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Abstract: Machine learning has been increasingly applied to neuroimaging data to compute person‑
alized estimates of the biological age of an individual’s brain (brain age). The difference between
an individual’s brain‑predicted age and their chronological age (brainPAD) is used as a biomarker
of brain aging and disease, but the potential contribution of different machine learning algorithms
used for brain age prediction to the association between brainPAD and cognitive function has not
been investigated yet. Here, we applied seven commonly used algorithms to the same multimodal
brain imaging data (structural and diffusion MRI) from 601 healthy participants aged 18–88 years in
the Cambridge Centre for Ageing and Neuroscience to assess variations in brain‑predicted age. The
inter‑algorithm similarity in brain‑predicted age and brain regional regression weights was exam‑
ined using the Pearson’s correlation analyses and hierarchical clustering. We then assessed to what
extent machine learning algorithms impact the association between brainPAD and seven cognitive
variables. The regressionmodels achievedmean absolute errors of 5.46–7.72 years and Pearson’s cor‑
relation coefficients of 0.86–0.92 between predicted brain age and chronological age. Furthermore,
we identified a substantial difference in linking brainPAD to cognitive measures, indicating that the
choice of algorithm could be an important source of variability that confounds the relationship be‑
tween brainPAD and cognition.

Keywords: magnetic resonance imaging; diffusion magnetic resonance imaging; machine learning;
brain age prediction; cognition

MSC: 68T01

1. Introduction
Genetic and environmental factors influence the rate of age‑related biological changes

in the brain [1]. However, the rate of change shows inter‑individual variation [2,3]. Ma‑
chine learning algorithms can be applied to neuroimaging data to generate estimates of
the biological age of an individual’s brain (i.e., brain age) [4]. In each individual, sub‑
tracting their chronological age from their brain‑predicted age generates a brain‑predicted
age difference (brainPAD) score [5,6], which indicates whether their brain appears “older”
(positive score) or “younger” (negative score) than their actual age. This metric reflects the
deviation from typical lifespan trajectories and is used as a biomarker of brain aging and
disease [7].

Brain‑predicted age and brainPAD are biologically meaningful metrics. A higher
brainPAD has been associated with key physiological markers of age‑related frailty, such
as lower grip strength and lower cognitive function [1,8], as well as risk factors for ac‑
celerated aging, such as smoking and poor physical health [9,10]. Conversely, a lower
brainPAD has been used to illustrate positive influences relating to higher education and
physical activity [11]. A higher brainPAD has been found in Alzheimer’s disease [12],
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traumatic brain injuries [13], and psychiatric disorders [14,15]. It is associated with cog‑
nitive decline [16] and can predict future conversion from mild cognitive impairment to
Alzheimer’s disease [12,17].

Neuroimaging‑based brain age estimates can be influenced by many parameters in‑
cluding sample size, sample composition, the type of neuroimaging features used, and the
choice of the machine learning algorithm applied to the data [15,18]. Brain‑predicted age
has the potential to enter clinical settings as a potential biomarker of brain health [7,19].
Clinical applications have real‑life consequences in terms of advice given to help‑seeking
individuals or in terms of evaluating the impact of interventions. In this respect, it is impor‑
tant that we improve, quantify, and harmonize the methods applied to the computation of
brain age. Here, we focus specifically on the role of the statistical method by undertaking a
comparative evaluation of themost commonly usedmachine learning algorithms for brain
age prediction. We also aim to investigate to what extent the choice of machine learning
algorithms impacts the association between brainPAD and cognitive function.

To address these aims, we established a machine learning model to predict brain
age using multimodal imaging features comprising regional structural measures derived
from structural magnetic resonance imaging (MRI) data and regional diffusion measures
of white matter integrity (fractional anisotropy and mean, axial, and radial diffusivity) de‑
rived from diffusion MRI data, acquired from the Cambridge Centre for Ageing and Neu‑
roscience Project (Cam‑CAN) [20,21], which is led by the University of Cambridge, UK.
The project used epidemiological, cognitive, and neuroimaging data acquired from adults
aged 18–88 years in an effort to elucidatemechanisms related to aging. We compared seven
commonly used machine learning algorithms, including ordinary least squares (OLS) re‑
gression, ridge regression, least absolute shrinkage and selection operator (Lasso) regres‑
sion, elastic‑net regression, support vector regression (SVR), relevance vector regression
(RVR), and Gaussian process regression (GPR), in brain age prediction by performing the
Pearson’s correlation analyses and hierarchical clustering. We determined the deviation
between brain‑predicted age and chronological age (brainPAD) for each algorithm and
then examined the impact of the algorithm choice on the association between brainPAD
and cognitive function.

2. Materials and Methods
2.1. Sample

The present study included 601 participants (age range = 18–88 years) from the Cam‑
bridge Centre for Ageing and Neuroscience (Cam‑CAN) [20]. These participants were
cognitively healthy adults recruited from the local community. The Cam‑CAN cohort is
a public access database funded by the Biotechnology and Biological Sciences Research
Council, the UK Medical Research Council, and the University of Cambridge. All indi‑
viduals were screened according to local study protocols to ensure they had no history
of neurological, psychiatric, or major medical conditions. Ethical approvals and informed
consents were obtained locally for each study, covering both participation and subsequent
data sharing.

2.2. Neuroimaging Acquisition and Processing
In all Cam‑CAN participants, T1‑weighted and diffusion‑weighted images were ac‑

quired on a 3T Siemens TIM Trio scanner (details in Supplementary Materials). Struc‑
tural T1‑weightedMRI imageswere processed using FreeSurfer 6.0 (http://surfer.nmr.mgh.
harvard.edu, accessed on 1 September 2020). Cortical parcellation was based on the
Desikan–Killiany atlas [22,23], while subcortical segmentation was carried out using the
probabilistic atlas in FreeSurfer [24] (details in Supplementary Materials). This procedure
generated 153 structural features (total intracranial volume, 68 regional measures of corti‑
cal thickness, 68 regional measures of cortical surface area, and 16 measures of subcortical
volume) (details in Supplementary Table S1).

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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Diffusion image processing was performed using FSL (version 6.0), which is a part of
the Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library. Eddy
currents and movement were corrected using FSL’s eddy tool. Fractional anisotropy (FA),
mean (MD), axial (AD), and radial diffusivity (RD)mapswere computed by fitting a tensor
model to the corrected diffusion tensor imaging (DTI) data using FSL’s dtifit tool (details
in Supplementary Materials). The Johns Hopkins University (JHU) parcellation atlas was
used to estimate regional measures of white matter tracts. This procedure resulted in 192
white matter diffusion features (48 regional measures of each diffusion metric—FA, MD,
AD, and RD) for each individual (details in Supplementary Table S1). Both brain morpho‑
logical and diffusionmeasures were used as input features tomachine learning algorithms.

2.3. Machine Learning Algorithms
Brain age predictionwas performed using sevenmachine learning algorithms that are

validated and most commonly reported in the literature [1,5,18,25–29].

2.3.1. Ordinary Least Squares (OLS) Regression
This is an approach to fit a linear model by minimizing the residual sum of squares

between the observed value yi in the training dataset (i = 1, . . . ,N, the sample size) and the
values f (xi) predicted by the ordinary least squares regression model. The object function
is as follows:

min
β

∑N
i = 1( f (xi)− yi)

2 (1)

where yi is the actual value of the chronological age and xi is the value of the ith feature of
the ith subject. The least squares solution was computed using the singular value decom‑
position (SVD).

2.3.2. Ridge Regression
This is a form of regularized linear regression using a L2‑norm penalty that aims to

minimize the sumof the squared prediction error in the training data. This algorithm tends
to make the coefficients close to zero [30]. The object function is as follows:

min
β

∑N
i = 1( f (xi)− yi)

2 + λ ∑p
j = 1 β j

2 (2)

where N is the sample size, yi is the actual value of the chronological age, xi is the value
of the ith feature of the ith subject, f (xi) is the values predicted by the linear model ，
p is the number of features, and β j is the regression coefficient. This algorithm shrinks
the coefficients, and it helps to reduce the model complexity and multicollinearity. The
tuning parameter λ controls the model’s complexity. We determined the optimal choice
of λ parameter using 10‑fold cross‑validation.

2.3.3. Least Absolute Shrinkage and Selection Operator (Lasso) Regression
This is a regularized linear regression using a L1‑norm penalty that aims to minimize

the sum of the absolute value of the regression coefficients [31]. The objective function is
as follows:

min
β

∑N
i = 1( f (xi)− yi)

2 + λ ∑p
j = 1 |β j| (3)

where N is the sample size, yi is the actual value of the chronological age, xi is the value of
the ith feature of the ith subject, p is the number of features, and β j is the regression coeffi‑
cient. The L1‑norm regularization tends to make some coefficients that are exactly zero. It
retains one random feature among the correlated ones, thus yielding a sparse model that
facilitates optimization of the predictors and reduces the model complexity. We tuned a
hyperparameter λ using 10‑fold cross‑validation.
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2.3.4. Elastic‑Net Regression
This is a regularized linear regression model that combines both the L1‑norm and

L2‑norm regularizations in the OLS loss function [32]. The object function is as follows:

min
β

∑N
i = 1( f (xi)− yi)

2 + λ ∑p
j = 1

(
α|β j|+

1
2
(1 − α)||β j||2

)
(4)

where yi is the age of the ith individual, p is the number of features, xi,j is the value of the jth
feature of the ith subject, and β j is the regression coefficient. This algorithm performs vari‑
able selection and regularization simultaneously. This method is most appropriate where
the number of features is greater than the number of samples. This allows the number
of selected features to be larger than the sample size while achieving a sparse model. We
tuned a hyperparameter parameter α (between 0 and 1) to adjust the relative weighting of
the L1‑norm and L2‑norm contributions. The optimal α parameter was chosen based on
10‑fold cross‑validation.

2.3.5. Support Vector Regression (SVR)
SVR is characterized by the use of kernels, sparsity, control of the margin of tolerance

(epsilon, ε), and the number of support vectors. This algorithm aims to find a function f (xi)
whose predictive value deviates by no more than a required accuracy ε from the actual yi
for all the training data while maximizing the flatness of the function [33]. This algorithm
uses the L2‑norm regularization that aims to minimize the squared sum of the regression
coefficients. The object function is as follows:

min
β

1
2 ∑

p
j = 1 ||β j||2 + C ∑l

i = 1
(
ξi + ξ∗i

)
subject to


yi − f (xi) ≤ ε + ξi
f (xi)− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0

(5)

where l is the quantity of support vectors, which are the samples that deviate by more
than ε from the actual yi used to fit the model. A parameter C regulates the smoothness
of function f (xi). The slack variables ξi and ξ∗i are introduced to cope with the infeasible
constraints of the optimization problem. We chose the optimal C parameter using 10‑fold
cross‑validation.

2.3.6. Relevance Vector Regression (RVR)
RVR is a Bayesian sparse kernel method for regression. RVR has an identical func‑

tional form to SVR [34]. The function is as follows:

f (xi) = ∑p
i = 1 βiΦi(x) + β0 (6)

where β = (β0, . . . , βp) is a vector of weights and Φi(x) = K(x, xi) is a linear kernel
function defining the basis function. The sparsity of RVR is induced by the hyperpriors on
model parameters in a Bayesian framework with the maximum a posteriori (MAP) prin‑
ciple. RVR determines the relationship between the target output and the covariates by
enforcing sparsity. The L1‑norm‑like regularization used in RVR encourages the sum of
absolute values to be small, which often drives many parameters to zero and provides few
basic functions. Notably, RVR has no algorithm‑specific parameter [34].

2.3.7. Gaussian Process Regression (GPR)
This is a non‑parametric kernel‑based probabilistic approach. GPR is a model that

has the multivariate Gaussian distribution that can be applied over an infinite number of
variables. The assumption in GPR is that any finite number of random variables has a mul‑
tivariate Gaussian distribution with a mean function m(x) = E[ f (x)] and a covariance
function k(x, x′) = E[f (x) − m(x)f (x′) − m(x′)]. The prior belief about the relationship be‑
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tween variables is informed by the definition of these multivariate Gaussians to generate
a model that represents the observed variance. Therefore, a GPR is applied to select an
appropriate covariance function k(x, x′) that measures the similarity between data points.
As the multivariate Gaussian can represent local patterns of covariance between individ‑
ual points, the combination of multiple Gaussians in a GPR can model non‑linear relation‑
ships [35].

We implemented OLS regression, ridge regression, Lasso regression, and elastic‑net
regression using the scikit‑learn library in Python [36]. We implemented SVR using the
validated LIBSVM function (https://www.csie.ntu.edu.tw/~cjlin/libsvm/, accessed on 1 Oc‑
tober 2020) in MATLAB (MathWorks, Natick, MA) [37]. The Pattern Recognition for Neu‑
roimaging Toolbox (PRoNTo) (http://www.mlnl.cs.ucl.ac.uk/pronto/, accessed on 1 Octo‑
ber 2020) [38] was used to implement RVR and GPR.

2.4. Brain Age Prediction and BrainPAD Estimation
The Cam‑CANdataset was split into a training set (n = 500) and a test set (n = 101). We

performed statistical testing to ensure that there are no significant differences in age and
sex between the two sets. Details about sample anddemographic information are provided
in Supplementary Table S2. We applied the seven commonly used regression algorithms
separately to multimodal (combined structural and diffusion features) data. Each algo‑
rithm was applied separately to the dataset according to the following steps: (i) prior to
modeling, each neuroimaging measure was linearly scaled so that all values in the feature
set ranged between 0 and 1; (ii) a nested 10‑fold cross‑validation (10F‑CV) was performed
within the training data (n = 500) to estimate the brain agemodel performance: the training
data were randomly split into 10 equal‑sized subsets. For each cross‑validation, one subset
was left out as the test subset while the remaining nine subsets were used together as the
training set for estimating the model parameters. These parameters were then applied to
the left‑out subset. Specifically, for ridge regression, Lasso regression, elastic‑net regres‑
sion, and SVR, a cross‑validation procedure was applied with an outer 10F‑CV to evaluate
model generalizability and an inner 10F‑CV to determine the optimal parameters for these
algorithms; (iii) the performance of the trained brain age model was tested by predicting
brain age in unseen individuals in the test set (n = 101); (iv) the performance of each algo‑
rithm was quantified by the Pearson’s correlation coefficient (r) and mean absolute error
(MAE) between predicted brain age and chronological age; (v) for each algorithm, the re‑
gression weights for each brain region were also used for the comparative evaluation of
the algorithms: the absolute value of these weights represents the importance of the cor‑
responding features in the brain age prediction of the model [39]; (vi) the brain‑predicted
age difference (brainPAD) was calculated for each algorithm by subtracting the chronolog‑
ical age of each individual from their brain age predicted by that algorithm. BrainPAD is
often overestimated in younger individuals and underestimated in older individuals due
to the general statistical features of the regression analysis [40]. For age‑bias correction, we
regressed out the effect of age on brainPAD on the entire sample to correct for “regression
to the mean” bias [40,41], and then used the resulting residuals in further analyses.

2.5. Association of BrainPAD with Cognitive Function
The Cam‑CAN project provides cognitive assessment data collected outside of the

MRI scanner. We used cognitive measures available in the Cam‑CAN to evaluate the utility
of our estimated brainPAD to capture cognitive phenotypes. In the current study, we used 7
cognitive measures that assess executive function, memory, motor function, and emotional pro‑
cessing, which are the most commonly used measures in the literature [20,21,42–44]. Executive
function was measured using Cattell’s fluid intelligence test, the hotel test, and a proverb
comprehension task. Memory was measured using the tip of the tongue (ToT) test. Mo‑
tor function was assessed via a response time (RT) “choice” task and a RT “simple” task.
Emotion processingwasmeasured using Ekman’s emotion expression recognition test (see
Supplementary Materials for detailed task descriptions) [20,21].

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.mlnl.cs.ucl.ac.uk/pronto/
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Ageneral linearmodel was formulated to test whether brainPADwas associatedwith
each of the cognitive measures in the entire sample of the Cam‑CAN (n = 601). The brain‑
PAD of the ith participant was modeled as

brainPADi = β0 + Siβ1 + ageiβ2 + ageiSiβ3 + sexiβ4 + ageiSiβ5 + εi (7)

where brainPADi and Si denote the residualized brainPAD and cognitive measure of the
ith participant, respectively. β denotes the fitted regression coefficients, and εi is the error
term. The model was fitted independently to each of the 7 cognitive measures (details in
Supplementary Table S3). The explanatory variable characterizing sex (β4) and the age‑by‑
cognition (β3) and sex‑by‑cognition (β5) interactionswere not significant for each cognitive
score, and thus were removed from the final model. The false discovery rate (FDR) was
controlled at 5% across the 7 independent tests. In the supplemental analyses, we tested
whether brainPAD was associated with each of the cognitive measures in the test sample
(n = 101). This supplemental analysis was performed to determine whether the observed
associations remained due to the choice of machine learning algorithms in the test sample.

3. Results
3.1. Performance of Machine Learning Algorithms in Brain Age Prediction

All seven algorithms tested using 10‑fold cross‑validation on the Cam‑CAN training
set showed that OLS regression had the lowest correlation of 0.78 and the highest MAE
of 9.69 years, compared to the other six algorithms which had comparable correlations
(range = 0.91–0.92) andMAEs (range = 5.65–5.93 years) between chronological age and pre‑
dicted brain age (Table 1). In predicting brain age using the test set, all algorithms provided
a similar performance in brain age prediction (r = 0.91–0.92; MAE = 5.46–5.89 years) with
the exception of OLS regression (r = 0.86; MAE = 7.72 years). The predicted brain ages in
the training data (Figure 1) and the test data (Figure 2) were plotted against chronological
age for each of the seven regression algorithms. The weights of ridge regression for each of
the structural and diffusion features in brain age prediction are visualized in Figure 3. The
weights of all the other algorithms for each regional feature are provided in Supplemen‑
tary Figures S1–S7. In addition, the total computation time to train themodel using 10‑fold
cross‑validation for each algorithm is provided in detail in Supplementary Table S4.

Table 1. Algorithm performance based on the structural and diffusion features from the Cam‑CAN
individuals entered in the model for model performance in the training data (n = 500) and prediction
performance in the hold‑out test data (n = 101).

Algorithm
Model Performance Prediction Performance

r MAE r MAE

OLS 0.78 9.69 0.86 7.72
Ridge 0.92 5.65 0.92 5.52
Lasso 0.92 5.73 0.91 5.48

Elastic‑net 0.92 5.68 0.92 5.46
SVR 0.92 5.82 0.91 5.89
RVR 0.91 5.93 0.91 5.63
GPR 0.92 5.66 0.92 5.52

OLS = ordinary least squares regression; Lasso = least absolute shrinkage and selection operator regression;
SVR = support vector regression; RVR = relevance vector regression; GPR = Gaussian process regression.
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Figure 1. Scatter plots of chronological age (x−axis) versus predicted age (y−axis) in the train‑
ing data (n = 500) of the Cam‑CAN sample for each of the seven algorithms. Color spectrum
(blue−white−red) denotes the error of each individual’s predicted age from the chronological age
(brainPAD). OLS = ordinary least squares regression; Lasso = least absolute shrinkage and selection
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Figure 3. Relative importance of structural and diffusion features in predicting brain age for ridge
algorithm. (A) Spatial maps of the regression weights in each cortical region for surface area and
cortical thickness as well as subcortical and intracranial volume in the prediction of brain age. (B) Vi‑
sualized are the weights in each white matter region for fractional anisotropy and mean, axial, and
radial diffusivity in the prediction of brain age. The weights for all the other algorithms are provided
in Supplementary Figures S1−S7.

3.2. Comparative Evaluation of Machine Learning Algorithms
3.2.1. Brain‑Predicted Age

The correlation matrix of the predicted brain age across algorithms is shown in
Figure 4A. Individual predicted brain ages showed high between‑algorithm correlations
(range = 0.78–0.99). Hierarchical clustering of the individual predicted brain ages showed
that ridge regression and elastic‑net regression together formed one cluster (showing high
similarity amongwithin‑cluster algorithms, but relatively low similarity among algorithms
outside their cluster), and SVR, RVR, and GPR formed another cluster; by contrast, OLS
regression relatively showed a lower similarity with all the other algorithms (Figure 4B).

3.2.2. Brain Regional Regression Weights
The correlation matrix of the regression weights across algorithms is shown in

Figure 4C. Between‑algorithm correlations in regression weights ranged from 0 to 0.99
(Figure 4C). Hierarchical clustering of the absolute values of regression weights showed
that GPR and ridge regression were most similar, whereas the weights of OLS regression
were the least similar to those of all the other algorithms (Figure 4D).
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Figure 4. Similarity in brain‑predicted age and brain regional regression weights across seven al‑
gorithms. Brain‑predicted age: (A) Similarity matrix representing between‑algorithm correlations
of individual brain‑predicted age. (B) Distance matrix and dendrogram resulting from hierarchical
clustering of the individual brain‑predicted age of the seven algorithms. Brain regional regression
weights: (C) Similarity matrix representing between‑algorithm correlations of the absolute regres‑
sion weights of the structural and diffusion features. (D) Distance matrix and dendrogram resulting
from hierarchical clustering of brain regional regression weights of the seven algorithms. OLS = or‑
dinary least squares regression; Lasso = least absolute shrinkage and selection operator regression;
SVR = support vector regression; RVR = relevance vector regression; GPR = Gaussian process regres‑
sion.

3.3. Association between BrainPAD and Cognitive Measures
Individual variation in the brain‑predicted agedifference (brainPAD)was significantly

associated with the hotel test (SVR: t = 2.48, p < 0.05, r = 0.10; RVR: t = 2.46, p < 0.05, r = 0.10)
and emotion expression recognition (SVR: t = −2.70, p < 0.05, r = −0.11.10; RVR: t = −2.88,
p < 0.05, r = −0.12; GPR: t = −2.71, p < 0.05, r = −0.11; Figure 5). BrainPAD was not associ‑
ated with any of the other cognitive measures (p > 0.05; Table 2). Furthermore, our results
revealed that there was a substantial variation in the association between brainPAD and
cognitive measures due to the choice of algorithm. The associations between brainPAD
and cognitive measures in the test set for each algorithm are provided in detail in Supple‑
mentary Table S5.
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Figure 5. Associations between brain‑predicted age difference (brainPAD) from each algorithm and
individual variation in cognitive measures. Individual variation in brainPAD was significantly as‑
sociated with the hotel test (SVR: t = 2.48, p < 0.05, r = 0.10; RVR: t = 2.46, p < 0.05, r = 0.10) and
the Ekman’s emotion expression recognition (SVR: t = −2.70, p < 0.05, r = −0.11.10; RVR: t = −2.88,
p < 0.05, r = −0.12; GPR: t = −2.71, p < 0.05, r = −0.11). Asterisks indicate statistically significant as‑
sociations between brainPAD and cognitive measures, controlling for the false discovery rate (FDR)
at 5%. Proverbs = proverb comprehension; ToT = tip of the tongue; RT = response time; OLS = or‑
dinary least squares regression; Lasso = least absolute shrinkage and selection operator regression;
SVR = support vector regression; RVR = relevance vector regression; GPR = Gaussian process regres‑
sion.

Table 2. Association of brainPAD with cognitive measures for each algorithm.

Algorithm
Fluid

Intelligence Hotel Proverbs ToT RT Simple RT Choice Emotion
Recognition

r p r p r p r p r p r p r p

OLS 0.002 0.965 0.024 0.651 0.052 0.581 −0.027 0.651 −0.074 0.566 −0.041 0.581 0.037 0.374
Ridge −0.048 0.687 −0.021 0.709 0.027 0.709 0.044 0.687 −0.057 0.687 −0.034 0.709 0.000 0.996
Lasso −0.055 0.583 −0.030 0.654 0.039 0.600 0.048 0.583 −0.061 0.583 −0.005 0.904 −0.017 0.688

Elastic‑net −0.048 0.738 −0.012 0.894 0.027 0.774 0.042 0.738 −0.060 0.738 −0.025 0.774 −0.010 0.809
SVR −0.014 0.727 0.101 0.047 −0.033 0.599 0.074 0.157 0.023 0.691 0.072 0.157 −0.111 0.007
RVR −0.033 0.581 0.100 0.049 −0.026 0.622 0.084 0.103 −0.006 0.893 0.061 0.273 −0.118 0.004
GPR −0.024 0.580 0.095 0.070 −0.036 0.545 0.076 0.156 0.024 0.580 0.070 0.178 −0.111 0.007

Bold font denotes statistically significant associations between brainPAD and cognitive measures, controlling for
the false discovery rate (FDR) at 5%. Proverbs = proverb comprehension; ToT = tip of the tongue; RT = response
time; OLS = ordinary least squares regression; Lasso = least absolute shrinkage and selection operator regression;
SVR = support vector regression; RVR = relevance vector regression; GPR = Gaussian process regression.

4. Discussion
Using a large community sample of cognitively healthy adults, we assessed variation

in brain age predicted by seven commonly used algorithms, applied to the same structural
and diffusion features. We examined the ability of estimated brainPAD (predicted brain
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age–chronological age) to capture cognitive phenotypes, and we investigated the contri‑
bution of different machine learning algorithms to the association between brainPAD and
cognitive measures. We demonstrated that different machine learning algorithms intro‑
duce variations in predicted brain age when applied to multimodal brain features. We
also found that the strength of the association between brainPAD and cognitive measures
is influenced by the algorithm used for brain age prediction.

We applied seven commonly used algorithms to the same structural and diffusion fea‑
tures to predict brain age. With the exception of OLS regression (r = 0.86; MAE = 7.72), all
other algorithms provided comparable performances (r = 0.91–0.92; MAE = 5.46–5.89), but
they still resulted in variations in predicted brain age despite being applied to the same in‑
put data. OLS regression underperformed compared to other regression algorithms likely
due to the collinearity of the brain imaging features, as suggested by the relative better
performance of those linear algorithms that include the regularization terms in the models
(e.g., ridge, Lasso, and elastic‑net). These regularized algorithms penalize the coefficients
with a tunable parameter, which regulates the strength of the penalty to avoid overfitting.
Using penalty‑based (regularization) shrinkage, they could make better predictive perfor‑
mance in brain age prediction by selecting relevant predictive features. Furthermore, the
regularization (or penalty) term in the models helped to make them less vulnerable to the
collinearity among the predictor variables [29].

We also found that the performance of GPRwas similar to both SVR and RVR in terms
of individual brain age prediction. GPR as a particular form of SVR uses kernels to define
the covariance of a prior distribution over the target functions and uses training data to es‑
timate a likelihood function [35]. We applied linear kernels for SVR and RVR. In contrast,
GPR is a non‑linear regression model that uses a Bayesian kernel that provides a general
approach to assigning prior distributions to functions for non‑parametric modeling. De‑
spite the difference between these algorithms in the choice of kernel and loss function, our
results showed that GPR, SVR, and RVR performed very similarly in brain age prediction
on the basis of structural and diffusion measures. Future work could assess non‑linear
regression models such as SVR and RVR with non‑linear kernels [34], as well as ensemble
models such as adaptive boosting (AdaBoost) regression and extreme gradient boosting
(XGBoost) [29].

There are relatively few studies predicting brain age with multimodal brain features.
Several studies explored the value of multimodal imaging data for brain age prediction in
healthy participants and in clinical populations, showing improved predictions of aging
anddiseasemarkers. Rokicki et al. examined the performance of brain age predictionmod‑
els using different combinations of cortical thickness, subcortical volume, cortical and sub‑
cortical T1/T2‑weighted ratios, and cerebral blood flow based on arterial spin labeling in
750 healthy participants aged 18–86 years. They reported the highest prediction accuracy
(r2 = 0.77; MAE = 6.4 years) in brain age prediction when integrating all modalities and fea‑
ture sets [45]. Liem et al. explored the benefit of multimodal imaging data, namely cortical
anatomy (cortical thickness, surface area, and subcortical volume) and whole‑brain func‑
tional connectivity, in brain age prediction in 2354 healthy participants aged 19–82 years.
They reported that multimodal imaging data improve the accuracy of brain age predic‑
tion (MAE = 4.29 years), and individual variation in brainPAD captures cognitive impair‑
ment [8]. Cole investigated whether brain age prediction can be improved by combining
data from six different imaging modalities, namely T1‑weighted MRI, T2‑FLAIR, T2*, dif‑
fusion MRI, task functional MRI, and resting‑state functional MRI, in 2205 healthy partici‑
pants aged 45–80 years from UK Biobank [27]. The model with all six imaging modalities
provided the highest prediction accuracy (r = 0.78; MAE = 3.55 years) with the strongest
predictors being T1‑weighted and diffusion MRI. Our previous studies showed variable
prediction accuracies in brain‑predicted age by conducting a comprehensive evaluation
of 27 different machine learning algorithms based solely on brain morphological features
derived from structural MRI scans [29]. We expanded our prior work by combining the
structural and diffusion features as input data to the machine learning algorithms and ex‑
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amining the functional significance of brainPAD on specific cognitive measures that assess
executive function, memory, motor function, and emotion processing.

We investigated whether the deviation of predicted brain age from actual age (brain‑
PAD) explains individual variation in specific cognitive measures. We showed that higher
brainPAD was significantly correlated with worse performance on executive function (ho‑
tel) and emotional expression recognition. The brain that appeared older than its true
chronological age was related to poor cognitive performance, suggesting that cognitive
factors can negatively impact brain aging and cognitive aging. Our results were in good
agreement with experimental observations by Yin and colleagues, who found that older
brain age was correlated with worse performance on cognitive measures such as executive
function, emotional memory, word finding, and motor learning [42]. Moreover, Cole re‑
ported that an older‑appearing brain was associated with poor cognitive performance on
fluid intelligence and the trail‑making task (duration to complete alphanumeric path trail
2 [13]) [27]. It is also important to note that these significant associations were captured
when applying the SVR and RVR algorithms. Our findings indicate that the strength of
the association between brainPAD and cognitive measures can be influenced by the choice
of algorithm. This is important since the predictive power of brainPAD depends on how
well the initial model performs.

We acknowledge several limitations that could be addressed in future studies. The
focus of this study was on the evaluation of the different machine learning algorithms in
relating the brainPAD scores to cognitive measures in cognitively healthy individuals, not
on the examination of the functional significance of brainPAD on clinical variables in dis‑
ease populations. Nevertheless, a normative model of brain age presented in this work
can be easily applied to clinical populations to test whether the brainPAD scores can serve
as a biomarker of age‑related brain disease [1,8,14,42,46–49]. In this study, we have used
regional measures of the 68 cortical regions of interest (ROIs) from the Desikan–Killiany
parcellation and the 48 white matter ROIs from the JHU parcellation, which is a widely
used approach in large neuroimaging studies [50,51]. Future research should replicate
the current findings in independent neuroimaging datasets, across different atlases, and
at different spatial resolutions [52]. Finally, we have shown that the choice of algorithm
influences the strength of the association between brainPAD and cognitive measures, cov‑
ering emotional processing, executive function, memory, and motor function. However,
several studies have explored the ability of brainPAD to capture other phenotypes such as
cognitive, biomedical, and lifestylemeasures [27,42], which could be investigated in future
studies.

5. Conclusions
In this paper, we conducted a comparative evaluation of themost commonly usedma‑

chine learning algorithms, includingOLS, ridge, Lasso, elastic‑net, SVR, RVR, andGPR, for
brain age prediction on the basis of multimodal brain features. Further, we investigated
whether the choice of algorithm leads to variation in the association between brainPAD
(predicted brain age–chronological age) and cognitive measures. Through applying differ‑
ent machine learning algorithms to the same multimodal brain features in the Cam‑CAN
dataset, the models tested achieved mean absolute errors of 5.46–7.72 years and Pearson’s
correlation coefficients of 0.86–0.92 between predicted brain age and chronological age.
Our results indicate that the choice of algorithm yields variations in predicted brain age.
We also examined the predictive value of estimated brainPAD scores based on their per‑
formance on the association between brainPAD and cognitive phenotypes. We identified
that the strength of the association between brainPAD and cognitive measures varies con‑
siderably by regression algorithms, resulting in a substantial difference in the association
between brainPAD and cognitive measures. These findings suggest that the choice of algo‑
rithm could be an important source of variability that confounds the relationship between
brain‑predicted age difference and cognition.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11051229/s1, Figure S1: Spatial map of regression weights for
cortical surface area for brain‑age prediction in Cam‑CAN individuals in each of the seven algo‑
rithms, Figure S2: Spatial map of regression weights for cortical thickness for brain‑age prediction in
Cam‑CAN individuals in each of the seven algorithms, Figure S3: Spatial map of regression weights
for subcortical volume for brain‑age prediction in Cam‑CAN individuals in each of the seven algo‑
rithms, Figure S4: A representative map of regression weights for fractional anisotropy for brain‑age
prediction in Cam‑CAN individuals in each of the seven algorithms, Figure S5: A representativemap
of regression weights for mean diffusivity for brain‑age prediction in Cam‑CAN individuals in each
of the seven algorithms, Figure S6: A representative map of regression weights for axial diffusivity
for brain‑age prediction in Cam‑CAN individuals in each of the seven algorithms, Figure S7: A rep‑
resentative map of regression weights for radial diffusivity for brain‑age prediction in Cam‑CAN
individuals in each of the seven algorithms, Table S1: Definition of the neuroimaging measures, Ta‑
ble S2: Sample and demographic information for the Cam‑CAN cohort used for brain age prediction,
Table S3: Cam‑CAN cognitive measures tested (7 variables), Table S4: Comparison of computational
speed of the algorithm for model training, Table S5: Association of brainPAD with cognitive mea‑
sures for each algorithm in the hold‑out test set (n = 101). References [22–24,53–56] are cited in the
Supplementary Materials.
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