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Abstract: Horadam sequence is a general recurrence of second order in the complex plane, depending
on four complex parameters (two initial values and two recurrence coefficients). These sequences
have been investigated over more than 60 years, but new properties and applications are still being
discovered. Small parameter variations may dramatically impact the sequence orbits, generating
numerous patterns: periodic, convergent, divergent, or dense within one dimensional curves. Here
we explore Horadam sequences whose orbit is dense within a 2D region of the complex plane,
while the complex argument is uniformly distributed in an interval. This enables the design of a
pseudo-random number generator (PRNG) for the uniform distribution, for which we test periodicity,
correlation, Monte Carlo estimation of π, and the NIST battery of tests. We then calculate the
probability distribution of the radii of the sequence terms of Horadam sequences. Finally, we propose
extensions of these results for generalized Horadam sequences of third order.

Keywords: random numbers; geometric patterns; complex recurrent sequences; Horadam sequence;
dense orbits

MSC: 11B37; 11J72; 65C10

1. Introduction

Let a, b, p, q be arbitrary complex numbers. The sequence defined by the relation

wn = pwn−1 + qwn−2 (n ≥ 2), (1)

w0 = a, w1 = b,

is often called a Horadam sequence (wn)n≥0, after Alwyn F. Horadam who initiated the
detailed investigations regarding this sequence in the 1960s [1–3], establishing a great
number of identities, properties, and generalizations.

At the time when it was formulated in this way by Horadam, this sequence had a
significant impact, bridging the gap between the classical sequences studied by Édouard
Lucas, and the application of many techniques from the special functions of mathematical
physics [4]. Many of the results, new concepts and applications inspired by this research
direction over sixty years have been summarised in a number of review papers, such as for
example those by Larcombe et al. [5], or the update by Larcombe [6].
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Numerous generalizations of the Horadam sequences have been investigated by many
authors, as for example the k-Horadam introduced in 2012 by Yazlik [7] was recently
applied to coding theory by Srividhya and Rani [8], or the bi-periodic Horadam sequence
studied by And̄elić et al. [9], in relation to perturbed Toeplitz matrices (themselves used to
enumerate the P-vertices of graphs [10]). Other related results and further properties can
be found in classical or more recent papers [11–16].

Many classical integer sequences are obtained as particular cases: Fibonacci numbers
for (a, b) = (0, 1) and (p, q) = (1, 1), Lucas numbers for (a, b) = (2, 1) and (p, q) = (1, 1),
while Pell numbers for (a, b) = (0, 1) and (p, q) = (2, 1). These sequences (and over
350,000 others) are included in the On-Line Encyclopedia of Integer Sequences (OEIS) [17],
together with numerous properties and applications [18]. As opposed to such classical
integer sequences which are traditionally investigated via their algebraic or combinatorial
properties, the orbits of complex Horadam sequences can be plotted in the complex plane,
to produce a multitude of interesting geometric patterns.

The Horadam sequence terms defined by the recurrence (1) can be written explicitly
using the zeros z1, z2 of the quadratic characteristic polynomial P(x) = x2 − px− q, called
generators. These are linked to p and q by Vieta’s relations p = z1 + z2 and q = −z1z2,
and when z1 6= z2 one has

wn = Azn
1 + Bzn

2 , (2)

where A and B calculated from the initial conditions are given by

A =
az2 − b
z2 − z1

, B =
b− az1

z2 − z1
. (3)

This formulation allowed elegant characterization [19] (and enumeration) of periodic
Horadam orbits, obtained when z1 = e2πip1/k1 and z2 = e2πip2/k2 are distinct roots of
unity, with p1, p2, k1, k2 natural numbers. These have been enumerated in [20], while the
dual symmetry was studied in [21]. Non-periodic Horadam patterns were presented
in ([22], Chapter 5), with numerous examples of orbits dense within one-dimensional
curves, or bi-dimensional regions of the complex plane, along with the sequence of
ratios [23].

A natural but less commonly studied generalization is represented by the third-order
Horadam sequences, defined by the relation

wn = pwn−1 + qwn−2 + rwn−3, (n ≥ 3) (4)

w0 = a, w1 = b, w2 = c,

where a, b, c and p, q, r are arbitrary complex numbers. Explicit formulae, properties,
and geometric patterns for these sequences are given in ([22], Chapter 6.4) and [24,25].

Certain particular non-periodic dense Horadam patterns (|A| = |B|) were used by
Bagdasar and Chen in the design of a novel pseudo-random number generator (PNRG)
which performed well against other algorithms [26]. A proof of the uniformity of the
complex argument of classical Horadam sequences was provided in ([22], Chapter 5.7).

Random number generators play an important role in many practical algorithms for
statistical sampling or simulation. An illustrative application is the numerical solution of
complicated integrals via Monte Carlo methods. As the convergence rate of a numerical
algorithm is dependent on the characteristics of a distribution, one would ideally draw
samples from a probability distribution resembling the underlying processes. Some of
the common PRNG implementations involve Linear Congruences or Lagged Fibonacci
Sequences (see, e.g., [27,28]). Other modern approaches employ ratios of integers [29],
while the performance of PNRGs is usually tested against including period, uniformity and
correlation [30], Monte Carlo simulations, or by statistical tests, such as NIST published by
the National Institute of Standards and Technology [31], detailed in [32].
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In this paper we study certain Horadam sequences of second and third order whose
orbits is dense within a two-dimensional region of the complex plane, representing an
annulus between two circles centred in the origin, of radii

||A| − |B|| = R1 < R2 = |A|+ |B|,

with A, B given by (3). The sequence of complex arguments in these cases located the
interval [−π, π] is scaled to the interval [0, 1] and tested as a PRNG for the uniform
distribution over this interval.

For this PRNG we will explore the period, uniformity, correlation, and approximate the
value of π using Monte Carlo simulations (contrasting the performance of this algorithms
against that of some classical pseudo-random number generators), and also evaluate the
results from NIST. We extend the results from [26] (where apart from some simulations,
proofs were only provided for the particular case |A| = |B|) and ([22], Chapter 5.7) (where
the theory for the arguments when |A| 6= |B|was formulated). Additionally, we investigate
for the first time the probability density for the sequence of radii of Horadam sequence
terms, proving that generalized Horadam sequences of third-order and higher are also
densely distributed within a circle of known radius.

The structure of the paper is as follows. Section 2 is dedicated to methodology, where
we present basic properties of the (generalized) Horadam sequences, linear independence
results, dense Horadam orbits, and PNRG testing. The performance of two PNRGs based
on complex arguments of Horadam sequences is evaluated in Section 3 (|A| = |B|) and
Section 4 (|A| 6= |B|). A similar study is carried out for third-order Horadam sequences in
Section 5, while the probability density of the radii is discussed in Section 6. We end with
some suggestions for further research.

2. Methodology

In this section we first discuss some basic notations, and establish the geometric
bounds of periodic and stable orbits of Horadam sequences. We then present some density
and uniformity results, and finally we give basic information about the testing of pseudo-
random number generators. The graphs in this paper have been generated in Matlabr,
with the PRNG testing implemented in Python.

2.1. Geometric Properties of Horadam Sequences

For convenience we will use the notations

S = S(0; 1) = {z ∈ C | |z| = 1}, S(z0; r) = {z ∈ C | |z− z0| = r}
U = U(0; 1) = {z ∈ C | |z| < 1}, U(z0; r) = {z ∈ C | |z− z0| < r}

U(0; r1, r2) = {z ∈ C | r1 < |z| < r2}.

for the unit circle, the unit disc, and for the annulus of radii r1 < r2 centered in the origin.
For z1 6= z2, the orbit of the Horadam sequence (wn)n≥0 given by (2) will:

• Converge when max{|z1|, |z2|} < 1,
• Diverge when max{|z1|, |z2|} > 1,
• Be stable when max{|z1|, |z2|} = 1.

When |z1| = |z2| = 1, the resulting Horadam orbit (including periodic) satisfies

U(0; | |A| − |B| |, |A|+ |B|) = {z ∈ C | | |A| − |B| | ≤ |z| ≤ |A|+ |B|}. (5)

These boundaries represent an important feature of the Horadam orbits and are closely
related to the probability density functions.
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2.2. Linear Independence, Density and Uniform Distributions

We here present results on linear independence overQ, density of sequences, and PRNG
testing. Denote by bxc = max {m ∈ Z | m ≤ x} and {x} = x− bxc the floor and fractional
parts of x (this is periodic, satisfying {x + 1} = {x}, x ∈ R), respectively.

Definition 1. For k ≥ 1, it is said that the numbers x1, . . . , xk ∈ R are linearly dependent over Q
(or Z) if there are p1, . . . , pk ∈ Q, satisfying

a1x1 + a2x2 + · · ·+ akxk = 0, and (a1, . . . , ak) 6= (0, . . . , 0). (6)

If (6) only holds for (a1, . . . , ak) = (0, . . . , 0), then x1, . . . , xk are called linearly independent.

Example 1. For k = 2, when 1 and x1 are linear independent, x1 ∈ R \Q. For k = 3, if p is
prime, then (1, 3

√
p, 3
√

p2) is linearly independent over Z. Clearly, x1, . . . , xk are linearly dependent
over Q, if and only if they are linearly dependent over Z.

We now recall some well-known density results by Kronecker and Weyl.

Theorem 1 (Theorem 339, [33]). If x is irrational, then ({nx})n≥0 is dense in [0, 1].

This result was further generalized by Weyl (see also ([33], Theorem 445)).

Theorem 2 (Weyl, [34]). If x is irrational, then the sequence ({nx})n≥0, n ∈ N is uniformly
distributed in [0, 1].

Kronecker’s lemma has the following extension to higher dimensions.

Theorem 3 (Theorem 443, [33]). If k ≥ 2 and 1, x1, x2 . . . , xk are linearly independent, then the
sequence ({nx1}, {nx2}, . . . , {nxk})n≥0 is dense in the unit hypercube [0, 1]k.

In particular, when k = 2 and k = 3 the following results are obtained.

Proposition 1. Let x1, x2 ∈ R. If (1, x1, x2) are linearly independent over Q, then the sequence
({nx1}, {nx2})n≥0 is dense within the unit square [0, 1]× [0, 1].

Proposition 2. Let x1, x2, x3 ∈ R. If (1, x1, x2, x3) are linearly independent over Q, then the
sequence ({nx1}, {nx2}, {nx3})n≥0 is dense within the unit cube [0, 1]× [0, 1]× [0, 1].

2.3. Dense Horadam Orbits

The dimension of the closure of Horadam orbits can be zero (for periodic, convergent,
or divergent orbits), one (orbits dense within closed curves), or two (in which case the
orbits are dense in the region between two circles centered in the origin).

Based on Section 2.1, the orbits are stable (neither convergent, nor divergent), so one
has |z1| = |z2| = 1. For convenience, the generators z1, z2 and the coefficients A and B
given by (3) will be parametrised as

z1 = e2πix1 , z2 = e2πix2 , A = R1eiφ1 , B = R2eiφ2 . (7)

The terms wn of the Horadam sequence are given in polar form by

wn = rneiθn = Azn
1 + Bzn

2 = R1ei(φ1+2πnx1) + R2ei(φ2+2πnx2), (8)

where x1, x2, φ1, φ2, R1, R2 and θn, rn (n ≥ 0) are real numbers, with R1, R2, rn ≥ 0.
The condition below ensures that the orbits are dense within a 2D region.
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Theorem 4. Let a, b ∈ C and x1, x2 ∈ R. If 1, x1, x2 are linearly independent over Q, then the
Horadam sequence with generators z1 = e2πix1 6= z2 = e2πix2 and seeds w0 = a and w1 = b is
dense in the set U(0; | |A| − |B||, |A|+ |B|), with A and B computed by Formula (3).

Proof. We show that Horadam sequence terms can become arbitrarily close to an arbitrary
point w∗ = reiθ in the interior of the annulus U(0; |R1 − R2|, R1 + R2). First, notice that
there exist real numbers θ1 and θ2 satisfying

w∗ = reiθ = R1ei(φ1+2πϕ1) + R2ei(φ2+2πϕ2). (9)

Indeed, this can be proved by the identity

U(0; R1)⊕U(0; R2) = U(0; |R1 − R2|, R1 + R2),

where ⊕ is the Minkovski sum of two sets.
We now prove that there is wn sufficiently close to w∗, i.e., for ε > 0 there is a natural

number n such that |wn −w∗| < ε. By the continuity of the functions involved, this holds if
one can find n such that |nx1 − ϕ1| < δ and |nx2 − ϕ2| < δ, for a small δ > 0.

Since (1, x1, x2) are linearly independent over Q, by Proposition 1 the sequence
({nx1}, {nx2})n≥0 is dense within [0, 1] × [0, 1], so there are terms wn arbitrarily close
to w∗, i.e., the sequence (wn)n≥0 is dense in the annulus U(0, | |A| − |B| |, |A|+ |B|).

2.4. Complex Arguments of Horadam Sequences

For some dense Horadam sequences, the sequence of complex arguments (θn)n≥0
of the Horadam sequence (wn)n≥0 in (8) is uniformly distributed in the interval [−π, π].
The normalised version of this sequence defined by

θ̃n =
θn + π

2π
, n = 0, 1, . . . , (10)

will be uniformly distributed in the interval [0, 1], in this case. This inspires the definition
of a PNRG based on dense Horadam sequences.

2.5. Testing Pseudo-Random Number Generators

We will use some tests to evaluate randomness of the PNRG defined by (10).

(1) Periodicity. Many PNRGs, such as Lagged Fibonacci Sequences, are in fact using
periodic sequences with a long period (see, e.g., [27,28]) Since our sequences will
actually be non-periodic, this feature does not require testing.

(2) Autocorrelation. This property is tested by plotting by the sequence (xk, xk+1)k≥0,
within the unit square [0, 1]× [0, 1]. Good PRNGs would provide a good cover.

(3) Monte Carlo simulation of π. For two finite sequences xn, yn ∈ [0, 1], n = 1, . . . , N
given by the algorithm, we count the number mN of points (xn, yn), n = 1, . . . , N,
falling within the unit circle U, i.e., they satisfy the inequality x2

n + y2
n ≤ 1. Based on

simple area calculations, the number 4mN
N is used as an approximation for π.

(4) NIST tests. These are used to detect the deviations of a binary sequence from ran-
domness. We first generate a finite Horadam sequence (wn)N

n=1, then the normalised
complex arguments (an)N

n=1 (type double) are written as a sequence of binary num-
bers. We apply the NIST tests which consider the null hypothesis (H0) that the
sequence is randomly generated, and the alternative hypothesis (Ha). Using the
p-value, each test estimates whether the sequence is random (when we say the PNRG
passes the test) or non-random. For more technical information one can consult the
NIST documentation [31], or the detailed analysis in [32].
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3. Testing Complex Arguments of Horadam Sequences: The Case |A| = |B|

In the particular case when |A| = |B|, the orbit is dense within the disk centred in the
origin having radius 2|A|, as shown in Figure 1 depicting the sequence obtained for the
parameter values r1 = r2 = 1, x1 = π

5 , x2 = e2

4 and a = 1 + 1
3 i, b = 1.5aeπ(x1+x2).

Figure 1. The case when |A| = |B|. Horadam sequence terms (wn)N
n=0 computed by (1), for (a) N = 30

and (b) N = 500. We also plot the seeds a, b (stars), generators z1, z2 (squares), unit circle S (solid line),
and the circle U(0, 2|A|) (dotted line). In (a), the arrows indicate an increase in index n.

Using the notations (7), When |A| = |B| = R > 0, the relation (8) reduces to

wn = rneiθn = R
(

ei(φ1+2πnx1) + ei(φ2+2πnx2)
)

, (11)

hence the sequence of arguments for (wn)n≥0 is given by

θn =
φ1 + φ2

2
+ 2πn(x1 + x2). (12)

For 1, x1, x2 linearly independent over Z, the sequence of arguments θn is uniformly
distributed in the interval [−π, π], and in particular, it is aperiodic.

3.1. Uniform Distribution and Autocorrelation of Arguments

The sequence of normalised arguments θ̃n defined by (10) is uniformly distributed in
the interval [0, 1], as illustrated in Figure 2a. For good PNRGs generators, the 2D diagrams
of normalised arguments (θ̃n, θ̃n+1) would uniformly cover the unit square. However,
Figure 2b suggests that consecutive arguments are highly correlated.

Figure 2. (a) Histogram of normalised arguments θ̃n, n = 0, . . . , 500 from (10), against the uniform
density (dotted line); (b) Plot of (θ̃n, θ̃n+1) (crosses), n = 0, . . . , 500, for the sequence in Figure 1.
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3.2. Mixing Arguments and Monte Carlo Based Methods

To address the autocorrelation issue, we approximate π using complex arguments of
two Horadam sequences (w1

n)n≥0 and (w2
n)n≥0 for which |A| = |B| in Formula (8). The

parameters (x1, x2, a, b) generating the sequences in (7) are

w1
n : x1 =

e
2

, x2 =
e2

4
, a = 1 +

1
3

i, b = 1.5aeπ(x1+x2) (13)

w2
n : x1 =

√
3

5
, x2 =

π

4
, a = 1 +

2
3

i, b = 1.5aeπ(x1+x2), (14)

where the orbit of (w1
n)n≥0 was plotted in Figure 1. We denote the normalised arguments

(θ1
n)n≥0, (θ2

n)n≥0 of sequences (w1
n)n≥0, (w2

n)n≥0 by xn := θ1
n, yn := θ2

n, n = 0, 1, . . . .
We now calculate points (xn, yn), n = 1, . . . , N in the unit square [0, 1]× [0, 1], and de-

note by m(N) how many points fall inside the unit circle, i.e., x2
n + y2

n ≤ 1. The formula
4 m(N)

N approximates π, with values expected to improve for larger N. For example, in the
simulation shown in Figure 3a, the sample size is N = 1000 and there are mN = 794 points
satisfying x2

n + y2
n ≤ 1, n = 1, . . . , N. One obtains

m(N)

N
=

794
1000

= 0.794 and π ∼ 4
m(N)

N
= 3.1760. (15)

The value significantly improves with the increase in the number of sequence terms,
to 3.1412 for N = 104 (depicted in Figure 3b) and to 3.1416 for N = 106.

Figure 3. First (a) N = 1000; (b) N = 10,000 pairs of normalised arguments (xn, yn), n = 1, . . . , N.
Points inside the first quadrant of the unit circle (solid line) are represented by blue circles, while
those falling outside the circle by red crosses.

In Table 1, we estimate the error
∣∣∣4 m(N)

N − π
∣∣∣, N = 10k, k = 1, . . . , 7 terms, for points

(xn, yn), n = 1, . . . , N computed by Multiplicative Lagged Fibonacci with period 232 (MTF),
Mersenne Twister (MT), and Horadam sequences with |A| = |B| and |A| 6= |B|.

Table 1. Absolute errors in the approximation of π.

10N MLF MT Horadam (|A| = |B|) Horadam (|A| 6= |B|)
1 0.3297 0.7258 0.0584 0.3415

2 0.0615 0.0215 0.0216 0.0184

3 0.0304 0.0456 0.0344 0.0575

4 0.0200 0.0036 0.0004 0.0371

5 0.0018 0.0004 0.0014 0.0523

6 0.0010 0.0026 0.0000 0.0452
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One may notice that the convergence is not monotonic, but the Horadam based PRNG
results are comparable, or sometimes exceeds the other simulations, for |A| = |B|.

A more detailed evaluation of the PNRG in this particular test was provided in [26],
where it was tested against approximations of π obtained from Multiplicative Lagged
Fibonacci and the Mersenne Twister pseudo-random number generators implemented in
Matlab (the latter is the default random number generator).

4. Testing Complex Arguments of Horadam Sequences: The Case |A| 6= |B|

The focus of this section is the case |A| 6= |B|. By Theorem 4, when the real numbers
1, x1, x2 are linearly independent over Q, the orbit of the Horadam sequence (wn)n≥0 given
by Formula (8) is dense within the region between two concentric circles centred in the
origin, having radii ||A| − |B|| and |A|+ |B|. An example is shown in Figure 4, where
r1 = r2 = 1, x1 =

√
2

3 , x2 = e
15 and a = 2 + 2

3 i, b = 3 + i.

Figure 4. The case |A| 6= |B|. Horadam sequence terms (wn)N
n=0 computed from Formula (1),

for (a) N = 30 and (b) N = 500. We also plot the seeds a, b (stars), generators z1, z2 (squares),
unit circle S (solid line), and the boundaries of the annulus U(0; ||A| − |B||, |A|+ |B|) (dotted line).
In Figure (a), the arrows indicate the increase in the index n.

As the sequence (wn)n≥0 is aperiodic, for the normalised arguments θ̃n defined by (10)
we will discuss the autocorrelation, approximations of π, and also the randomness of the
sequence θ̃n evaluated as a PRNG by the NIST tests.

4.1. Autocorrelation of Arguments

The autocorrelation (θ̃n, θ̃n+1) for |A| 6= |B| is depicted in Figure 5. One can notice
that the arguments look uniformly distributed, with better covering than in Figure 2.

Figure 5. (a) Histogram of normalised arguments θ̃n, n = 0, . . . , 500 by (10), against the uniform
density (dotted line); (b) Plot of (θ̃n, θ̃n+1) (crosses), n = 0, . . . , 500, for the sequence in Figure 4.
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4.2. Evaluation of the PNRG by the NIST Tests

To evaluate the suitability of our proposed method as a PRNG, we carried out ran-
domness tests specified by the National Institute of Standards and Technology (NIST) on
the sequence of normalised complex arguments θ̃n given by (10), for two examples.

These tests were performed on two second order Horadam sequences generated
by Formula (1). The proposed PRNG was implemented in C++ on an x64 processor
architecture. IEEE 754 Double precision floating point format were used to represent the
real and imaginary part of complex numbers. The storage complexity for our PRNG is
O(N), where N denotes the order of the Horadam sequence used by the generator.

The two sequences are generated by the configurations (x1, x2, a, b) below:

w1
n : x1 =

√
2

3
, x2 =

e
15

, a = 2 +
2
3

i, b = 3 + i (16)

w2
n : x1 =

√
2

3
, x2 =

√
5

15
, a = 2 +

2
3

i, b = 3 + i. (17)

Calculations use the recurrence Formula (1), where w0 = a, w1 = b, p = z1 + z2,
and q = −z1z2, with z1, z2 computed from (7). In our implementation, this second order
generator used 64 bytes of memory to store two coefficients p and q and two initial seeds
w0 and w1. Notice that the sequence (w1

n)n≥0 given by (16) was depicted in Figure 4.
For each of these sequences we generate 10,000 terms, converting the floating point

values into their corresponding 64-bit binary forms for the randomness tests.
Tables 2 and 3 indicate that out of the first 14 NIST tests, the proposed PRNG passes

• 05. Binary Matrix Rank Test.
• 10. Linear Complexity Test.
• 11. Serial test (second part).

While these 14 tests agree on these two sequences, it would be expected that the results
may slightly differ for other parameter values.

Table 2. NIST randomness tests for sequence (w1
n)n≥0 given by (16).

Type of Test p-Value Conclusion

01. Frequency Test (Monobit) 0.0 Non-Random

02. Frequency Test within a Block 4.4999 × 10−260 Non-Random

03. Run Test 0.0 Non-Random

04. Longest Run of Ones in a Block 0.0 Non-Random

05. Binary Matrix Rank Test 0.1176 Random

06. Discrete Fourier Transform (Spectral) Test 0.0 Non-Random

07. Non-Overlapping Template Matching Test 6.3061 × 10−5 Non-Random

08. Overlapping Template Matching Test 0.0 Non-Random

09. Maurer’s Universal Statistical test 5.3335 × 10−71 Non-Random

10. Linear Complexity Test 0.3767 Random

11. Serial test (a): 0.0 Non-Random

11. Serial test (b): 0.9972 Random

12. Approximate Entropy Test 0.0 Non-Random

13. Cumulative Sums (Forward) Test 0.0 Non-Random

14. Cumulative Sums (Reverse) Test 0.0 Non-Random
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Table 3. NIST randomness tests for sequence (w2
n)n≥0 given by (17).

Type of Test p-Value Conclusion

01. Frequency Test (Monobit) 0.0 Non-Random

02. Frequency Test within a Block 4.5927 × 10−225 Non-Random

03. Run Test 0.0 Non-Random

04. Longest Run of Ones in a Block 0.0 Non-Random

05. Binary Matrix Rank Test 0.4676 Random

06. Discrete Fourier Transform (Spectral) Test 0.0 Non-Random

07. Non-Overlapping Template Matching Test 1.02391 × 10−6 Non-Random

08. Overlapping Template Matching Test 0.0 Non-Random

09. Maurer’s Universal Statistical test 3.3838 × 10−44 Non-Random

10. Linear Complexity Test 0.7255 Random

11. Serial test (a): 0.0 Non-Random

11. Serial test (b): 0.9920 Random

12. Approximate Entropy Test 0.0 Non-Random

13. Cumulative Sums (Forward) Test 0.0 Non-Random

14. Cumulative Sums (Reverse) Test 0.0 Non-Random

The random excursion tests on both sequences shown promising results as seen in
Tables 4 and 5, where apart from (w2

n)n≥0 evaluated at state +3 which suggested that the
sequence was Non-Random, all the other tests concluded that the sequences are Random.
We expect that different results may be obtained for other parameter values.

Table 4. NIST random excursion test for sequence (w1
n)n≥0 given by (16).

State Chi Square p-Value Conclusion

−4 4.3483 0.5004 Random

−3 3.0119 0.6982 Random

−2 7.5168 0.1850 Random

−1 10.5714 0.0606 Random

+1 7.1429 0.2102 Random

+2 7.3157 0.1982 Random

+3 5.5607 0.3513 Random

+4 9.4578 0.0921 Random

Table 5. NIST random excursion test for sequence (w2
n)n≥0 given by (17).

State Chi Square p-Value Conclusion

−4 0.2857 0.9979 Random

−3 0.4 0.9953 Random

−2 6.6667 0.2466 Random

−1 3.0 0.6700 Random

+1 1.0 0.9626 Random

+2 9.3333 0.0965 Random

+3 29.7040 1.6865 × 10−5 Non-Random

+4 5.3953 0.3696 Random
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5. The Case of Third-Order Horadam Sequences

We now test the design of a PRNG based on generalized Horadam sequences of third
order. Let us first establish some theoretical results. The characteristic equation of the
third-order sequence (wn)n≥0 described by the relation (4) is the cubic

Q(x) = x3 − px2 − qx− r = (x− z1)(x− z2)(x− z3),

whose roots parametrised as z1 = r1e2πix1 , z2 = r2e2πix2 , z3 = r3e2πix3 will be called
generators, linked to the coefficients p, q, and r of the recursion by Vieta’s relations

p = z1 + z2 + z3, q = −(z1z2 + z2z3 + z1z3), r = z1z2z3, (18)

When the generators z1, z2, and z3 are distinct, the general term is given by the formula

wn = rneiθn = Azn
1 + Bzn

2 + Czn
3 , (19)

where the constants A, B, and C can be obtained from (19) and the initial conditions

w0 = A + B + C = a,

w1 = Az1 + Bz2 + Cz3 = b,

w2 = Az2
1 + Bz2

2 + Cz2
3 = c,

where the seeds a, b, and c are given complex numbers. For more details on these calcula-
tions and explicit formulae for A, B, and C one can check [24,25].

An atlas of general third-order complex linear recurrences is given in ([22], Chapter 6).
Similarly to the classical Horadam sequences the orbits can be dense when the generators
are located on the unit circle, i.e., r1 = r2 = r3 = 1, and when 1, x1, x2, x3 are linearly
independent over Q (see Proposition 2).

In Figure 6a we illustrate such an example. The sequence (wn)n≥0 is computed using
the recurrence Formula (4), for the recurrence coefficients p, q, and r given by (18), with gen-
erators obtained for x1 = π

5 , x2 =
√

3/2, x3 =
√

5/6 and the seeds a = 0.2e2π/7+π/3,
b = 0.4e6π/7+π/3, and c = 0.8e10π/7+π/3. By Formula (19), since |z1| = |z2| = |z3| = 1,
by the triangle inequality one can easily obtain the inequality |wn| ≤ |A|+ |B|+ |C|, hence
the orbit is located within the circle of radius |A|+ |B|+ |C|, centred in the origin.

Figure 6. (a) First 1000 terms of the sequence (wn)n≥0 from (4). The stars show the seeds a, b, c; the
squares indicate the generators z1, z2, z3; the solid line is the unit circle U, while the dotted line is the
circle U(0; |A|+ |B|+ |C|). (b) Plot of the points (θ̃n, θ̃n+1) (crosses), n = 0, . . . , 1000.

5.1. Autocorrelation of Arguments

For the chosen sequence (wn)n≥0 displayed in Figure 6a, the sequence (θn)n≥0 of
complex arguments from Formula (19) is normalised as before through the transformation
θ̃n = θn+π

2π , n = 0, 1, . . . . This sequence also seems to be uniformly distributed.
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The autocorrelation obtained for normalised arguments (θ̃n, θ̃n+1) in Figure 6b indi-
cates that a PNRG based on a third-order Horadam sequence provides a more uniform
covering of the unit square [0, 1]× [0, 1].

5.2. Evaluation of NIST Tests

As in Section 4.2, we apply the NIST tests on the sequence of normalised complex
arguments θ̃n, computed for the third order Horadam sequence plotted in Figure 6a.
The current implementation requires 96 bytes.

Table 6 suggests that from the first 14 NIST tests, the proposed PRNG passes the Binary
Matrix Rank (05), the Linear Complexity (10), and the Serial tests (11, part 2). The results
are very similar to those for classical Horadam sequences in Tables 2 and 3.

Table 6. NIST randomness tests on a third order Horadam sequence.

Type of Test p-Value Conclusion

01. Frequency Test (Monobit) 0.0 Non-Random

02. Frequency Test within a Block 8.3042 × 10−249 Non-Random

03. Run Test 0.0 Non-Random

04. Longest Run of Ones in a Block 0.0 Non-Random

05. Binary Matrix Rank Test 0.1839 Random

06. Discrete Fourier Transform (Spectral) Test 0.0 Non-Random

07. Non-Overlapping Template Matching Test 2.8299 × 10−5 Non-Random

08. Overlapping Template Matching Test 0.0 Non-Random

09. Maurer’s Universal Statistical test 3.5207 × 10−76 Non-Random

10. Linear Complexity Test 0.1191 Random

11. Serial test (a): 0.0 Non-Random

11. Serial test (b): 0.0145 Random

12. Approximate Entropy Test 0.0 Non-Random

13. Cumulative Sums (Forward) Test 0.0 Non-Random

14. Cumulative Sums (Reverse) Test 0.0 Non-Random

Table 7 suggests that all random excursion tests conclude that the proposed sequence
is Random, similar to the results shown in Table 4. More research is required to establish
whether the results hold for other parameter values.

Table 7. NIST random excursion test on a third order Horadam sequence.

State Chi Square p-Value Conclusion

−4 2.5714 0.7657 Random

−3 3.6000 0.6083 Random

−2 4.5185 0.4774 Random

−1 2.7778 0.7342 Random

+1 3.2222 0.6658 Random

+2 5.8107 0.3251 Random

+3 5.7360 0.3328 Random

+4 13.2979 0.0207 Random
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6. Radii of Horadam Sequence Terms

We here investigate the distribution of radii of Horadam sequences. By Formula (7)
we have |A| = R1 > 0, |B| = R2 > 0, while the notations in Formula (8) can by simplified
by taking θ1 = φ1 + nx2, θ2 = φ2 + nx2, to obtain

reiθ = R1eiθ1 + R2eiθ2 , (20)

therefore one has

r2 = R2
1 + R2

2 + 2R1R2 cos(θ1 − θ2). (21)

6.1. The Distribution of Radii for |A| = |B|
The case R = R1 = R2 is easier to examine. Indeed, the Formula (21) reduces to

r = 2R cos
(

1
2
(θ1 − θ2)

)
.

The angle θ1 − θ2 is uniformly distributed in (−π
2 , π

2 ), and by denoting α = θ1 − θ2
and |r| = 2R cos(α), one may write

P(|r/(2R)| ≥ x) = P(α ≤ arccos(x)) =
2
π

arccos(x),

for every value x in the interval (0, 1). Thus, the density of r is given by the formula

fr(x) =
1|x|<2R

π
√

4R2 − x2
, (22)

where 1|x|<2R represents the indicator function for the disk U(0; 2R). The histogram of
|wn| for (wn)1000

n=0 is shown in Figure 7a, against the density given by (22). The Horadam
sequence used in this case is the one from Section 3, plotted in Figure 1b.

Figure 7. Histogram of the radii |wn| of the Horadam sequence the terms (wn)1000
n=0 from (2) for

r1 = r2 = 1 when (a) x1 = π
5 , x2 = e2

4 and a = 1 + 1/3i, b = 1.5a exp(π(x1 + x2)) (|A| = |B|);
(b) x1 =

√
2

3 , x2 = e
15 and a = 2 + 2/3i, b = 3 + i (|A| 6= |B|). The probability densities fr given by

Formulae (22) and (23) are shown by a dotted line. Parameters correspond to Figures 1b and 4b.

6.2. The Distribution of Radii for |A| 6= |B|
If |A| 6= |B|, from the example depicted in Figure 4, the orbits in this case are bounded

by two circles. As Figure 7b suggests, these inner and outer bounds are singularities for
the radius distribution. We now find the distribution of the radius r, using the notation
r2 = r2

1 + r2
2 + 2r1r2 cos(α) where α is uniformly distributed in (0, π).

As −1 ≤ (θ1 − θ2) ≤ 1 one has (r1 − r2)
2 ≤ r2 ≤ (r1 + r2)

2, therefore
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P[r ≤ x] =

{
0 , x ≤ |r1 − r2|
1 , x ≥ r1 + r2

.

For |r1 − r2| < x < r1 + r2 we have

P[r ≥ x] = P[r2 ≥ x2] = P[r2
1 + r2

2 + 2r1r2 cos(α) ≥ x2]

= P
[

cos α ≥
x2 − r2

1 − r2
2

2r1r2

]
= P

[
α ≤ arccos

(
x2 − r2

1 − r2
2

2r1r2

)]
=

1
π

arccos
(

x2 − r2
1 − r2

2
2r1r2

)
.

By differentiating, one obtains the density function

fr(x) =
1
C

x√[
(r1 + r2)2 − x2

][
x2 − (r1 − r2)2

] , |r1 − r2| < x < r1 + r2. (23)

This has singularities at the boundaries x = |r1 − r2|, and x = r1 + r2, and a critical point at
x =

√
|r1 − r2|(r1 + r2). Moreover, we have

f ′r(x) =
1
C

x4 − (r1 − r2)
2(r1 + r2)

2[
(r1 + r2)2 − x2

]3/2[
x2 − (r1 − r2)2

]3/2 ,

while the constant C = π/2 ensures that the density fr given by (23) satisfies∫ r1+r2

|r1−r2|
fr(x) = 1.

7. Conclusions

We have first discussed the key properties of complex Horadam sequences of second
and third order, including exact formulae for the general term. For sequences whose orbits
were dense within a 2D region, we analysed the sequence (θ̃n)n≥0 of complex arguments
normalised to the interval [0, 1] by the Formula (10).

In Section 3, we showed that the normalised arguments θ̃n are uniformly distributed
in the interval [0, 1] when A, B given by (3) satisfy |A| = |B|, which inspired a PNRG.
We showed that the autocorrelation of a single sequence was linear, but Monte Carlo
simulations for the value of π using two distinct sequences showed good convergence
properties against established generators (Lagged Fibonacci and Mersenne Twister).

In Section 4 we explored the case |A| 6= |B|. The autocorrelation was better, but sur-
prisingly, the errors in the approximation of π obtained for pairs of Horadam sequences
was sometimes worse than for |A| = |B|, as shown in Table 1. The PRNG generated for
two sequences (16) and (17) passed 3 out of 14 NIST tests (8, 10, and 11) (see Tables 2 and 3).
The performance was better in the random excursion tests (see Tables 4 and 5).

Section 5 presents results for third-order generalized Horadam sequences, where we
also explore the properties of a similarly defined PNRG. Results are much improved in
terms of autocorrelation, but similar in terms of the NIST tests.

In Section 6 we derived the probability density of the radii of Horadam sequences in
the scenarios |A| = |B| and |A| 6= |B|, validated against numerical simulations.

Further investigations are required for understanding the relationship between the
initial parameters and the results in the NIST tests, or autocorrelation.
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