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Abstract: In order to enhance the ability to represent rock feature information and finally improve
the rock identification performance of convolution neural networks (CNN), a new pooling mode
was proposed in this paper. According to whether the pooling object was the last convolution layer,
it divided pooling layers into the sampling pooling layer and the classification pooling layer. The
adaptive pooling method was used in the sampling pooling layer. The pooling kernels adaptively
adjusted were designed for each feature map. The second-order pooling method was used by the
classification pooling layer. The second-order feature information based on outer products was
extracted from the feature pair. The changing process of the two methods in forward and back
propagation was deduced. Then, they were embedded into CNN to build a rock thin section image
identification model (ASOPCNN). The experiment was conducted on the image set containing 5998
rock thin section images of six rock types. The CNN models using max pooling, average pooling
and stochastic pooling were set for comparison. In the results, the ASOPCNN has the highest
identification accuracy of 89.08% on the test set. Its indexes are superior to the other three models in
precision, recall, F1 score and AUC values. The results reveal that the adaptive and second-order
pooling methods are more suitable for CNN model, and CNN based on them could be a reliable
model for rock identification.

Keywords: rock; rock thin section image; rock identification; convolution neural networks;
pooling layer

MSC: 68T07

1. Introduction

Rock identification is a basic and prerequisite work of geological engineering [1].
For instance, geologists need lithological type information to infer the history of regional
geological evolution, judge types of deep mineral resources, as well as oil and gas resources,
and invert reserve information of various resources [2,3]. Engineers need lithological
type information to guide and design the construction of geotechnical engineering, such
as mining and tunnelling [4,5]. Insufficient rock type information may lead to a series
of engineering disasters, including landslide, collapse, and settlement [6,7]. Hence, it is
necessary to study how to identify rock types accurately and quickly.

Many scholars have conducted lots of research on rock identification and put forward
many methods, which can be summarized into the following four types: microscopic
observation, experimental tests, statistics and learning, and deep learning [8].

Microscopic observation and experimental tests belong to manual identification meth-
ods. They observe rock characteristics through optical microscopes, and analyze composi-
tions and structures of rocks and minerals with the help of X-ray Diffraction (XRD), Electron
Microprobe Analysis (EMPA), etc. Zhang [9] introduced the identification principle and
process of rock microscopic observation in combination with cases. In order to identify

Mathematics 2023, 11, 1245. https://doi.org/10.3390/math11051245 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051245
https://doi.org/10.3390/math11051245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3905-5514
https://doi.org/10.3390/math11051245
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051245?type=check_update&version=1


Mathematics 2023, 11, 1245 2 of 27

acid volcanic rocks, Liu et al. [10] used X-ray Fluorescence Spectroscopy (XRF) to analyze
the principal components of rocks and EMPA to check and show the minerals. Manual
identification methods have achieved certain results; however, they are time-consuming,
labor-intensive, costly, subjective, and greatly affected by professional levels of observers
as well as professionalism of instruments. It is not applicable for rock identification of
large-scale stratums in engineering.

The automatic identification methods based on rock features and machine learning
have gradually gained the favor of scholars [11,12]. Chatterjee et al. [13] input color, shape
and texture features extracted from rock images into SVM to identify rock types, and finally
achieved an accuracy of 96.2%. Patel et al. [14] extracted nine color histogram features
from rock images and input them into the probabilistic neural network. They successfully
identified limestone types, with an error rate of less than 6%. Zhang et al. [15] used five
machine learning models to identify rock and mineral images, and then selected three
models with the best performance to stack. The stacked model effectively improved model
performance. Machine learning methods can realize automatic identification of rock types.
However, features required to classify still need to be selected subjectively by professionals.
Feature types selected usually are few [8]. In addition, features of different lithology have
different preferences, resulting in many problems in practical application.

In recent years, artificial intelligence (AI) methods and technologies have developed
rapidly [16–20]. As a core method in the field of target detection, target identification
and target segmentation, deep learning has been gradually applied to geological and rock
engineering [21–26].

As a visual model of deep learning, convolutional neural networks (CNN) can auto-
matically select the most suitable features to distinguish different type rocks. Rock type
identification using CNN is usually based on rock thin section images. Rock thin sections
are rock slices, which are observed and studied under the polarizing microscope. The rock
slices are made from large rock samples through cutting, grinding and other operations,
and they are about 60 mm × 60 mm in size and about 0.3 mm in thickness. Many scholars
have performed lots of innovative research on rock thin section image identification. Polat
et al. [27] used DenseNet121 and ResNet50 to identify six types of volcanic rock and tested
the impact of four different optimizers on model accuracy. Alzubaidi et al. [28] used the
architecture of ResNeXt-50 to identify the rock types of oil and gas reservoir logging core
images, and the final accuracy reached 93.12%. In order to improve the identification accu-
racy, Liu et al. [29] built a mineral image identification model based on ResNet, embedding
four visual attention blocks. Ma et al. [30] proposed the MaSE-ResNeXt model to enhance
feature connectivity between different channels, and the identification accuracy on three
kinds of rock thin section images finally reached 90.89%. Li et al. [8] researched the influence
of three different optimization algorithms and two attenuation methods of learning rate on
identification performance. Dos Anjos et al. [31] believed that the existing CNN needed
to unify the input image size, which would lose the original image information inevitably.
Their research work proposed a CNN based on a pyramid pooling layer. The image was
down sampled according to the pyramid layering mode, which can process input images
of all sizes. The final research showed that this method can improve the identification
accuracy to a certain extent. Su et al. [32] believed that different shooting types of rock
images had an impact on the final accuracy. Their research work inputted three types of
rock images into three identical CNN, respectively, including the plane polarized light
image, the cross polarized light image and the image after principal component analysis.
The final rock type was determined through the maximum likelihood method based on
the results of three CNN. The final accuracy reached 89.97%. Seo et al. [33] researched the
impact of local images on the identification accuracy. They believed that the features in
local areas in the rock image were more representative and definite. They proposed a model
based on image segmentation. The large image was divided into several small parts, which
were input into CNN in turn. The final lithology category was the one with the highest
quantity of local identification results. Xu et al. [34] researched the impact of the fusion
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of image and data features on rock identification. Their research work proposed a fusion
identification method, which inputs image features and parts of lithological data into the
full connection layer of CNN. The final results showed that this method can improve the
identification accuracy. Zhang et al. [15] researched the effect of different classifiers on the
performance of rock identification models. They identified and classified the rock image
features extracted from CNN by using five classifiers: logical regression (LR), support vec-
tor machine (SVM), random forest (RF), k-nearest neighbors (KNN), multilayer perceptron
(MLP) and gaussian naive Bayes (GNB). The final result showed that the classification
performance of the logistic regression, support vector machine and multilayer perceptron
was better than other methods. However, the above research still has some deficiencies.
Current research mainly focuses on the function of convolution layers, full connection
layers and optimization algorithms of CNN, ignoring the effect of pooling layers on the
performance of rock identification. Current pooling layers only play the role of down
sampling. The current pooling methods used are main max pooling and average pooling.
They are static and can only extract less information about rock features. Max pooling is
sensitive to mutation of pixels, so it can retain texture features of rocks, as well as shape and
size features of minerals to the maximum extent [35]. Average pooling pays more attention
to preserving overall feature information of input images. It can better preserve color
features, background features and global combination features of mineral composition
in location and content [29]. However, internal structures and mineral morphology of
rocks contain dozens or even hundreds of features, and the features required to distin-
guish different rocks are distinctive. Static pooling methods cannot select the best pooling
method according to different lithological characteristics. At the same time, current pooling
methods can only obtain first-order feature information from a single feature map, ignoring
the relationship between feature pairs. Adequate exploration of feature distributions is
important for realizing the full potentials of CNN [36].

Therefore, the functions of pooling layers were divided into two types: down sampling
and classification, and the adaptive and second-order pooling methods were designed and
respectively applied in this paper. The adaptive pooling set pooling kernels for each feature
map. The parameters in pooling kernels participated in the training process, and finally
they were configured by error feedback. During the process of the second-order pooling,
the second-order feature information based on outer products between feature pairs was
extracted and finally input into a classifier. After deducing the changing process of forward
and back propagation, the proposed pooling methods were embedded into CNN to build
an identification model of rock thin section images. Another three models using traditional
pooling methods were used for comparison. The performance was comprehensively
evaluated with multiple indicators to provide a reliable model for rock identification.

2. Data Collection

The rock thin section images used in this paper were from the symposium on Micro-
scopic Images of Rocks in the open-source database, China Scientific Data [37–42]. There
were 3374 images collected from the open-source database. Six kinds of common rocks
were selected for experiment, including wackestone, granite, schist, quartz sandstone,
conglomerate and crystalline dolomite. The sites of rock samples and the production
process of rock thin section images were shown in Figure 1a. As shown in Figure 1b,
these rock samples came from geological drillings in different regions of China. Through
the steps in Figure 1c, rock samples were cut, polished and stuck into rock thin sections,
and then they were photographed under polarizing microscopes to obtain microscopic
images. Wackestone is a kind of sedimentary rock. The matrix filling of it is plaster, and
the particles are mainly bioclasts and cuttings of rocks. Granite is a kind of igneous rock
with holocrystalline structures. Its main mineral compositions are quartz, feldspar, and a
small amount of mica. Schist is a kind of metamorphic rock with lamellar structures. Its
common mineral compositions include quartz, quartzite, and mica. Quartz sandstone is a
kind of sedimentary rock with clastic structures. Its mineral composition is mainly quartz,
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containing a small amount of feldspar. The cement between minerals is calcareous. The
diameter of mineral particles is mostly between 0.2 mm and 2 mm. Conglomerate is a kind
of sedimentary rock with clastic structures. Its mineral compositions are mainly quartz and
feldspar and contains some cuttings of rocks. The cement between minerals is siliceous.
The diameter of mineral particles is mostly between 2 mm and 5 mm. Crystalline dolomite
is a kind of sedimentary rock with recrystallized structures. The crystalline minerals are
mostly quartz, with diameters ranging from 0.005 mm to 0.03 mm. The cement between
minerals is siliceous.
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Figure 1. The sites of rock samples and the production process of rock thin section images; (a) Rock
sample acquisition area; (b) Lithological map of different stratum; (c) Manufacturing process of rock
thin sections; (d) Rock thin section image set.

To prevent over fitting in the training process and increase robustness of results,
several commonly used image enhancement technologies were used to expand the image
set, including image rotation, image flip, brightness change, noise addition and histogram
equalization [30,33]. The image set contained 5998 images after enhancement. It was
roughly divided into the training set, validation set and test set with the ratio of 7:2:1. The
specific division details can be seen in Table 1. The pixels of the images in the original
set were not uniform, while the CNN model required the input images to be consistent in
size, so the bilinear interpolation algorithm was used to unify the image size to 227 × 227
pixels. The process of bilinear interpolation was shown in Figure 2. According to the
coordinate defined in Figure 2, the pixel values of the interpolation points can be calculated
by Equations (1) and (2); the pixel value of the target point can be calculated by Equation (3).

f (x, y0) =
x1 − x
x1 − x0

f (x0, y0) +
x− x0

x1 − x0
f (x1, y0) (1)
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f (x, y1) =
x1 − x
x1 − x0

f (x0, y1) +
x− x0

x1 − x0
f (x1, y1) (2)

f (x, y) =
y1 − y
y1 − y0

f (x, y0) +
y− y0

y1 − y0
f (x, y1) (3)

where f (x,y) is the pixel value of the target point; f (x,y0), f (x,y1) are pixel values of the
interpolation point; f (x0,y0), f (x1,y0), f (x0,y1), f (x1,y1) are pixel values of the original points.

Table 1. Rock thin section image set.

Rock Type Training Set Validation Set Test Set Total

Wackestone 636 180 103 919
Granite 732 216 92 1040
Schist 672 192 89 953

Quartz sandstone 756 216 102 1074
Conglomerate 768 216 104 1088

Crystalline dolomite 648 180 96 924
Total 4212 1200 586 5998
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3. Proposed Method
3.1. Basic CNN Model

The structure of CNN can be divided into two modules: feature extraction and fea-
ture classification, and its overall workflow can be divided into two processes: forward
propagation and back propagation (parameters updating). Its basic structure was shown in
Figure 3.

Images to be identified were input into the feature extraction module, which was
stacked by multiple convolution layers and pooling layers. The module was used to extract
the underlying features of images. Then, the extracted features were input into the feature
classification module, which was composed of full connection layers and a softmax layer.
Its function was to classify the input features. The final output was a vector, in which each
element value represented the probability that the image belonged to the corresponding
category. Through this process, a forward propagation was completed. Then the sum of
the error between calculated results and real values was taken as the total loss of CNN.
The partial derivatives of the total loss to parameters were taken as the error sensitivity.
The error sensitivity of each layer was calculated by back propagation. Then the parameter
values were optimized by optimizers. Through this process, a back propagation process
was completed. The gradient descent method was usually used as the optimizer in CNN.
Its calculation process was shown in Equation (4). The CNN model completed an iteration
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through forward and backward propagation. The specific function of each layer was
introduced below.

new(w) = old(w)− ηδw (4)

where δw was the error sensitivity of weight parameter w; η was the learning rate.
Mathematics 2022, 10, x FOR PEER REVIEW 6 of 28 
 

 

 

Figure 3. The structure and workflow of CNN model. 

Images to be identified were input into the feature extraction module, which was 

stacked by multiple convolution layers and pooling layers. The module was used to ex-

tract the underlying features of images. Then, the extracted features were input into the 

feature classification module, which was composed of full connection layers and a soft-

max layer. Its function was to classify the input features. The final output was a vector, in 

which each element value represented the probability that the image belonged to the cor-

responding category. Through this process, a forward propagation was completed. Then 

the sum of the error between calculated results and real values was taken as the total loss 

of CNN. The partial derivatives of the total loss to parameters were taken as the error 

sensitivity. The error sensitivity of each layer was calculated by back propagation. Then 

the parameter values were optimized by optimizers. Through this process, a back propa-

gation process was completed. The gradient descent method was usually used as the op-

timizer in CNN. Its calculation process was shown in Equation (4). The CNN model com-

pleted an iteration through forward and backward propagation. The specific function of 

each layer was introduced below. 

( ) ( )new w old w w= −  (4) 

where δw was the error sensitivity of weight parameter w; η was the learning rate. 

The function of convolution layers is to extract feature maps. Convolution kernels 

slide across the input images from left to right and top to bottom. At each sliding position, 

the sub-region elements and convolution kernels perform convolution operations as 

shown in Equation (5). The output results constitute feature maps. 

1( )
j

l l l l

j i ij j

i M

X f X k b−



=  +  
(5) 

where 
l

jX
 is the jth feature map of the lth layer, 

l

ijk
 is the convolution kernel of the lth 

layer,   is the convolution operation symbol, which represents the sum of the multipli-

cation of corresponding position elements of two matrixes. The function of activation lay-

ers is to increase the nonlinearity of output and make multi-layer stacking meaningful. 

The commonly used activation functions include ReLU and Sigmoid. The function of 

pooling layers is to reduce the size of the feature maps. Pooling layers output results 

through a sliding window similar to convolution layers. Each sliding outputs a special 

value of the corresponding sub-region. The function of the full connection layers is to clas-

sify the input feature data. It can map the input features to the sample tag space and obtain 

the values of the sample belonging to each category. The calculation process is shown 

below. 

Figure 3. The structure and workflow of CNN model.

The function of convolution layers is to extract feature maps. Convolution kernels
slide across the input images from left to right and top to bottom. At each sliding position,
the sub-region elements and convolution kernels perform convolution operations as shown
in Equation (5). The output results constitute feature maps.

Xl
j = f ( ∑

i∈Mj

Xl−1
i ⊗ kl

ij + bl
j) (5)

where Xl
j is the jth feature map of the lth layer, kl

ij is the convolution kernel of the lth layer,
⊗ is the convolution operation symbol, which represents the sum of the multiplication
of corresponding position elements of two matrixes. The function of activation layers is
to increase the nonlinearity of output and make multi-layer stacking meaningful. The
commonly used activation functions include ReLU and Sigmoid. The function of pooling
layers is to reduce the size of the feature maps. Pooling layers output results through a
sliding window similar to convolution layers. Each sliding outputs a special value of the
corresponding sub-region. The function of the full connection layers is to classify the input
feature data. It can map the input features to the sample tag space and obtain the values of
the sample belonging to each category. The calculation process is shown below.

Xl
j = f (∑

i
Xl−1

i ·Wi + bl
j) (6)

The function of the softmax layer is to convert the results from full connection layers
into probabilities between 0 and 1. The calculation process is shown below.

p(xi) =
exi

K
∑

j=1
exj

(7)

3.2. Rock Thin Section Image Identification Model

In this section, the pooling layers were first divided into the sampling pooling layer
and the classification pooling layer according to whether the pooling object was the last
convolution layer. Then, the adaptive pooling method was designed for the sampling
pooling layer, and the second-order pooling method was designed for the classification
pooling layer. Then based on the Alexnet [43] framework, these two pooling methods were
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embedded to design a rock thin section image identification model. Alexnet is a classic CNN
model, which won the championship in the IMAGENET-2012 competition. It was widely
used in rock image identification because of its small model and fast computation [44], the
adaptive pooling and second-order pooling methods were embedded to build a feature
extractor, and then the feature extractor was combined with a classifier to construct a rock
thin section image identification model (ASOPCNN). The overall structure of the model
was shown in Figure 4. Rock thin section images with 227 × 227 pixels were input into
the feature extractor, which included 5 convolution layers, 2 adaptive pooling layers and
1 s-order pooling layer. The detailed parameters of the convolution and pooling layers were
shown in left bottom of Figure 4. The parameter table in the convolution layer successively
represented the kernel size and number, the layer name, the moving step and padding
value. The parameter table in the pooling layer successively represented the kernel size and
number, the layer name and the pooling step. The second-order pooling layer specifically
included five layers as shown in lower right corner of Figure 4. In order to speed up the
training process, the 2nd, 4th and 5th convolution layers were set as the upper and lower
parts, using two GPU for parallel computing. The activation function used the ReLU.
The rock features extracted were input into the classifier. The classifier contained 3 full
connection layers and 1 softmax layer. The numbers of neurons in the full connection layer
were 4096, 4096, 6, respectively. The probability values belonging to each rock category
were output as the results.
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3.3. Adaptive Pooling Method

The purpose of sampling pooling layers is to reduce the size of feature maps [45].
The traditional pooling methods are mainly max pooling, mean pooling and stochastic
pooling. Their pooling processes were shown in Figure 5. With max pooling, the maximum
value of each region was output. The average value of each region was output through
average pooling. With stochastic pooling, the probability of each element in the region
was calculated, and then the output was selected randomly according to the magnitude
of probability [20]. However, pooling methods have certain selectivity in the process of
representing rock features. Figure 6 shows the selectivity of two pooling methods. It can be
seen in Figure 6a that texture features became more prominent after max pooling, while
the number of textures decreased, and the structure becomes fuzzy after average pooling.
It showed that max pooling had a strengthening effect on texture features, while average
pooling had a restraining effect. Figure 6b shows the pooling process of wackestone. From
the color histogram, we can see that color values of the original image were concentrated
in the range of 50 to 200 but are relatively dispersed. After average pooling, the value
range remained unchanged, and the aggregation degree was higher. It indicated that some
disturbing color information was lost after average pooling. However, the color range
changed after max pooling. It indicated that the original color feature had been lost, which
also proved the inapplicability of max pooling to color features.
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stochastic pooling.

No matter what traditional pooling method is used, all feature maps use a single sam-
pling way, which will inevitably cause loss of feature information and affect performance
of CNN. An adaptive pooling method was proposed in this paper, and its pooling process
was shown in Figure 7. For input feature maps, firstly, the pooling kernels were deployed
for each feature map; each kernel was independent of each other. Then, initial values were
set randomly between 0 and 1 for each kernel. Finally, convolutional results were calculated
between the feature maps and the pooling kernels through Equation (8).

O =

m
∑

i=1

n
∑

j=1
Iij·Wij

m
∑

i=1

n
∑

j=1
Wij

(8)

where O was the output value; I was the input value; W was the parameter of pooling
kernels. The parameters were adaptively adjusted, and the process can be divided into the
following four steps, as shown in the right side of Figure 7.
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Step 1: Calculate total loss L. The total loss was the difference between real values and
actual output values.

Step 2: Calculate partial derivatives. The partial derivatives of total loss to each
parameter of pooling kernels were calculated layer-by-layer through back propagation.

Step 3: Update parameters. According to the partial derivatives and the learning rate,
new parameters were calculated through the gradient descent method.

Step 4: Limit parameter boundary. If the calculated parameter was bigger than 1, then
it was equal to 1; if the calculated parameter was smaller than 0, then it was equal to 0.

The adaptive pooling method affected the forward and back propagation process of
CNN. Its forward propagation was the convolutional calculation of the target feature maps
with the pooling kernels. The result feature maps can be calculated by Equation (9).

yi,j =
b

∑
m=1

b

∑
n=1

wm,n·xs·(i−1)+m,s·(j−1)+n (9)

where xi,j and yi,j, respectively, represented the values in row i and column j of the target
feature maps and the result feature maps; wm,n represented the value in row m and column
n of pooling kernels; b represented the size of pooling kernels; s represented the step size.

The back propagation process needed to calculate δxi,j and δwi,j through Equations (10)
and (11). δxi,j was the error sensitivity of target feature maps, which represented the partial
derivative of the total loss to each element in the target feature maps. In the same way, δwi,j
was the error sensitivity of pooling kernels, which was used to calculate error sensitivity of
front layers.

δxi,j =
c

∑
m=1

c

∑
n=1

δym,n·wi−s·m+s,j−s·n+s· f [i− s·(m− 1)]· f [j− s·(n− 1)] (10)

δwi,j =
c

∑
m=1

c

∑
n=1

δym,n·xs·(m−1)+i,s·(n−1)+j (11)
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where δym,n was the error sensitivity of the result feature map; c was the size of the result
feature maps. f (x) was a judgement function, which equaled to 1 while 0 < x < b and
equaled to 0 for else. The detailed derivation process of forward and back propagation can
be seen in Appendix A.
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3.4. Second-Order Pooling Method

The classification pooling layer is connected behind the last convolution layer. Its
purpose is to integrate feature maps into a compact global feature. Then the global feature is
input into a full connection layer for classification. The process of integrating feature maps
for traditional pooling methods was shown in Figure 8. Each feature map was expanded
into a vector after down sampling, then all vectors were connected to form a global feature
vector in turn. However, this method only counted first-order feature information. Because
in the integration process, each feature map was independent and uncorrelated. As a result,
the ability of feature representation was limited.

Carreira et al. [46] proposed a method based on outer products to extract second-order
feature information. However, they only used it for image segmentation. Based on their
work of them, the second-order pooling method was proposed in this paper by embedding
the second-order information extraction process into CNN and deriving its forward and
back propagation. The process of the second-order pooling was shown in Figure 9. The
whole process can be divided into the following six steps.
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Figure 9. The process of the second-order pooling method.

Step 1: Combine and split. For feature maps of the last convolution layer, they were
combined to form a feature block; then, the feature block was divided into local feature
vectors in sequence from left to right and top to bottom according to the element position.
The local feature vectors contained information of all feature maps at a single position.
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Step 2: Calculate outer products. The local feature vectors were taken as the main body,
then outer products of each local feature vector were calculated to obtain the second-order
feature matrixes.

Step 3: Choose upper triangle part. All second-order feature matrixes were combined
to form a second-order feature block, and then the block was divided into second-order
feature vectors in sequence from left to right and top to bottom according to the element
position. To avoid duplication, only the upper triangle part of the block was retained.
Each second-order feature vector contained information of all positions in each original
feature map.

Step 4: Convert vectors into matrixes. Each second-order feature vector was converted
into a second-order feature map in sequence from left to right and top to bottom according
to the size of the original feature map.

Step 5: Global average pooling. The second-order feature maps were down sampled
to obtain the global feature vector through global average pooling.

Step 6: Feature selection. Because the positive excitation function, such as ReLU and
Sigmoid functions, was generally used in the process of feature extraction, the numerical
difference of elements can reflect the importance of feature information. The second-order
pooling can further expand this difference. In order to reduce the number of parameters
and speed up the training process, a part of feature information was selected in sequence
from large to small according to the importance of feature information. The number of
features as a super parameter needed to be preset.

The second-order pooling method affected forward and back propagation of CNN. In
forward propagation process, the elements in the second-order feature matrixes, second-
order feature maps and global feature vectors can be, respectively, obtained by Equa-
tions (12)–(14).

yi,j,k =
a

∑
m=1

a

∑
n=1

xm,n,i·xm,n,j·I[a(m− 1) + n = k] (12)

zα,β,γ =
a2

∑
k=1

b

∑
i=1

b

∑
j=1

yi,j,k·I[b(i− 1) + j− i2 − i
2

= γ]·I[c(α− 1) + β = γ] (13)

Zp =

c
∑

α=1

c
∑

β=1
zα,β,p

α·β (14)

where xm,n,l represented the element in row m and column n of the ith original feature map;
yi,j,k represented the element in row I and column j of the kth second-order feature matrix;
zα,β,γ represented the element in row α and column β of the γth second-order feature map;
Zp represented the value of the pth element in the global feature vector; a, b, c, respectively,
represented the size of the original feature maps, the second-order feature matrixes and the
second-order feature maps; I (condition) was a judgment function; if the condition was met,
then I = 1, otherwise I = 0.

In the back propagation process, since there were no parameters to be updated, only
elements of error sensitivity were required to calculate. The error sensitivity of the second-
order feature maps, the second-order feature matrixes and the original feature maps can be,
respectively, obtained by Equations (15)–(17).

δzα,β,γ =
δZγ

α·β (15)

δyi,j,k =
c

∑
α=1

c

∑
β=1

δzα,β,b·(i−1)+j−(i2−i)/2·I[b(α− 1) + β = k] (16)

δxm,n,l =
b

∑
i=1

b

∑
j=1

δyi,j,s2·(m−1)+n·xm,n,j·I(i = l)·[I(i = m)·I(j = n) + 1] (17)
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where δZγ represented the error sensitivity of the global feature vector; δzα,β,γ represented
the error sensitivity of the second-order feature maps; δyi,j,k represented the error sensitivity
of the second-order feature matrixes; δxm,n,l represented the error sensitivity of the original
feature maps. The detailed derivation process of the forward and back propagation can be
seen in Appendix B.

3.5. Evaluation Metrics

In order to effectively evaluate classification performance of CNN models, several indi-
cators were used, including accuracy rate (ACC), precision rate (PRE), recall rate (REC), F1
score (F1), confusion matrix and the receiver operating characteristic curve (ROC) [47–49].
The confusion matrix was shown in Figure 10, through which the identification effect of
CNN models can be observed intuitively. In the confusion matrix, each row is the prediction
labels of samples, and each column is the real labels of samples. P (Positive) represents
the prediction label is positive; N (Negative) represents the prediction label is negative;
T (Ture) represents the sample is predicted correctly; F (False) represents the sample is
predicted wrongly.
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Figure 10. Schematic of the confusion matrix.

The accuracy rate (ACC) represents the proportion of correct classification, which
can be calculated by Equation (18). The precision rate (PRE) represents the proportion of
correct classification in labels which were predicted to be positive, which can be calculated
by Equation (19). The recall rate (REC) refers to the proportion of correct classification in
labels which were realistically positive, which can be calculated by Equation (20). F1 score
is the harmonic mean value of PRE and REC, which can be calculated by Equation (21).

ACC =
TP + TN

TP + TN + FP + FN
(18)

PRE =
TP

TP + FP
(19)

REC =
TP

TP + FN
(20)

F1 =
2TP

2TP + FP + FN
(21)

The receiver operating characteristic curve (ROC) can show the performance of models
under different classification thresholds. The ROC curve uses the false positive rate (FPR)
as the abscissa and the true rate (TPR) as the ordinate, which can be calculated by Equations
(22) and (23), respectively. AUC is the area under the curve, and large AUC value indicates
good performance of models. When AUC ≤ 0.5, prediction result is less effective than
random guess, and the model has no predictive worth.

FPR =
FP

TN + FP
(22)

TPR =
TP

TP + FN
(23)
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4. Results and Discussions

The program of the proposed model was written based on Matlab language and the
deep learning library in Matlab 2021b. It was 32 k in size. The experimental process was
carried out on the server with a 64-core CPU, a 192 G RAM and the Linux operating system,
which belonged to the Super Cloud Computing Center in Beijing, China. The average cost
of per image during training was 1.257 s. In order to verify the effectiveness of the adaptive
and second-order pooling methods, the original model of Alexnet, which used max pooling,
was used for comparative verification. It was recorded as MAXCNN. On this basis, all
pooling layers of the Alexnet were replaced with average pooling and stochastic pooling
respectively to build another 2 models, which were recorded as MEACNN and STOCNN
respectively. The structures of four models were shown in Table 2. The experiment mainly
included the following three aspects: (1) the identification results on the training and
validation set; (2) the identification results on the test set; (3) identification performance of
various models in each rock category.

Table 2. Model structure configuration.

ASOPCNN MAXCNN MEACNN STOCNN

Convolution 11 × 11-96 filters Convolution 11 × 11-96 filters Convolution 11 × 11-96 filters Convolution 11 × 11-96 filters
Adaptive pooling Max pooling Mean pooling Stochastic pooling

2 Group convolution
5 × 5-128 filters

2 Group convolution
5 × 5-128 filters

2 Group convolution
5 × 5-128 filters

2 Group convolution
5 × 5-128 filters

Adaptive pooling Max pooling Mean pooling Stochastic pooling
Convolution 3 × 3-384 filters Convolution 3 × 3-384 filters Convolution 3 × 3-384 filters Convolution 3 × 3-384 filters

2 Group convolution
3 × 3-192 filters

2 Group convolution
3 × 3-192 filters

2 Group convolution
3 × 3-192 filters

2 Group convolution
3 × 3-192 filters

2 Group convolution
3 × 3-128 filters

2 Group convolution
3 × 3-128 filters

2 Group convolution
3 × 3-128 filters

2 Group convolution
3 × 3-128 filters

Second order pooling Max pooling Mean pooling Stochastic pooling
3 Fully Connected 4096 4096 6 3 Fully Connected 4096 4096 6 3 Fully Connected 4096 4096 6 3 Fully Connected 4096 4096 6

Softmax Softmax Softmax Softmax

In order to speed up the training process, the initial parameters were set by means of
transfer learning. The pre-training parameters in the original Alexnet were applied to the
convolution layers of the four models. The training set contained 4212 pictures, and the
validation set contained 1200 pictures. Mini-batch method was used in the training process,
and mini-batch gradient descent method was used to update parameters. 70 pictures were
trained in each batch, with 60 iterations in each round. one verification operation was
performed every 10 iterations. The learning rate was set to 5 × 10−4. The feature selection
number of second-order pooling layer was set to 9216. A total of 30 cycles, 1800 iterations,
were conducted in the whole process.

4.1. Training and Validation Results

The total loss is a non-negative function used to measure the difference between
predicted values and real values. The smaller the total loss is, the better the training effect
and robustness are. Figure 11 showed the loss decline of four models in the training process.
In order to compare different decline processes conveniently, the initial loss of ASOPCNN
was taken as the benchmark, and the loss values of the other models were divided by the
benchmark value for unified processing. It can be seen from Figure 11a that the total loss of
ASOPCN on the training and verification sets was the smallest, indicating that the training
effect of ASOPCN was the best. It can be seen from Figure 11b that the difference between
ASOPCN and the other three models was that the loss fluctuation was more obvious. This
was because the pooling layers of ASOPCN contained random initial parameters. The
quality of these parameters had a greater impact on the training performance. Figure 12
showed the changing process of model accuracy. It can be seen that the change rate of
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ASOPCNN was slower than that of STOCNN at the initial stage. With the increase in
the iteration number, the rate of ASOPCNN exceeded that of the other three models and
became the largest. In order to quantitatively compare the final convergence accuracy,
the mean accuracy of the last round was taken as the final accuracy, and the results were
shown in Table 3. The ASOPCNN model had the highest accuracy on both training and
verification sets, which were 0.9286 and 0.8671, respectively. It showed that adaptive and
second-order pooling methods were helpful for optimization of training process.
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Table 3. The final accuracy on training and verification sets.

Model ASOPCNN MAXCNN MEACNN STOCNN

Training set 0.9286 0.7086 0.6657 0.8412
Validation set 0.8671 0.6808 0.6163 0.8075
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4.2. Testing Results

The performance of models on unknown test sets can represent their actual application
effects. There were 586 images of six rock types in the rock image test set. Figure 13 showed
the accuracy of the four models on the test set. The accuracy of ASOPCNN was 0.8908,
higher than MAXCNN (0.6911), MEACNN (0.6297) and STOCNN (0.7696), indicating
that the adaptive and second-order pooling methods were more suitable for CNN than
traditional pooling methods. In order to visualize identification results, we randomly
selected an image from each rock type in the test set for display, as shown in Figure 14.
The identification probability corresponding to each image was shown in Table 4. It can be
seen that the identification accuracy of each type of rock images was higher than 0.8, which
indicated that the ASOPCN had high identification confidence coefficients and can be used
as a reliable model for rock thin section image identification.
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(d) quartz sandstone; (e) conglomerate; (f) crystalline dolomite.

Confusion matrixes can show the identification performance of each specific category.
The confusion matrix obtained by the four models was shown in Figure 15. The elements on
the diagonal line were correct identification numbers of each rock type. The correct number
of rock images identified by ASOPCNN for each type were 99, 81, 76, 83, 90 and 93, which
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were higher than the other three models. From color depths of elements in the confusion
matrix, it can be seen that the probability of misclassification between conglomerate and
quartz sandstone was greater. From Figure 14d,e, conglomerate and quartz sandstone
were very similar. Their main mineral compositions were quartz and feldspar, and their
structures were clastic structures. The main difference was the mineral particle size. The
numbers of misclassified samples in each category of the ASOPCNN were less than that of
the other three models, indicating that the ASOPCNN can distinguish some image samples
that were difficult for the others to a certain extent.

Table 4. Identification probability of rock images in Figure 14, the meaning of digits: 1- wackestone,
2-granite; 3-schist, 4-quartz sandstone, 5-conglomerate, 6-crystalline dolomite.

Rock Category Wackestone Granite Schist Quartz Sandstone Conglomerate Crystalline
Dolomite

1 0.9241 0.0156 0.0326 0.0123 0.0062 0.0092
2 0.0658 0.8606 0.0369 0.0223 0.0056 0.0088
3 0.0033 0.0015 0.9341 0.0061 0.0089 0.0461
4 0.0031 0.0026 0.0011 0.9073 0.0030 0.0829
5 0.0023 0.1356 0.0011 0.0010 0.8483 0.0117
6 0.0033 0.0011 0.0010 0.0010 0.0918 0.9028
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Figure 15. Confusion matrixes of each identification model on the test set, the meaning of dig-
its: 1-wackestone, 2-granite, 3-schist, 4-quartz sandstone, 5-conglomerate, 6-crystalline dolomite.
(a) ASOPCNN; (b) MAXCNN; (c) MEACNN; (d) STOCNN.

Figure 16 showed the comparison of the precision, recall and f1 score on the test
set. It can be seen that the evaluation indicators of all models showed a similar trend of
first falling and then rising, which indicated that the wackestone and crystalline dolomite
were easier to identify than the other four types. In Figure 16a, ASOPCNN showed better
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performance in the recall rate. From Figure 16b, we can see that the precision rates of
ASOPCNN in wackstone, schist, sandstone and conglomerate were higher. Figure 15c
showed that ASOPCCNN was higher in F1 score. From the above results, it can be seen
that ASOPCCNN had superior classification performance on the whole. Figure 17 showed
the ROC curve of the four models on six rock categories. It can be seen that the AUC value
of the ASOPCN was the highest in the categories of wackestone, schist, quartz sandstone,
conglomerate and crystalline dolomite. It indicated that the ASOPCNN had the better
performance. In Figure 17b, although the AUC value of the ASOPCNN was lower than
that of the STOCNN for the granite category, the correct identification number was greater
in Figure 15a,d. It indicated that the identification probability values of ASOPCNN were
slightly lower than that of STOCNN.
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Figure 16. Performance of various rock types evaluated by different metrics, the meaning of digits: 1-
wackestone, 2-granite, 3-schist, 4-quartz sandstone, 5-conglomerate, 6-crystalline dolomite. (a) Recall
rate; (b) precision rate; (c) F1 score.
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4.3. Discussion and Analysis

According to the above results, the pooling layers of CNN can be divided into sampling
pooling layers and classification pooling layers, and the adaptive pooling and second-order
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pooling methods can be used respectively. It can provide better performance than using
traditional pooling methods. This was the explain of experimental results. In fact, from the
theoretical analysis, the performance of adaptive and second-order pooling methods was
generally not worse than traditional pooling methods. This is because the adaptive pooling
method can be transformed into the traditional pooling methods through training, and the
second-order pooling method completely contains all the information of the traditional
pooling methods.

Adaptive pooling can be seen as a collection of multiple pooling methods. In the
adaptive pooling method, a pooling kernel was configured for each feature map. The
calculation process is expressed as Equation (8). The parameters in the pooling kernel
can be adjusted according to propagation errors. When the parameters are equal, the
Equation (8) can transform into the Equation (24), representing the average pooling.

O =

m
∑

i=1

n
∑

j=1
Iij

m ∗ n
(24)

When there was only one non-zero value in pooling kernels, if the non-zero value corre-
sponded to the maximum value, then the Equation (8) can transform into the Equation (25),
representing the max pooling.

O = max
{

Iij
}

, (i = 1, 2, . . . , m; j = 1, 2, . . . , n) (25)

When the non-zero value did not correspond to the maximum value, the Equation (8)
can transform into the Equation (26), representing the stochastic pooling.

O = rand
{

Iij
}

, (i = 1, 2, . . . , m; j = 1, 2, . . . , n) (26)

When the parameter had more than one non-zero value, the adaptive pooling can also
be regarded as other non-special pooling methods. Therefore, the adaptive pooling method
can be transformed into the traditional pooling methods through training.

The purpose of classification pooling layer is to integrate feature map information to
form a global vector. The integration process of the traditional pooling methods was shown
in Figure 8. It only counted first-order feature information. Each feature map was indepen-
dent and uncorrelated. The integration process of the second-order pooling methods was
shown in Figure 18. Second-order pooling was to add more feature information on the basis
of guaranteeing the original first-order feature information. Outer products between feature
pairs were calculated to obtain second-order correlation. As shown in the yellow diagonal
part of the second-order feature block, the diagonal elements were the square of the original
first-order feature elements, the feature information carried by them remained unchanged.
It can be seen that the first-order feature information extracted by the traditional methods
took a small proportion of the information extracted by the second-order pooling method.
The upper triangle part of the second-order feature block carried the second-order feature
information of feature pairs, which had better feature representation ability than first-order
feature information [50]. Therefore, the second-order pooling method completely contained
all the information of the traditional pooling methods.



Mathematics 2023, 11, 1245 20 of 27
Mathematics 2022, 10, x FOR PEER REVIEW 21 of 28 
 

 

 

Figure 18. Second-order pooling contained the feature information of traditional pooling methods. 

5. Conclusions 

In this paper, the shortcomings of traditional pooling methods in the process of rock 

identification were analyzed, and the adaptive pooling and second-order pooling meth-

ods were proposed. The theoretical advantages of these two pooling methods applied to 

the CNN were analyzed, and then the changing process of forward and back propagation 

of these two pooling methods was deduced. On the basis of a visual CNN framework, 

Alexnet, a rock identification model called ASOPCNN was constructed by using the two 

pooling methods. There were 5998 images for model training, including 6 common rock 

categories. The rock images were collected from the symposium on Microscopic Images 

of Rocks in the open-source database, China Scientific Data. Three models were set for 

comparison, which respectively used the max pooling, average pooling and stochastic 

pooling methods. The accuracy rate, precision rate, recall rate, F1 score, and AUC values 

were used to evaluate the model performance. In the results, the total loss of the 

ASOPCNN is minimum when the training process converges, and the accuracy of 

ASOPCNN model in training and validation sets are 92.86% and 86.71%, respectively. In 

the test set of 586 pictures, the identification accuracy of ASOPCNN reaches 89.08%. It is 

at least 12% higher than the models using traditional pooling methods. The precision rate, 

recall rate, F1 score and AUC values of the ASOPCNN are 89.33%, 89.07%, 0.8914 and 

0.8934, respectively. The experimental results show that the performance of the 

ASOPCNN is better than the other three models using traditional pooling methods. It also 

shows that the ASOPCNN could be a reliable model in rock identification of rock thin 

section images. In addition, among the six rock types in this paper, the wackestone and 

crystalline dolomite are easier to distinguish than granite, schist, conglomerate and quartz 

sandstone. Conglomerate and quartz sandstone are more likely to be misclassified be-

cause they are similar in mineral compositions and structures. The adaptive and second-

order pooling methods were generally not worse than the traditional pooling methods. 

This is because the adaptive pooling method can be transformed into the traditional pool-

ing methods through training, and the second-order pooling method completely contains 

all the information of the traditional pooling methods. 

Author Contributions: Conceptualization, Z.Z.; Methodology, H.Y.; Supervision, Z.Z. and X.C.; 

Data curation, H.Y.; Formal analysis, H.Y.; Funding acquisition, Z.Z. and X.C.; Validation, Z.Z. and 

X.C. Writing—original draft, H.Y. All authors have read and agreed to the published version of the 

manuscript. 

Funding: This research was supported by the National Key Research and Development Program of 

China (Grant No.:2022YFC2903901) and the National Natural Science Foundation of China (Grant 

No.: 52274249). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data used in this paper can be obtained from the symposium on 

Microscopic Images of Rocks in the open-source database, China Scientific Data. 

Figure 18. Second-order pooling contained the feature information of traditional pooling methods.

5. Conclusions

In this paper, the shortcomings of traditional pooling methods in the process of rock
identification were analyzed, and the adaptive pooling and second-order pooling methods
were proposed. The theoretical advantages of these two pooling methods applied to the
CNN were analyzed, and then the changing process of forward and back propagation of
these two pooling methods was deduced. On the basis of a visual CNN framework, Alexnet,
a rock identification model called ASOPCNN was constructed by using the two pooling
methods. There were 5998 images for model training, including 6 common rock categories.
The rock images were collected from the symposium on Microscopic Images of Rocks in the
open-source database, China Scientific Data. Three models were set for comparison, which
respectively used the max pooling, average pooling and stochastic pooling methods. The
accuracy rate, precision rate, recall rate, F1 score, and AUC values were used to evaluate the
model performance. In the results, the total loss of the ASOPCNN is minimum when the
training process converges, and the accuracy of ASOPCNN model in training and validation
sets are 92.86% and 86.71%, respectively. In the test set of 586 pictures, the identification
accuracy of ASOPCNN reaches 89.08%. It is at least 12% higher than the models using
traditional pooling methods. The precision rate, recall rate, F1 score and AUC values of the
ASOPCNN are 89.33%, 89.07%, 0.8914 and 0.8934, respectively. The experimental results
show that the performance of the ASOPCNN is better than the other three models using
traditional pooling methods. It also shows that the ASOPCNN could be a reliable model in
rock identification of rock thin section images. In addition, among the six rock types in this
paper, the wackestone and crystalline dolomite are easier to distinguish than granite, schist,
conglomerate and quartz sandstone. Conglomerate and quartz sandstone are more likely
to be misclassified because they are similar in mineral compositions and structures. The
adaptive and second-order pooling methods were generally not worse than the traditional
pooling methods. This is because the adaptive pooling method can be transformed into
the traditional pooling methods through training, and the second-order pooling method
completely contains all the information of the traditional pooling methods.
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Appendix A

The specific derivation process of forward and back propagation of adaptive pooling
method is as follows. Since each feature map performs independent but identical pooling
operations, only a single feature map is calculated. The feature map

x =


x11
x21
· · ·
xa1

x12
x22
· · ·
xa2

· · ·
· · ·
. . .
. . .

x1a
x2a
· · ·
xaa

, called the target feature map, is obtained from the convo-

lution layer. The size of the target feature map is a. The adaptive pooling method is used

for down sampling operation. The pooling kernel is w =

w11
· · ·
wb1

· · ·
. . .
· · ·

w1b
· · ·
wbb

, where b is

the size of the pooling kernel. The result feature map obtained after pooling operation is

y =


y11 y12 . . . y1c
y21 y22 . . . y2c

. . . . . .
. . . . . .

yc1 yc2 . . . ycc

, where c is the size of the result feature map. The element of y

can be calculated by Equation (A1).

y11 = w11x11 + w12x12 + w13x13 + · · ·+ w33x33 + · · · · · ·+ wbbxbb
y12 = w11x1,1+s + w12x1,2+s + w13x1,3+s + · · ·+ w33x3,3+s + · · · · · ·+ wbbxb,b+s
y21 = w11x1+s,1 + w12x1+s,2 + w13x1+s,3 + · · ·+ w33x3+s,3 + · · · · · ·+ wbbxb+s,b
y22 = w11x1+s,1+s + w12x1+s,2+s + w13x1+s,3+s + · · ·+ w33x3+s,3+s + · · · · · ·+ wbbxb+s,b+s
· · · · · ·

(A1)

The above equations can be equivalently rewritten as a convolution calculation equa-
tion as follows.

yi,j =
b

∑
m=1

b

∑
n=1

wm,n·xs·(i−1)+m,s·(j−1)+n (A2)

where x is regarded as a Convolution operator; yi,j represents the element in the row i and
column j of the result feature map. During the back propagation, the partial derivative

matrix of total loss L to elements of pooling kernels is δwi,j =

δw11
· · ·

δwb1

· · ·
. . .
· · ·

δw1b
· · ·

δwbb

.

Variables δyi,j =


δy11 δy12 · · · δy1c
δy21 δy22 · · · δy2c

· · · · · · . . . · · ·
δyc1 δyc2 · · · δycc

 and δxi,j =


δx11
δx21
· · ·

δxa1

δx12
δx22
· · ·

δxa2

· · ·
· · ·
. . .
. . .

δx1a
δx2a
· · ·

δxaa

 can

be obtained from similar definitions. The Equation (A3) can be obtained from the chain
derivation rule.

∂L
∂wi,j

=
∂L

∂yi,j
·

∂yi,j

∂wi,j
(A3)
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The relationship between yi,j and wi,j is shown in Equation (A1). After the derivation
of both sides of Equation (A1), Equation (A4) can be obtained by combining Equation (A3).

δw11 = δy11x11 + δy12x1,1+s + δy21x1+s,1 + δy22x1+s,1+s + · · ·
δw12 = δy11x12 + δy12x1,2+s + δy21x1+s,2 + δy22x1+s,2+s + · · ·
δw13 = δy11x13 + δy12x1,3+s + δy21x1+s,3 + δy22x1+s,3+s + · · ·
· · ·
δw33 = δy11x33 + δy12x3,3+s + δy21x3+s,3 + δy22x3+s,3+s + · · ·
· · ·
δwbb = δy11xbb + δy12xb,b+s + δy21xb+s,b + δy22xb+s,b+s + · · ·

(A4)

Equation (A4) can be equivalently written as the following matrix form.

δw11
· · ·

δwb1

· · ·
. . .
· · ·

δw1b
· · ·

δwbb

 =


x11
x21
· · ·
xa1

x12
x22
· · ·
xa2

· · ·
· · ·
. . .
· · ·

x1a
x2a
· · ·
xaa

⊗


δy11
0
· · ·
0

δy21
· · ·
δyc1

0
0
· · ·
0
0
· · ·
0

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

0
0
· · ·
0
0
· · ·
0

δy12
0
· · ·
0

δy22
· · ·
δyc2

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

δy1c
0
· · ·
0

δy2c
· · ·
δycc


(A5)

The upper equation is recorder as δwi,j = δyi,j ⊗ A, where ⊗ is the convolution
operation symbol. Matrix A is a convolution operator. It is formed by inserting zero vectors
with the same dimension between each row and column of the matrix. The number of
inserting zero vectors was s-1. Through induction and summary, Equation (A5) can be
equivalent to the following equation.

δwi,j =
c

∑
m=1

c

∑
n=1

xs·(m−1)+i,s·(n−1)+j·δym,n (A6)

where δym,n is the convolution operator. Parameters of the pooling kernel can be updated
by gradient descent algorithm as follows.

wi,j = wi,j − η·δwi,j (A7)

where η is the learning rate. If wi,j ≥ 1, then wi,j = 1; if wi,j ≤ 0, then wi,j = 0. The Equation (A8)
can be obtained from the chain derivation rule.

∂L
∂xi,j

=
∂L

∂yi,j
·
∂yi,j

∂xi,j
(A8)

To facilitate inductive solution, let s = 2. After the derivation of both sides of Equa-
tion (A1), Equation (A9) can be obtained by combining Equation (A8).

δx11 = δy11w11
δx12 = δy11w12
δx13 = δy11w13 + δy12w11
· · ·
δx21 = δy11w21
δx22 = δy11w22
δx23 = δy11w23 + δy12w21
· · ·
δx31 = δy11w31 + δy21w11
δx32 = δy11w32 + δy21w12
δx33 = δy11w33 + δy12w31 + δy21w13 + δy22w11
· · · · · ·

(A9)
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Through induction and summary, Equation (A9) can be equivalently rewritten as the
following matrix form in the case of s = 2.


δx11
δx21
· · ·

δxa1

δx12
δx22
· · ·

δxa2

· · ·
· · ·
. . .
. . .

δx1a
δx2a
· · ·

δxaa

 =



0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 w11 · · · w1b 0 0

0 0 · · · . . . · · · 0 0
0 0 wb1 · · · wbb 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


⊗


δycc
· · ·
δy2c

0
δy1c

· · ·
. . .
· · ·
· · ·
. . .

δyc2
· · ·
δy22

0
δy12

0
· · ·

0
0
0

δyc1
· · ·
δy21

0
δy11

 (A10)

The upper equation is recorded as δxi,j = B⊗ C. Matrix B is composed of matrix W
with an appropriate number of 0 in the outer circle. Matrix C is a convolution operator.
It was formed by rotating the matrix elements by 180 degrees and then inserting an
appropriate number of zero vectors between every two columns as same as every two rows.
The numbers of zero filling in the outer of matrix B and zero vectors inserted in matrix C
are related to the pooling step s and the size c of the result feature map. The calculation
formula is as follows.

α = s(c− 1)
β = s− 1

(A11)

Through induction and summary, Equation (A10) can be equivalent to the Equa-
tion (A12).

δxi,j =
c

∑
m=1

c

∑
n=1

wi−s·m+s,j−s·n+s·δym,n· f [i− s·(m− 1)]· f [j− s·(n− 1)] (A12)

where f (x) is the judgement function, which equals to 1 while n < x < b and equals to 0
for else.

Appendix B

The specific derivation process of forward and back propagation of second-order pool-
ing method is as follows. The lth original feature map calculated from the last convolution

is xl =


x1,1,l
x2,1,l
· · ·

xa,1,l

x1,2,l
x2,2,l
· · ·

xa,2,l

· · ·
· · ·
. . .
. . .

x1,a,l
x2,a,l
· · ·

xa,a,l

, (l = 1, 2, 3, . . . , s1), where a is the size of the original

feature maps; s1 is the number of feature maps contained. The original feature maps are
split from left to right and top to bottom. Then the elements at the same position in all the
original feature maps are integrated to form the local first-order feature vector, which is
recorded as A =

(
xi,j,1, xi,j,2, xi,j,3, . . . , xi,j,s1

)
, (i, j = 1, 2, . . . , a). The outer products of all

local first-order feature vectors are calculated according to the following equation.
x2

i,j,1
xi,j,2xi,j,1
xi,j,3xi,j,1

...
xi,j,s1 xi,j,1

xi,j,1xi,j,2
x2

i,j,2
xi,j,3xi,j,2

...
xi,j,s1 xi,j,2

xi,j,1xi,j,3
xi,j,2xi,j,3

x2
i,j,3
...

xi,j,s1 xi,j,3

· · ·
· · ·
· · ·
. . .
· · ·

xi,j,1xi,j,s1

xi,j,2xi,j,s1

xi,j,3xi,j,s1
...

xi,j,s1 xi,j,s1

 =
(
xi,j,1, . . . , xi,j,s1

)T ·
(
xi,j,1, . . . , xi,j,s1

)
, (i, j = 1, 2, . . . , a) (A13)

The above equation is recorded as y = ATA. y is the outer product of the local first-
order feature vector, called the second-order feature matrix. The kth second-order fea-
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ture matrix can also be recorded as yk =


y1,1,k
y2,1,k
y3,1,k

...
yb,1,k

y1,2,k
y2,2,k
y3,2,k

...
yb,2,k

y1,3,k
y2,3,k
y3,3,k

...
yb,3,k

· · ·
· · ·
· · ·
. . .
· · ·

y1,b,k
y2,b,k
y3,b,k

...
yb,b,k

,

(k = 1, 2, 3, . . . , s2), where b is the size of the second-order feature matrix; s2 is the num-
ber of feature maps contained. Combining Equation (A13), the relationship between the
second-order feature matrixes and the original feature maps can be constructed as follows.

yi,j,k =
a

∑
m=1

a

∑
n=1

xm,n,i·xm,n,j·I[a(m− 1) + n = k], (i, j = 1, 2, . . . , b; k = 1, 2, . . . , s2) (A14)

where I(condition) is the judgment function. If the condition is met, then I = 1; otherwise
I = 0. It is not difficult to see the following variable relations.

b = s1
s2 = a2 (A15)

The second-order feature matrixes are split from left to right and top to bottom. Then
the elements at the same position in all second-order feature matrices are integrated to form
the second-order feature vectors, which can be recorded as B =

(
yi,j,1, yi,j,2, yi,j,3, . . . , yi,j,s2

)
(i, j = 1, 2, 3, . . . , b). According to Equation (A15), all second-order feature vectors can
be rewritten into matrix form as follows. Because the second-order feature matrixes are
symmetric, only the upper triangular part is converted into the corresponding second-order
feature vectors.

(
yi,j,1, yi,j,2, yi,j,3, . . . , yi,j,s2

)
→


yi,j,1

yi,j,a+1
yi,j,2a+1

...
yi,j,a(a−1)+1

yi,j,2
yi,j,a+2
yi,j,2a+2

...
yi,j,a(a−1)+2

yi,j,3
yi,j,a+3
yi,j,2a+3

...
yi,j,a(a−1)+3

· · ·
· · ·
· · ·
. . .
· · ·

yi,j,a
yi,j,2a
yi,j,3a

...
yi,j,a2

 (A16)

The matrix transformed from the second-order feature vector is called the second-order
feature map, and the γth second-order feature maps can be recorded as

zγ =


z1,1,γ
z2,1,γ
z3,1,γ

...
zc,1,γ

z1,2,γ
z2,2,γ
z3,2,γ

...
zc,2,γ

z1,3,γ
z2,3,γ
z3,3,γ

...
zc,3,γ

· · ·
· · ·
· · ·
. . .
· · ·

z1,c,γ
z2,c,γ
z3,c,γ

...
zc,c,γ

, (γ = 1, 2, 3, . . . , s3), where c is the

size of the second-order feature maps; s3 is the number of feature maps contained. The
relationship between the second-order feature maps and the second-order feature matrixes
can be constructed by combining Equation (A16).

zα,β,γ =
s2

∑
k=1

b

∑
i=1

b

∑
j=1

yi,j,k·I[b(i− 1) + j− i2 − i
2

= γ]·I[c(α− 1) + β = γ], (α, β = 1, 2, . . . , c; γ = 1, 2, . . . , s3) (A17)

It is not difficult to see the following variable relations.

c = a
s3 = b2+b

2
(A18)
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The second order feature matrixes are down sampling to obtain the global feature
vector. It can be recorded as Z = (Z1, Z2, Z3, . . . , Zs4), where s4 is the number of vectors
contained. The calculation equation is as follows.

Zp =

c
∑

α=1

c
∑

β=1
zα,β,p

α·β , (p = 1, 2, 3, . . . , s4) (A19)

In the back propagation process, since the entire pooling process doesn’t contain
parameters, only the derivative of the total loss to each feature map is required. The
derivative of the total loss to the global feature vector is δZ = (δZ1, δZ2, δZ3, . . . , δZs4),
which is obtained through the fully connected layer. The error of the global feature vector is
back propagated to the second-order feature matrixes, and the relationship between them
is shown in Equation (A19). Then the error sensitivity in the second-order feature maps,

recorded as δzγ =


δz1,1,γ
δz2,1,γ
δz3,1,γ

...
δzc,1,γ

δz1,2,γ
δz2,2,γ
δz3,2,γ

...
δzc,2,γ

δz1,3,γ
δz2,3,γ
δz3,3,γ

...
δzc,3,γ

· · ·
· · ·
· · ·
. . .
· · ·

δz1,c,γ
δz2,c,γ
δz3,c,γ

...
δzc,c,γ

, (γ = 1, 2, 3, . . . , s3),

can be calculated as follows.

δzα,β,γ =
δzγ

α·β , (α, β = 1, 2, 3, . . . , c; γ = 1, 2, 3, . . . , s3) (A20)

It can be seen from Equation (A16) that the second-order feature maps need to convert
into vectors when the error is transmitted from them to the second-order feature vectors.
Therefore, the second-order feature maps are converted into the second-order feature
vectors in the following way.

δz1,1,γ
δz2,1,γ
δz3,1,γ

...
δzc,1,γ

δz1,2,γ
δz2,2,γ
δz3,2,γ

...
δzc,2,γ

δz1,3,γ
δz2,3,γ
δz3,3,γ

...
δzc,3,γ

· · ·
· · ·
· · ·
. . .
· · ·

δz1,c,γ
δz2,c,γ
δz3,c,γ

...
δzc,c,γ

→
(
δz1,1,γ, δz1,2,γ, . . . , δzc,c,γ

)
, (γ = 1, 2, 3, . . . , s3) (A21)

All the second-order feature vectors are combined into the second-order feature
matrixes in order, and the error remains unchanged. Because the second-order feature
matrixes are symmetric and the elements of the lower triangular part of the matrixes are
not involved in the calculation, the error of the elements of the lower triangular part equals
to 0. The equation for calculating the error sensitivity of the second-order feature matrixes
can be deduced as follows by replacing δz with δy in Equation (A22).

δyi,j,k =


c
∑

α=1

c
∑

β=1
δzα,β,b(i−1)+j−(i2−i)/2·I[b(α− 1) + β = k], i < j

0, i > j
(A22)

The second-order feature matrixes back propagate the error to the local first-order
feature vectors. The relationship between them is shown in Equation (A13). The error sensi-
tivity of the local first-order feature vectors can be obtained by derivation of Equation (A13).
In the process of transforming the local first-order feature vectors into the original feature
maps, the element value does not change but the position changes. Finally, the relationship
between the error sensitivity of the second-order feature matrixes and original feature maps
can be established as follows.
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δxm,n,l =
b

∑
i=1

b

∑
j=1

δyi,j,s2·(m−1)+n·xm,n,j·I(i = l)·[I(i = m)·I(j = n) + 1], (m, n = 1, 2, . . . , a; l = 1, 2, . . . , s1) (A23)
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