models for deploying the
control plane are constructed based on the two-tier structure control plane.

Figure 1 shows the two-layer structured control plane of SD-MECCN. The control
plane consists of area controllers in the first layer and a unique root controller in the second.
The first layer contains multiple area controllers that handle network requests directly from
the switch. Different area controllers in the same layer are only responsible for maintaining
the network structure information in their area and do not need to synchronize the state
with other area controllers. The root controller is responsible for managing the network
topology, thus ensuring the logical centralization of the control plane. The important
notations are summarized in Table 2.
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Figure 1. Control plane of the two-layer structure.

Table 2. Important notations.

Notation Description

V the set of nodes
vi the node i in the network
N the maximum number of nodes
E the set of edges between nodes
A the set of area controllers
Y the number of area controllers
aj the area controller j
rk the intermediate node k on the path, which is a switch
dpp

a,b the propagation delay between node a and node b
dt

a,b the transmission delay between node a and node b
dq

a the queuing time of data in switch a
dpc

a the processing time of data in the switch a

dtwl
a,b

the transmission delay between node a and node b, and node a and node b are
wirelessly connected
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Table 2. Cont.

Notation Description

dtwd
a,b

the transmission delay between node a and node b, and node a and node b are
wired connected

Bw
a,b the transmission rate between node a and node b

laj
the load of the area controller aj

cv the load difference of the area controllers
Cc

a the control reliability Cc
a of controller a

Da
max the maximum delay from the mobile device to the area controller

∆l the load difference of the area controllers
Ca the mean value of control reliability of all area controllers
CY the control reliability of the root controller
DY

max the maximum delay from all area controllers to the root controller

3.1. Network Model

This paper constructs SD-MECCN as a node-variable undirected graph G = (V; E).
Where V is the set of nodes with different numbers at different moments and the maximum
number is N. V = {v1, v2, . . . , vN}, vi denotes switch i. E is the set of edges between nodes,
and the number of elements varies with the number of V. The number of area controllers is
X in the network. The set of area controllers can be expressed as A = {a1, a2, . . . , aX}. The
network has a unique root controller and is denoted as Y.

3.2. Delay Model

SD-MECCN is a heterogeneous distributed network with a wide coverage area and a
large amount of data to be transmitted. Therefore, propagation delay, transmission delay,
queueing delay, and processing delay need to be considered when modeling the delay of
the network.

The delay between node a and node b is defined as:

da,b =
(

dpp
a,r1 + dt

a,r1
+ dq

r1 + dpc
r1

)
+

n−1

∑
i=1

(
dpp

ri ,ri+1 + dt
ri ,ri+1

+ dq
ri + dpc

ri

)
+
(

dpp
rn ,b + dt

rn ,b + dq
rn + dpc

rn

)
(1)

where r1 to rn is the switch that data transmission between node a and node b needs to pass
through, dpp

a,r1 is the propagation delay between node a and node r1, dt
a,r1

is the transmission
delay between node a and node r1, dq

r1 is the queuing time of data in switch r1, and dpc
r1 is

the processing time of data in the switch r1.
The propagation delay between node a and node r1 is expressed as:

dpp
a,r1 =

la,r1

va,r1

(2)

where la,r1
is the distance between node a and node r1, va,r1

is the signal propagation rate
of node a and node r1.

The transmission delay between node a and node r1 is expressed as:

dt
a,r1

=

{
dtwl

a,r1
, node a and node r1 are wirelessly connected

dtwd
a,r1

, node a and node r1 are wired connections
(3)

When node a and node r1 are connected wirelessly, interference between the two nodes
needs to be considered. Considering the interference between different mobile devices [20],
the transmission rate between mobile device a and switch r1 is defined as follows:

Bw
a,r1

= Bo log2

(
1 +

pa ∗ ga,r1

N ∗ Bo + ∑a′∈U′ p′a ∗ ga′ ,r1

)
(4)
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where Bo is the bandwidth, N is the power spectral density of additive white Gaussian
noise, ga,r1 is the wireless channel gain between a and r1, pa is the sending power of mobile
device a, U′ is the set of all mobile devices that interfere with mobile device a.

Therefore, the transmission delay of mobile devices communicating with the switch r1
can be expressed as:

dtwl
a,r1

=
Da

Bw
a,r1

(5)

Da is the size of data to be sent by mobile device a.
When node a and r1 use wired connection, the transmission delay between the two

nodes can be expressed as:

dtwd
a,r1

=
Da,r1

Ba,r1

(6)

Da,r1 is the size of the data sent by a and r1, Ba,r1 is the bandwidth of the link between
a and r1.

When a massive amount of data need to be transmitted by a switch, the data need to
be queued in the switch. We use the M/M/N model to model this process. Therefore, the
sum of queueing and processing delay of data can be solved using the M/M/N model [10].

dq
r1 + dpc

r1 = f (cr1 , br1 , n, ur1 , ρ) (7)

cr1 , br1 denotes the number of threads and cache of switch r1, n is the amount of data
processed by the switch, ur1 is the processing capacity of each thread, and ρ is the ratio of
the average arrival rate of data to the average service rate.

3.3. Load Difference Model

In a distributed multi-controller control plane, the controller load varies due to the
uneven distribution of network load [21]. Since controllers have different computing
resources, the number of network requests that can be processed per unit of time also
varies. Therefore, using the number of network requests does not accurately reflect the
load of controllers. To measure controller load accurately, we use the ratio of the number of
network requests to the maximum number of network requests that can be processed per
unit of time as the controller load. Therefore, a load of the area controller ax is defined as:

lax =
rax

rax
max

(8)

rax is the number of network requests being processed by the area controller ax, rax
max is

the maximum number of network requests that the controller ax can process per unit of time.
The coefficient of variation is used to measure the degree of variation of sample data

with different mean values. Since the mean values of the area controller loads in the control
plane may be varied at different moments, we use the coefficient of dispersion of the
different area controller loads to measure the load differences. Thus, the load difference of
the area controller is defined as:

cv =
σ

µ
(9)

σ is the standard deviation of the different area controller’s load, µ is the mean of the
different area controller’s load.

3.4. Control Reliability Model

The controller needs to be deployed in a location with high control reliability to ensure
the continuity of control plane functions. The data transfer between the controller and
the managed devices is done through the data plane. Therefore, whether the control
information from the controller can reach the managed devices in time is related to the
accessibility of the network path. The reliability of the communication between nodes is
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related to the links and intermediate nodes’ reliability [7,22]. In addition, when multiple
paths between two nodes satisfy the delay constraint, data can be delivered through the
remaining paths when one path fails.

We take the mean value of the control reliability of a controller a and all devices
managed as the control reliability Cc

a of controller a and define it as:

Cc
a =

∑
|Va |
i=1 Ca,i

|Va|
(10)

where Va is the set of network devices controlled by controller a.
The control reliability Ca,i between the controller a to the managed device i is related to

the communication reliability within the delay constraint between them. Ca,i is defined as:

Ca,i =
g

∑
j=1

Cj
a,i (11)

where g is the number of paths between a and i that satisfy the delay constraint, and Cj
a,i is

the communication reliability of path j between controller a and device i.
The path between controller a and device i may have multiple intermediate nodes, so

a path consists of multiple sublinks. Assuming that the number of path j with sublinks is n,
the link reliability of sublink k is pp

k on the path, the number of nodes on the path is m, and
the reliability of node q is pn

q , The communication reliability Cr
a,i of a path r that connects

controller a to network device i can be defined as:

Cr
a,i =

n

∏
k=1

(
pp

k

)
∗

m

∏
q=1

(
pn

q

)
(12)

When the load among the links is higher, the possibility of control information arriving
over time is higher. We define the physical failure probability of a link as pb

k . Therefore, the
link reliability pp

k in the path is defined as:

pp
k =

(
1− pb

k

)
∗ sigmoid(

Bk

f t
k
) (13)

where f t
k is the network traffic of the kth link, Bk is the bandwidth of the kth link.

3.5. Problem Formulation

We need to deploy a two-layer structure control plane in SD-MECCN. First, we
deploy the first layer of area controllers to meet the ultra-low latency requirements of the
application. Then, we find the appropriate location of the root controller according to
the deployment scheme of area controllers to ensure the logical centralization of the SDN
control plane.

In a network, the latency of all controllers to the managed devices needs to satisfy
the latency constraint. Therefore, it is necessary to ensure that the maximum delay of the
controllers to the managed devices is less than the constraint. In addition, to fully utilize
the controller resources, the load difference of controllers should not be too large. Moreover,
the control reliability of the controllers needs to be large enough to ensure the sustainability
of the control plane function.

Therefore, latency, load difference, and control reliability constraints need to be satis-
fied when deploying area controllers. Since the three metrics have different scales, we use
the Z-score algorithm to normalize the three metrics. Thus, the optimization problem of
deploying area controllers can be expressed as follows:

minα1 f (Da
max) + β1 f (∆l)− γ1 f (Ca) (14)
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st. α1 + β1 + γ1 = 1 (14a)

Da
max ≤ da

max, a ∈ V (14b)

∆l ≤ lmax
a (14c)

Cc
i ≥ c1, i ∈ A (14d)

Line (14a) denotes that the sum of the weights of the three metrics is 1, (14b) denotes
that the maximum delay from the mobile device to the controller in the switch controlled by
the area controller cannot exceed da

max, (14c) denotes that the loading difference of different
area controllers cannot be greater than lmax

a , (14d) denotes that the control reliability of any
one area controller cannot be less than c1, La

max is the maximum value of the average delay
from the controller to the controlled mobile devices among all area controllers, Ca is the
mean value of control reliability of all area controllers, f (x) is the Z-score normalization
function [23].

Since only one root controller is available in the network, it is no longer necessary to
focus on load balancing but only to ensure that the maximum latency of area controllers
to the root controller meets the constraints and has high reliability. Therefore, the root
controller optimization problem can be expressed as follows:

minα2 f
(

DY
max

)
− γ2 f (CY) (15)

st. α2 + γ2 = 1 (15a)

DY
max ≤ dr

max (15b)

CY ≥ c2 (15c)

where (15a) denotes that the weighted sum is 1, (15b) denotes that the maximum delay
from all area controllers to the root controller cannot exceed dr

max, (15c) denotes that the
control reliability of the root controller cannot be less than c2.

4. Dynamic Controller Placement for SD-MECCN

The SD-MECCN has many mobile nodes, so the network topology and load constantly
change. Area controllers are responsible for handling network requests from the switches.
The control plane needs to adjust the deployment schemes of area controllers according to
network status to meet the network’s changing requirements. Then, it is necessary to find
the appropriate location of the root controller according to the deployment scheme of the
area controller. The proposed solution is shown in Figure 2.
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The multi-controller deployment problem is a multi-objective combinatorial optimiza-
tion problem (MOCO) and is NP-hard. Compared to heuristic algorithms, reinforcement
learning (RL) can better solve the MOCO problem [24]. However, as the network scale
keeps increasing, solving CPP using RL faces the dimensional explosion problem [10]. A
deep Q-learning network (DQN) uses neural networks to compute Q values, thus solving
the dimensional explosion problem to some extent. However, DQN [25] can only output
one action with the highest Q value at a time, and when solving multi-dimensional action
problems, the solution space is too large. Therefore, we use multi-agent DQN to solve this
problem. To make the proposed algorithm in this paper adaptable to the network topology
with a variable number of switches, we construct each switch as an agent. We dynamically
use different agent output deployment schemes according to the change in the number of
switches. We give the corresponding states, actions, and rewards in the following.

5. State space:

The state needs to reflect changes in network state and controller performance so
that the agent can select the correct action based on the state, so we define the state space
corresponding to the agent of the switch vi as follows:

Svi =
{

dvi ,aj , cv, Cc
aj

, laj
, hvi ,aj

, rvi , nall , ntem, a1, . . . , aN

}
(16)

where aj is the area controller corresponding to the switch j, hvi ,aj
is the shortest path

hop count between the switch and the controller, rvi is the number of network requests
generated by the switch, nall is the total number of switches in the network at that moment,
and ntem is the number of temporary switches in the network.

6. Action space:

In the algorithm proposed in this paper, we use the agent to choose the group where
each switch is located. Then, we choose the controller location within the group according
to the optimization objective (14). Thus, the action space used to deploy the area controller
is represented as:

A1 = {ξ ∗ gv1}, gvi ∈ [0, n− 1] (17)

where gvi denotes the area to which switch i belongs, and ξ is scale factor. Since the action’s
output from the multi-agent DQN is scattered, we scale the actions according to the overall
network load, thus reducing the number of controllers.

7. Reward:

To better optimize the target, we design the reward based on Equation (14), which sets
constraints on latency, loading difference, and reliability. To make the solution found by
the agent satisfy these constraints, we add a penalty factor based on these constraints to
the reward.

In summary, we define reward as:

r1 = −(α1 f (La
max) + β1 f (∆l)− γ1 f (Ca)) +

N

∑
i=1

pi (18)

where pi denotes the value of the penalty factor calculated based on the state of switch i
and the area controller to which switch i belongs.

Based on the multi-agent DQN algorithm, we design and implement the area controller
placement algorithm after we have modeled each agent’s state, action, and reward. The
specific algorithm is shown in Algorithm 1.
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Algorithm 1. The MADQN-based area controller placement

Input: Requests from different switches SR, number of mobile devices UD, node-variable network
topology G, current number of switches CS; weight factors a,b,c
Output: the solution of area controller placement
1. Initialize the multi-agent DQN environment envmadqn with topology G, SR, UD and a,b,c;
2. Initialize the initial actions of all agents preactions by the Louvain community detection algorithm;
3. for ep = 0; ep < maxep do
4. Initialize the initially state prestates of all agents according to preaction
5. for es = 0; es < maxstep do
6. for i = 0; i < CS do
7. Get the next action nextactions[i] of agent i according to prestates[i] by DQN;
8. end for
9. Get the next state nextstates, and the reward rews[i] according to nextactions;
10. for i = 0; i < CS do
11. Training the model in DQN of agents i according to
prestate[i],nextstates[i],nextactions[i] and rews[i];
12. end for
13. prestates = nextstates;
14. end for
15. end for
16. Obtain the solution of area controller placement according to the actions with the maximum
sum of rewards.

Finally, according to the deployment scheme of the area controller and the optimization
objective (15), we choose the location with the largest optimization objective (15) value
in the network as the location of the root controller. Since the solution space of the root
controller is small, we do not use DRL for solving it anymore. The specific algorithm for
solving the root controller is shown in Algorithm 2.

Algorithm 2. The root controller placement

Input: Requests from different switches SR, number of mobile devices UD, node-variable network
topology G, weight factors a,c, the actions areaactions of area controller placement agents, the
number of area controllers NA; current number of switches CS;
Output: the location of root controller RN
1. Initialize the algorithm with topology G, SR, UD, a, c and areaactions;
2. Get the delay from area controllers to the root controller yc by Equation (1);
3. Get the control reliability from area controllers to the root controller yc by Equation (10)
4. for i = 0; i < CS do
5. Get the reward of switches i;
6. end for
7. the node with the maximum reward is the location of the root controller.

5. Performance Evaluation
5.1. Simulation Setting

This section evaluates the proposed CRADCPH-MADQN algorithm under an IRIS
Networks real-world topology obtained in Tennessee, USA [26]. The IRIS Networks include
51 nodes and 64 edges. The distance between nodes is calculated using the Haversine for-
mula [27], and the shortest path between nodes is obtained using Dijkstra’s algorithm [28].
Our experimental scenario is a single-city scenario, and the topology used is obtained from
multiple cities. Therefore, we use 1/10 of the distance in the topology as the experimental
distance to calculate the propagation delay. Simulation parameters are given in Table 3.
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Table 3. Simulation Parameters.

Parameter Value

the number of nodes 51
the number of edges 64
α1 0.8
β1 0.1
γ1 0.1
α2 0.3
γ2 0.7
Bo 100
pa 50
ga,b 13
N 11

Different areas of the city have different numbers of mobile devices. Hot spots have
many mobile devices and high network traffic, while idle areas have few mobile devices
and low network traffic. When the network traffic is excessive in certain regions, additional
network access points are needed temporarily to meet the network demand of users.
Therefore, we set the network nodes as busy nodes and non-busy nodes and design a
different number of network requests, network load, and some mobile devices according
to the characteristics of different regions at different times. We also design different
temporary network access points according to the city’s foot traffic trend. Moreover, as
the network load fluctuates, we add different numbers of mobile switches to expand the
network capacity temporarily. The specific parameter generation regularity is shown in
Tables 4 and 5. The number of busy nodes is 20, and the number of non-busy nodes is 31.
In generating the data, we first generate the number of mobile devices and the number
of network requests for different nodes simultaneously using the normal distribution.
After obtaining a mean value, we then use a Poisson distribution to produce the specific
number of mobile devices and the number of network requests for each node. To verify
the algorithm’s effectiveness, we generate a dataset for training and another for validation
using the same data pattern.

Table 4. Number of mobile devices and network requests at different access points.

Time Item Busy Access Point Ordinary Access Point Temporary Access Point

00:00–8:00 Mobile devices (280,80) (142,39) (0,0)
Network requests (1213,277) (389,111) (0,0)

8:05–11:00
Mobile devices (1266,396) (721,177) (706,128)
Network requests (3881,964) (2157,699) (2087,595)

11:05–14:00
Mobile devices (1000,309) (513,154) (0,0)
Network requests (3037,673) (1458,355) (0,0)

14:05–17:00
Mobile devices (1781,515) (785,215) (796,265)
Network requests (5502,1594) (2585,745) (2328,584)

17:05–19:00
Mobile devices (1244,321) (500,165) (0,0)
Network requests (3479,1132) (1435,451) (0,0)

19:05–21:00
Mobile devices (1655,391) (600,192) (677,214)
Network requests (4779,1180) (1741,552) (2055,520)

21:05–23:55
Mobile devices (501,103) (150,48) (0,0)
Network requests (1488,452) (446,141) (0,0)

In this section, we compare the proposed algorithm with the community partitioning
algorithm [7] (named Louvain), the DQN-based algorithm (named DQN) [11], and the
multi-agent DQN algorithm (named MADQN) [10] without considering variable nodes to
verify the performance of the proposed algorithm.
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Table 5. Network traffic between different nodes.

Time Between Busy and Busy Between Busy and Ordinary Between Ordinary and Ordinary

00:00–8:00 250–350 120–220 40–80
8:05–11:00 800–850 600–650 200–350
11:05–14:00 600–700 450–550 150–250
14:05–17:00 800–1000 600–800 200–500
17:05–19:00 700–800 500–600 200–300
19:05–21:00 800–900 600–700 200–400
21:05–23:55 300–400 150–250 50–100

Louvain [7]: Firstly, the Louvain community partition algorithm is used to partition
the switch nodes, and then the appropriate node is selected as the area controller of a
partition according to Equation (14) in each partition. We implemented a version of the
algorithm that considers node variability.

DQN [11]: The single-agent DQN is used to partition the switch nodes in every step,
and then the appropriate node is selected as the area controller of a partition according to
Equation (14) in each partition. The algorithm does not consider node variability.

MADQN [10]: Multiple agents cooperate to complete the partition of switch nodes in every
step, and then the appropriate node is selected as the area controller of a partition according to
Equation (14) in each partition. The algorithm does not consider node variability.

5.2. The Performance of Area Controller Placement

The average latency from the device to the area controller determines whether the
area controller can receive network requests from the device in time. The load difference
reflects the load difference between area controllers, and the control reliability represents
the continuity of the managed network. Therefore, we will compare the performance of the
area controller in terms of average delay, load difference, and average control reliability.
In addition, the smaller number of hops from the switch to the area controller, the less
communication between the switch and the area controller is affected by the network state.

Figure 3 shows the trend of the average delay from mobile devices to area controllers
as the number of network requests and network load changes. With the change in time,
the number of network requests and traffic is changing, affecting the data transmission
between the mobile device and the area controller. The experimental results of the proposed
algorithm are more stable than the others because the number of network requests and
the network load varies significantly at different times, and the algorithm in this paper
can dynamically change the number of controllers in the network to reduce the impact of
the network load to the controller load. Specifically, the average latency of the proposed
algorithm is less than 9.6 ms, the average latency of the single-agent DQN-based algorithm
is more than 13.7 ms, the average latency of the MADQN-based algorithm is more than
11.2 ms, the average latency of the Louvain-based algorithm is more than 12.5 ms. Therefore,
the average delay of the proposed algorithm is always the lowest and varies the most
smoothly. The performance of the single-agent DQN algorithm is the worst among all
the algorithms because the algorithm does not change the number of controllers as the
network load changes. The MADQN algorithm, which can adjust the number of controllers
as the network state changes, performs significantly better than the single-agent DQN. This
algorithm does not consider the variability of the number of switches with the network
state. Thus, it cannot find a more suitable controller for the temporarily added switches,
which results in a worse performance than the algorithm proposed in this paper. Since
the Louvain-based algorithm also considers the variability of the number of switches, it
sometimes performs better than MADQN.
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Figure 3. Average delay.

Figure 4 represents the load difference of the controller deployment schemes of dif-
ferent algorithms as the network state changes. Figure 4 shows that the load difference
between both the proposed algorithm and the Louvain-based algorithm in this paper is
lower than the rest of the algorithms, while their load difference varies in a much flatter
trend. Specifically, the maximum load difference of the proposed algorithm is about 0.5,
the maximum load difference of the single-agent DQN-based algorithm is about 0.9, the
maximum load difference of the MADQN-based algorithm is about 0.6, the maximum load
difference of the Louvain-based algorithm is about 0.51. This shows that the impact of
temporary switches on network performance is considered when the controller is deployed
to find a suitable controller for the temporary switches. This also indicates that it is neces-
sary to consider the impact of temporarily added switches on network performance in a
network environment where the number of switches changes.
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Figure 4. Load difference.

Figure 5 shows the results of the average control reliability of the area controllers as the
network state changes. Specifically, the lowest control reliability of the proposed algorithm
is more than 1.3, the lowest control reliability of the single-agent DQN-based algorithm is
less than 0.9, the lowest control reliability of the MADQN-based algorithm is less than 1.2,
the lowest control reliability of the Louvain-based algorithm is about 1.0. Among them, the
results of the DQN- and the Louvain-based algorithm are unstable. It indicates that these
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two algorithms’ controller deployment strategies cannot adjust the controller reliability in
time according to the network state change. The MADQN algorithm affects the algorithm’s
performance because it does not consider the temporary switches. The proposed algorithm
always maintains the highest value of control reliability, which can guarantee the high
reliability of the control plane at all times.
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Figure 5. Control reliability.

Figure 6 shows the average number of hops from the managed switches to the area
controller in the controllers deployed by each algorithm. In the data transmission process,
the fewer hops between nodes, the less data transmission is affected by relay nodes and
the less connectivity between nodes in the path. Therefore, the fewer the number of hops
between nodes, the better the stability of data transmission. Among them, the DQN
algorithm has the largest variation in the average number of hops. It shows that when
the controllers are deployed in the case of constant network state change, it is necessary
to adjust the number of controllers in time according to the network load state. In both
Figures 4 and 5, the performance of the proposed algorithm in this paper is the best. It
indicates that the control plane deployed by the algorithm proposed in this paper can
always maintain high reliability and has the best adaptability to network state changes.
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5.3. The Performance of the Root Controller

After obtaining the deployment scheme of the area controller, it will also find the
root controller’s suitable location according to the area controller’s deployment. The root
controller is responsible for managing the entire network topology and ensuring the logical
centralization of the control plane. In this section, we will compare the performance of the
root controller found by different algorithms.

Figure 7 shows the average latency from area controllers to the root controller for all
algorithms. Specifically, the average latency of the proposed algorithm is less than 8.4 ms,
the average latency of the single-agent DQN-based algorithm is more than 8.5 ms, the
average latency of the MADQN-based algorithm is more than 8.5 ms, the average latency
of the Louvain-based algorithm is more than 9.8 ms. Figure 7 shows that our algorithm
obtains the lowest average latency from the root controller to the area controllers. The
deployment location of the root controller is based on the deployment scheme of the area
controllers. Therefore, the deployment of the root controller is influenced by the area
controllers. The comparison results in Figure 7 illustrate that the proposed algorithm in
this paper does not affect the deployment of the root controller due to considering the
variability of the number of switches. The results of the DQN algorithm are unstable. The
results obtained by the Louvain-based algorithm are the worst. In addition, the results
of the root controller are affected by the deployment results of area controllers. This also
shows that the deployment results of area controllers obtained by the proposed algorithm
are more suitable for networks with a variable number of switches.
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Figure 7. Root average delay.

Figure 8 shows the control reliability of the root controller obtained by all algorithms.
Specifically, the lowest control reliability of the proposed algorithm is more than 0.6, the
lowest control reliability of the single-agent DQN-based algorithm is less than 0.44, the
lowest control reliability of the MADQN-based algorithm is less than 0.5, the lowest control
reliability of the Louvain-based algorithm is about 0.37. The control reliability of the
root controller deployed by all algorithms fluctuates continuously because the network
transmission performance influences the reliability. Among them, the control reliability
obtained by the algorithm proposed in this paper is always the highest. Figures 7 and 8
illustrate that the CRADCPH-MADQN algorithm can find the root controller with the
best performance and guarantee the logical centralization of the control plane and the
processing of service requests across area controllers when the network state is constantly
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changing. In addition, the results of the root controller are affected by the deployment
results of area controllers. This also shows that the deployment results of area controllers
obtained by the proposed algorithm are more suitable for networks with a variable number
of switches.
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Figure 8. Root control reliability.

6. Conclusions

In this paper, we propose to solve the controller deployment problem in SD-MECCN
with variable network nodes using multi-agent DQN. First, the issue of high propagation
delay due to the wide coverage of the MECCN network and the high state synchronization
overhead between different controllers due to the continuous movement of mobile devices.
In this paper, we study the deployment of the control plane for the two-layer structure
of SD-MECCN. Considering that the control plane needs to meet the requirements of
low latency, low loading difference, and high reliability, we design the latency, loading
difference, and reliability models and construct the optimization problem. The change in
network load affects the controller load. To ensure the stability of the controller load, we
designed a dynamic deployment algorithm based on multi-agent DQN. The algorithm can
dynamically change the number of controllers according to the network load to ensure the
stability of the controller plane load. The experimental results show that the performance
of area controllers deployed by the CRADCPH-MADQN algorithm is the best in terms of
delay, loading difference, and reliability. Moreover, the deployed root controllers based on
the deployment results of area controllers also have the best performance. Those illustrate
that it is necessary to consider the effect of node variability on the control plane in networks
with variable network nodes.
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