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Abstract: This paper extends previous research performed with the SHIFT financial market simulation
platform. In our previous work, we show how this order-driven, distributed asynchronous, and
multi-asset simulated environment is capable of reproducing known stylized facts of real continuous
double auction financial markets. Using the platform, we study a pricing mechanism based on
frequent batch auctions (FBA) proposed by a group of researchers from University of Chicago. We
demonstrate our simulator’s capability as an environment to experiment with potential rule changes.
We present the first side-by-side comparison of frequent batch auctions with a continuous double
auction. We show that FBA is superior in terms of market quality measures but we also discover a
potential problem in the technical implementation of FBA.

Keywords: financial engineering; high-frequency trading; market microstructure; continuous double
auctions; frequent batch auctions

MSC: 62P05

1. Introduction

Advances in computer and network technologies are completely transforming the
world at an ever increasing speed. During the last three decades, financial exchanges
went from an open outcry trading method to completely silent server rooms hosting
complex global electronic trading systems. In the late 1990s, when information was already
available in almost real time but trading floors were still full, the first studies using (what
they believed to be) high-frequency data began to emerge. The authors of [1] discuss
the impact using high-frequency data would have on market microstructure research.
Up until that time, data were collected only at points equally spaced in time (once a day,
a week, a month, etc.), and all contemporaneous models were based on this assumption.
With intraday data starting to become available for research, holistic data analysis was
becoming challenging. Trades were no longer the sole source of information, since buy
and sell quotes were recorded as well. Furthermore, consolidated market microstructure
models could not properly explain the behavior of observed trading patterns, such as the
‘reflected-J’-shape (sometimes called a “U-shape”) that volume of orders, volatility of price,
and bid–ask spread exhibit during the course of the trading day. The authors of [2] review
how the availability of high-frequency data is revolutionizing statistical models and the
way we analyze data, as well as the computational and theoretical challenges that come
with massive datasets. Using speed as a criterion, the author explains how technology
changed electronic markets. He notes that market order executions that used to require
more than 25 milliseconds to complete in 2001, were requiring less than 1 millisecond
in 2010. During the same year (2010), there were up to 100,000 updates to bid and ask
values per day, depending on the stock. The demand and supply characteristics of the limit
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order book are, as expected, of great importance to explain price dynamics, but its high
dimensionality and complex evolution mechanics still prove to be difficult to model.

Technology not only allows for the possibility of updating trade and quote information
within fractions of a second but also allows for companies to implement algorithmic trad-
ing (AT) techniques. These generally refer to either automatic trading strategies (deciding
whether to enter or leave positions) or optimal order execution algorithms (liquidating large
volume orders with as little market impact as possible), with little to no human interaction.
The subset of traders that employ these techniques using high-speed systems is known as
high-frequency traders. A thorough overview of the current research in high-frequency
trading (HFT) is performed in [3]. The studies are classified in five different categories
(Financial Economic Research, Financial Theoretical Modeling Research, Order Book Dy-
namics Modeling Studies, Trading Strategies Studies, and HF Traders Behavioral Studies),
with a comprehensive review in all of them. They find that, in general, HFT is seen with
good eyes by both academia and the industry, providing liquidity and improving market
quality. There are, however, problems when the market is under distress conditions, such as
the May 2010 Flash Crash [4]. This is mostly due to the automated nature of AT strategies,
and the reasoning behind new regulation proposals on HFT. Furthermore, there is empirical
evidence that HFT activity is concentrated in stocks from companies with a large capital-
ization (large-cap stocks) and these are the assets that impact the equity market indices
the most. The authors of [5] model the introduction of high-speed traders (machines)
in a market populated only with slow traders (humans). Given their speed advantage,
machines can shape the higher levels of the limit order book, and the authors conclude that,
all other things being equal, there is a noticeable change in the transaction price distribution
after they are introduced into the system. The authors of [6] investigate the so-called HFT
arms race, with empirical evidence (25 Swedish large-cap stocks) that there is a significant
difference between high-frequency traders with different latency profiles from a revenue
perspective. Faster traders are not necessarily more accurate when analyzing new market
information, but they do perceive more trading opportunities. It is important to mention,
however, that the high-speed nature of HFT also allows for the rapid incorporation of
fundamental values into current prices, thus enhancing market efficiency.

Finally, ref. [7] calls for market microstructure research on the impact of HTF. Not only
are the strategies employed by high-frequency traders different than the ones employed
by low-frequency traders, but the latter also have to adapt their strategies for a market
that contains high-frequency traders. The exchanges have also evolved, with new trading
platforms, pricing models, and order priority rules. The paper ends by pointing to the
important role of academia in policy research for this new market structure.

1.1. New Rules and Their Effects

Since the Financial Crisis of 2007–2008, and especially after the May 2010 Flash Crash,
US regulatory commissions started developing new policies to try and avoid a repetition of
such events. The authors of [4] show that, although high-frequency traders did not start
the May 2010 Flash Crash, they did cause a cascade effect, so many of these new regula-
tions focus on HFT. One proposal from the Commodity Futures Trading Commission [8]
was planning to introduce control rules over all aspects of the trading cycle. Regulation
Automated Trading (“Reg AT”), as it was known, defined automated trading very broadly
and, had it been implemented, it would have affected almost all aspects of trading activity.

RegAT raised initial concerns in the industry, and its proposal was influential in the
creation of the simulator used for this research [9]. The truth is that nobody knows what is
going to happen once these regulations are in place. The proposed rules may avoid new
crashes, but they may also impair the proper functioning of the market. The authors of [10]
study mini flash crashes occurring during the six most volatile months in the U.S. equity
market between 2006 and 2011. A mini flash crash is a crash happening during a time
interval that is so small that it could be misrepresented as series of outlier price points in
a low-frequency analysis. The authors of the study conclude that most of the mini flash
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crashes happen due to market fragmentation and the Regulation National Market System
(Regulation NMS [11]) only protecting the top of the LOB. In June 2020, CFTC withdrew
RegAT from consideration and instead introduced “electronic trading principles” applicable
to designated contract markets (DCMs. i.e., exchanges). The new rules, implemented
11 January 2021, task exchanges and trust them to implement appropriate rules that would
mitigate market disruptions and system anomalies.

Most of the existing literature on the subject of rules and regulations falls under one
of two categories. The research either analyzes the impact of implementing a policy in
a particular exchange, months after the rule was put in place; or new market rules are
proposed using a theoretical framework, with little empirical evidence of how such rules
would work in practice.

An example of the regulation implemented without testing is targeting spoofing and
attempts to stop it. The spoofing technique sends many small limit orders to the LOB,
and quickly cancels them in sequence. The idea is to lead other high-speed algorithms
(the only ones who can actually see the orders before they are canceled) to move in a
pre-determined price direction. This is not the only reason why high-frequency traders
submit batches of small orders, but it is one of the motivating factors behind proposing
HFT regulations.

In September 2012, the Oslo Stock Exchange (OSE—Oslo Børs) implemented a new
regulation setting a cost to the practice of spoofing. Traders with a monthly order-to-trade
ratio (OTR) in excess of 70 would have to pay a fee. OTR is the ratio of the number of
orders submitted to the exchange divided by the number of these orders that are actually
executed (traded). Using metrics such as the size of the bid–ask spread, realized volatility,
and transaction costs, ref. [12] conclude that there was no loss in market quality. Further-
more, the traders did not flee to other markets, and the only major effect of the new policy
was that the average size of orders increased. In fact, no trader actually paid the fee by the
day the study concluded, so the authors inferred that this regulation was a success.

In the above-mentioned regulation implemented in the Norwegian exchange, the OTR
ignored orders that improved price, as well as the orders that stayed in the LOB for more
than one second. In April 2012, similar regulation was implemented in Italy but, here,
the OTR calculation was also including these orders. The ratio was also measured daily,
instead of monthly. According to [13], this implementation of the rule in the Borsa Italiana
impacted market liquidity, unlike the Norwegian implementation. The authors of [14]
present a similar result, when a regulation targeting high-frequency traders in Canada led
to less competition and a wider bid–ask spread, effectively raising transaction costs for
low-frequency traders. The authors point to the fact that this result shows how critical
the liquidity provided by high-frequency market makers is. The reason for highlighting
these studies is to point out how important the details of the implementation are, and how
crucial it is to experiment with such details before putting the rule in place.

A completely different route is to propose regulation based on a theoretical construct.
We argue that, in this situation, it is even more important to empirically study the conse-
quences of the implementation. Here, we mention the key paper [15]. The authors propose
a change to the way the Matching Engine operates in an exchange. The matching engine is
the most essential component of a market exchange. It is responsible for managing the limit
order book and matching orders to buy with orders to sell. The proposed “Frequent Batch
Auctions” exchange, it is argued, would end the arms race that currently exists between
high-frequency traders. We will discuss its implementation in details in Section 1.2.

Before 2020, the Taiwanese Stock Exchange (TWSE) operated on a Frequent Batch
Auction-type exchange model. The duration of each auction was random in an interval
from 4.8 to 5.2 s. The end of day price was settled by a 5 min-long closing auction.
On 23 March 2020, the TWSE changed the operation to continuous trading following a
traditional continuous double auction model. Even though this was a FBA move in reverse,
and concomitant to the COVID-19 pandemic emergence worldwide, it is worth looking
at the conclusions drawn studying this event. First, ref. [16] analyzed trading data using
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traditional regression models. They concluded that the move was beneficial for small cap
stocks while large stocks were impacted in liquidity and price efficiency. The authors also
concluded that foreign investors profited from the move, and, thus, foreign investment
in the market increased. Therefore, they paint the switch as generally positive. In a
subsequent paper, ref. [17] cited the former research but they conducted their own study.
They argue that the previous study “did not examine adverse selection and other market
maker considerations” (on page 8 at the end of Section 2 in [17]). They also perform
regressions and conclude, based on this adverse selection criteria, that the switch was
largely negative in terms of market quality.

We are not singling out these papers to highlight the antiquated methods they use,
or the fact that the significant finance literature glorifies regression as the tool of choice
when operating with often-correlated observations. We are just pointing out that market
studies can often be contradictory. Neither study has account level data, so their conclusions
are solely inferred by analyzing trades and quotes.

1.2. Focus of This Paper

This paper builds on [9], which presents SHIFT, with our attempt to extend the current
agent-based modeling approach for financial markets. SHIFT is an order-driven, distributed
asynchronous, and multi-asset financial market simulator. These characteristics, it is argued
in our work, lead to more realistic simulations. Our objective with the SHIFT system was to
create a laboratory environment for market microstructure research, equivalent in scientific
rigor to traditional science fields. In such environments, experiments may be performed in
realistic conditions but are isolated from other influencing factors.

We should mention other theoretical works comparing frequent batch auctions with
continuous trading. The authors of [18] model the interaction between slow and fast traders
as a game of market selection, where each trader has to decide if they prefer to participate
in a frequent batch auctions market or in a continuous double auctions market. They find
that slow traders tend to be attracted to frequent batch auctions. They also derive that, even
though fast traders demonstrate predatory behavior (chasing the slow traders to whichever
market they decide to go to), slow traders are more protected from sniping and adverse
selection in this type of market. The authors of [19] design an experiment with human
subjects to study the interaction with frequent batch auctions and continuous double
auctions markets. The authors use a different type of market in each of the experiment
sessions of their study, noise traders to generate liquidity, and a user interface where each
subject would gather market information. They map the actions users perform to specific
trader profiles (e.g., market maker, aggressive trader, etc.) and allow the “acquisition” of
faster technologies to interact with the market. Based on this experiment, the authors
conclude that frequent batch auctions lead to more liquidity, less predatory behavior, and
less investment in technology.

Finally, we highlight [20] as a study that employs an agent-based model to assess the
optimal clearing interval in frequent batch auctions. The model, however, uses discrete
time steps, as most agent-based models do. As discussed in [9], we believe that real-time
simulations with asynchronous interactions between the agents lead to more realistic results.
For example, in the context of frequent batch auctions, an order submitted by a trader a
few moments before the auction is performed may not arrive to the market exchange in
time for the current auction and will be processed in the next. Another shortcoming of this
model is that traders only trade in units of one.

The main objective of this work is to showcase an implementation of the frequent
batch auctions, as close to reality as we believe possible in an academic environment.
However, we are still in an academic environment (laboratory conditions), and, thus, there
are limitations to the results we are presenting, some of which we discuss in this paper.
Our goal is not to determine whether frequent batch auctions would or would not be
a good substitute for continuous double auctions, but to point out the different market
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characteristics and expected behavior in case an exchange would decide to implement this
matching mechanism in practice.

The rest of this paper is organized as follows. Section 2 provides a brief description
of the dynamics of frequent batch auctions, as compared to continuous double auctions.
Section 3 presents the results of our implementation of frequent batch auctions in SHIFT.
We present comparisons between continuous double auctions and frequent batch auctions
with different intervals in between auctions. Section 4 concludes our paper, and presents
future possible directions for our work.

2. Frequent Batch Auctions (FBA)

In this section, we present a brief explanation of how frequent batch auctions work.
This is a summary of the work presented in [15], where the authors propose the use of
frequent batch auctions as a substitute to continuous double auctions, and [21], in which
the authors go into details on what a practical implementation of frequent batch auctions
would entail. In our implementation using SHIFT, we closely follow these instructions.
From this point on, we refer to frequent batch auctions as “FBAs” and to continuous double
auctions as “CDAs”.

CDAs are the most common type of matching mechanism found in market exchanges
today. Each asset has a limit order book (LOB) with two sides. One side of the LOB
contains the current buy demand (bids) and one side contains the current sell supply (offers
or asks). Traders can submit limit orders with the highest/lowest price they would be
willing to buy/sell the respective asset. These orders will join the respective limit order
book immediately upon arrival at the exchange. The limit order book follows a price-time
priority. Specifically, orders with a better price or those that arrived first (if the same
price) have priority in relation to the other existing orders in the book from an execution
perspective. Traders may cancel their existing limit orders anytime they please. At any
given moment in time, traders can also submit market buy or sell orders. These orders will
be executed immediately, if possible, by matching the best available asks or bids at the time,
following the limit order book price–time priority. Perhaps most importantly, in a CDA,
the last traded prices and the current state of the limit order books are always available for
any market participant to check.

It is also a common practice among market exchanges to host “call auctions” to
determine the opening prices of traded assets. These call auctions, typically held before
a market exchange opens, differ from CDA in that orders are not matched as they arrive,
but accumulate in an order book up until a predetermined auction time, in what we will call
the “order submission stage”. An order book example at the end of the order submission
stage is presented in Table 1. Here, we note that it is possible to have an intersection
between the demand and supply volume, which is something that would never happen
in CDAs.

Table 1. Example of a call auction at the end of its order submission stage.

Price Bid Volume Ask Volume

USD 100.02 0 600
USD 100.01 200 400
USD 100.00 300 500
USD 99.99 700 200
USD 99.98 400 400
USD 99.97 700 0

When the order submission stage ends, the auction is carried out during what we will
call the “auction stage”. The New York Stock Exchange (NYSE) calls this stage “Auction
Freeze Period” and it happens when markets open or close with a duration of 1 min.
During the auction stage, if there is an intersection between the demand and supply
volumes, a price can be selected and all trades will happen at the selected price; otherwise,
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there is no price formation nor trades. The price is selected in such a way that maximizes
the number of traded shares. To explain the process, in Table 2, we summarize the orders
received from Table 1 and add extra columns. Demand indicates how many shares may
be traded in the bid book if the respective price is the settled price. The supply column is
similar but looks at the bid side of the LOB. The excess demand column simply calculates
demand–supply. The price of USD 99.99 is chosen in this example since 600 shares can be
traded at this price. At a price of USD 100.00, only 500 shares would be traded.

Table 2. An example of a order book during the auction stage. The trade price selected is highlighted.

Price Bid Volume Total
Demand Ask Volume Total Supply Excess

Demand

USD 100.02 0 0 600 2100 −2100
USD 100.01 200 200 400 1500 −1300
USD 100.00 300 500 500 1100 −600
USD 99.99 700 1200 200 600 600
USD 99.98 400 1600 400 400 1200
USD 99.97 700 2300 0 0 2300

If the bid volume at price level USD 100.00 was 400 instead of 300, this would have
been the selected price because this price level would not only have maximized the number
of traded shares (600) but it would also have the lowest absolute excess demand. If both of
these rules are not enough to determine an unique price, it is common practice to select the
price that is closer to the previous recorded price of the asset [22].

All bids above the selected auction price and all asks below the selected auction price
will be executed. The orders with prices equal to the selected auction price will only be
fully executed in one side of the book (bids or asks). In the example above, 100 out of the
the 200 shares in the ask orders at USD 99.99 will be matched with 100 shares among the
700 available in the other side of the book. The match is pro-rated. Specifically, assume
that the 100 shares need to be matched with the 700 from the bid volume. We look at the
existing bid orders that constitute that 700 shares volume. If there is only one order we
are complete; we just execute 100 shares from that order. However, if there are, say, two
orders, then we trade 50 shares with each order and the remaining shares are left for the
next auction. The authors of [15] did not specify if the pro-rate also takes into account
the volume so, in our implementation, we simply divide the shares equally among the
bid orders regardless of the order volume sizes. In the example, we use shares for ease
of explanation. In the SHIFT implementation, 1 unit represents 100 shares. Thus, when
pro-rating, we fill or partially fill orders in units of 100 shares.

For CDAs, this auction stage happens before open and at close and sometimes one
more outside trading hours. For example, as of 2022, NYSE has various pre-opening and
opening auction sessions (details at https://www.nyse.com/markets/nyse-arca/market-
info accessed on 10 October 2022) every trading day. In contrast, for the frequent batch
auctions (FBA), the entire trading period is composed of frequent call auctions. The process
flow is displayed in Figure 1, where the periods in green represent the processing time of
the particular auction, and the periods in red represent the moment the results are broadcast
to market participants. Note that the order submission stage restarts as soon as the auction
processing begins. The orders are continuously accepted by the exchange, and the end
of an order submission stage simply represents that no more orders will be accepted for
that respective auction. During the order submission stage, the orders may be modified
or cancelled.

The call action rules described above are all applicable in the FBA implementation.
Additionally, orders remaining in the book from past auctions have precedence during the
auction stage of subsequent auctions. This is the only time priority of the FBAs. In the
practical implementation of FBAs, we devised a two step method to implement this. In the
first step, we match shares with existing past auction shares at that level. If there are none,

https://www.nyse.com/markets/nyse-arca/market-info
https://www.nyse.com/markets/nyse-arca/market-info
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or if there are shares left to be matched after all prior action shares have been executed,
we trade orders from the current auction in step two. In each of the steps, we pro-rate the
orders as described above.

Figure 1. Process flow for frequent batch auctions. Adapted from [21].

A very important feature of the FBA is that submitted orders (bid and asks) are
sealed [21]. The submitted orders are not communicated to participants during the order
submission stage. This is the feature that is meant to prevent spoofing. At the end of
the auction stage, the executed price and all the remaining orders in the order book are
broadcasted to market participants, which is all the information they base their future
actions on. If a particular order is not executed in a given auction, it will carry over to the
subsequent auction, unless canceled by its owner. Sealing the orders also means there are
no market orders in an FBA; all orders have to specify a price and a quantity.

2.1. A “Dark Pool-like” Implementation: HVCDA

In addition to the frequent batch auctions (FBAs) and continuous double auctions
(CDA), we are going to implement a third market model that we call “Hidden Volume
Continuous Double Auctions” (HVCDAs). In HVCDA, all the matching order rules are
the same as in a CDA (same as the real market). The orders are matched with the same
price–time priority, and outstanding limit orders stay in the order book until they are either
matched with a market order or canceled. The difference is that all the market volume in
HVCDAs is hidden from the market participants. Specifically, traders have no access to
the limit order book. The only market feedback they have is the last traded price and any
results from their own orders. This HVCDA implementation can be viewed as a proxy
to the real world dynamics of dark pools. Dark pools do not release the volume and the
only feedback market participants have is through reported trades and feedback to their
own orders. However, the matching process in a dark pool is slightly different from our
implementation as it is designed to earn the spread. This is the reason we do not call this
implementation a dark pool; instead, we use the cumbersome acronym HVCDA.

An interesting observation is that the HVCDA implementation may be seen as a
limit of the FBA exchange when the batch interval (order submission stage in Figure 1)
approaches zero.

2.2. Possible Shortcomings of Our Experiments

The objective of the proposed frequent batch auctions is to curb the arms race between
the high-frequency traders. To become enticing to a well-functioning exchange, the auctions
need to occur very frequently. The authors look at the normal processing times of market
exchanges and suggest the interval in between auctions should be represented in a fraction
of a second. We do not have the processing power of a real exchange, far from it. However,
we use servers and a proper market design and, in our experiments with CDAs, market
orders execute on average in 1 ms, while the auctions in the FBA format require 1–2 ms to
process. The authors of the original FBA papers simulate the batch auctions based on a rate
of messages seen during the flash crash (a reasonable worst case) and they find the auction
stage occurs in under 10 milliseconds on a simple laptop.

However, despite the processing time being much better in our experiments using
SHIFT, we observed that the system would start to struggle when the order submission
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stage interval was less than 0.5 s long. Specifically, when using very short time intervals,
messages between servers and clients would start to be lost and require FIX resend requests.
We believe this happens due to the huge amount of messages that must be sent to all
connected clients after the conclusion of each auction. In CDAs, every change in the order
book can be broadcasted to clients as a differential. However, in FBAs, the final order
book at the end of an auction will be completely different from the order book of the
previous auction; thus, a differential is the same as rebroadcasting the entire order book.
We mention this issue as a possible technology bridge that may need to be crossed to have
the auctions in FBAs be more frequent than 500 milliseconds. This is a shortcoming of our
experiments, since our tests cannot directly replicate the original intent of the proposers of
FBAs. Nevertheless, as the reader will see in the following section, we experiment with
different batch intervals in order to have an indication of the impact of the interval size on
the results.

Another possible shortcoming of our experiments is the fact that we do not have
specific trading strategies for CDA and FBA market-type participants. However, all traders
in our experiments are noise traders, and noise traders would probably not change their
behavior if FBAs were to be implemented in a real market exchange. Furthermore, one
could argue that, if there was a change on the auction mechanism of a real exchange, most
traders would likely not be prepared and adapt on day one, and our results can provide
insights on that transition.

3. Experiments

In this section, we perform two sets of experiments. In the first experiment in
Section 3.1, we consider an endogenous market, where the information is limited to trades
and limit order book data only. The idea is to consider a “normal” market–void from the
effect of exogenous changes (e.g., news). In the second set of experiments (Section 3.2), we
consider market events that trigger sales orders that put the entire market under stress.
We compare the resulting market statistics (price, return, limit order book, etc.) in both
scenarios and compared depending on the market type: continuous double auction, FBA,
and HVCDA.

For all experiments, we use zero intelligence agents to create the underlying market.
These were constructed following the work performed in the Genoa Artificial Stock Market,
described in [23,24], modified to work in a real-time environment. A description of the
trading strategy they follow, as well as the results in the CDA market scenario, are presented
in [9]. We show in that work that the system successfully replicates all “stylized facts” of
the observed equity movement in real exchanges. We use the results obtained as a baseline
for comparison in Sections 3.1 and 3.2.

Throughout our experiments, we implement two different types of markets: homoge-
neous or heterogeneous. This difference in agent behavior proved to have a very important
effect to the severity of market stress produced [9]. This classification is related to how
we perform the initial wealth distribution among market participants. In both heteroge-
neous and homogeneous markets, traders are provided with the same total amount of
buying and selling power. However, in the homogeneous markets, all the participants
have similar amounts, while, in heterogeneous markets, we have a few traders (agents)
with huge wealth and many traders with comparably little wealth. This is accomplished
using a symmetric Dirichlet distribution for the initial wealth distribution, with different
concentration parameter values that lead to either homogeneous or heterogeneous wealth
values. The technical details of the process are described in [9].

3.1. Experiment 1: Endogenous Market Scenarios

In our first set of experiments, there are 200 traders that constitute the market,
and they collectively own 2,000,000 shares of Common Stock ticker (CS1), with an ini-
tial price P0 = USD 100.00. The traders also own an initial amount of cash equal to their
initial amount of share holdings, so the total amount of capital in the market is USD
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400,000,000. We determine the initial amount of shares using a symmetric Dirichlet distri-
bution. The traders are assigned the share value in cash. The rest of the parameters in these
experiments are as follows:

• Simulation length M = 23,400 s (6.5 h).
• Each trader attempts to trade an average of either 390 or 780 times during the trading

session, i.e., on average, they submit one limit order every minute or every half a
minute, respectively, depending on the experiment.

• Confidence level rτi,j ∼ U(0.2, 0.6), i.e., the limit order size is uniformly distributed
between 20% and 60% of the total buying or selling power of the traders, depending if
it is a limit buy or a limit sell order, respectively. τi,j represents trading time j for the
ith trader.

• Homogeneous or heterogeneous wealth distribution. In homogeneous markets,
traders have an approximately uniform distribution of initial wealth, with a low
standard deviation. Heterogeneous markets are closer to what we see in reality, with a
few large institutional investors.

The examples of simulated price paths and returns are presented in Figures 2–4.
The experiments in these figures share the same set of parameters, but, given the random
nature of the simulations, the resulting price process is different every time the experiment
is performed. These figures are depicting a homogeneous market with low activity—
i.e., each trader submits limit orders once a minute on average. Figure 2 is an experiment
using continuous double auctions (CDA), Figure 3 is an experiment using hidden volume
continuous double auctions (HVCDA), and Figure 4 is an experiment using frequent batch
auctions (FBA) with 1-s batch intervals—hence, “FBA (1.0)” in the caption of Figure 4.

(a) (b)

Figure 2. 1-min time series for the CDA experiment. (a) Price Path. (b) Returns.

(a) (b)

Figure 3. 1-min time series for the HVCDA experiment. (a) Price Path. (b) Returns.
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(a) (b)

Figure 4. 1-min time series for the FBA (1.0) experiment. (a) Price Path. (b) Returns.

We next perform a statistical analysis of the resulting time series, but we note that,
visually, there is little difference among these figures. They all very much resemble real
financial time series during a trading day. From the returns, it appears that FBA markets
may have a lower volatility when compared to CDA markets, and that HVCDA markets
may have a much higher volatility than either CDA and FBA markets, but these are based
on a single experiment.

In the numerical results presented, we are considering several factors. As mentioned,
we look at both homogeneous and heterogeneous markets. The second factor is market
activity; we have low activity markets where traders submit limit orders on average every
minute and high activity markets where orders are sent on average every half a minute.
We also contrast different batch intervals, namely 0.5, 1.0, 1.5, and 2.0 s. As previously
mentioned in Section 2.2, we understand the proposers of frequent batch auctions always
aimed for sub-second batch intervals. As mentioned above, we hit a technical limitation
regarding the amount of messages that need to be sent at the end of the batch auctions.
This limits our capability to have auctions more frequently than 500 milliseconds.

3.1.1. Resulting Return Dynamics

Figures 5–7 showcase return statistics for the price evolution in Figures 2b, 3b and 4b,
as well as frequent batch auctions with batch intervals of 0.5, 1.5, and 2.0 s. We obviously
cannot include all our simulations. The plots presented are representative of the results
we typically obtain. In all plots, we use a sampling frequency of 2 s. This is to insure a
proper comparison of the results, since the largest batch interval we are using is of 2 s.
As highlighted in [9], the sampling frequency plays a large role in the statistics of the
results obtained.

Negative Autocorrelation (Figure 5).

In a typical market exchange (CDA), returns are negatively correlated due to the
“bounce effect” caused by the bid–ask spread, since market orders are matching against
both sides of the order book. Since the matching mechanism of FBA is completely different
than CDA, we did not expect the results to be so close to the CDA. The HVCDA markets
show a smaller first lag autocorrelation, which is understandable in a market where the
only available information is the last price.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. 2-s returns autocorrelation. (a) CDA. (b) FBA (0.5). (c) FBA (1.0). (d) HVCDA. (e) FBA (1.5).
(f) FBA (2.0).

(a) (b) (c)

(d) (e) (f)

Figure 6. 2-second Normal Q–Q plots. (a) CDA. (b) FBA (0.5). (c) FBA (1.0). (d) FBA (1.5). (e) HVCDA.
(f) FBA (2.0)

Leptokurtic Behavior (Figure 6).

The returns in financial exchange markets are known to have a “heavy tails” (also
known as leptokurtic) distribution [25,26]. In our results, all the returns from all the
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implemented markets have a leptokurtic distribution. The Q–Q plots in Figure 6 and the
numerical results in Table 3 confirm it. In the table, the reported excess kurtosis values
are averaged among all the experiments with the same combination of parameters. Even
though not all the values are statistically different, we note an increasing trend in excess
kurtosis as we move from CDA markets to FBA markets with a less frequent batch interval,
regardless of the markets considered. We also note that excess kurtosis values for FBA seem
to peak at FBA (1.5). The specific batch interval value (1.5 s) is not too important, since it
may be related to our experiment conditions, but the fact that we apparently reach a peak
is interesting to investigate. The results obtained further indicate that excess kurtosis may
be a parameter of interest when optimizing the batch interval in an FBA market. Finally,
HVCDA markets present much higher excess kurtosis values when compared to any other
market type.

(a) (b)

(c) (d)

(e) (f)

Figure 7. 2-s squared returns autocorrelation. (a) CDA. (b) FBA (0.5). (c) FBA (1.0). (d) HVCDA.
(e) FBA (1.5). (f) FBA (2.0).

Volatility Clustering (Figure 7).

We are looking for the volatility clustering phenomenon documented in the literature [27].
Again, the FBA plots are very similar to the CDA plot, including a slow decay in the
autocorrelation of squared returns, which is a sign of long memory in the volatility [28].
First, the lag autocorrelation is higher in the FBA markets than in the CDA markets, and the
memory seems to last longer. All the time series generated by our experiments exhibit
heteroskedastic effects, as determined by an ARCH test [29], and the number of ARCH lags
generally increases as we move from CDA markets to FBA markets with a less frequent
batch interval. The average first lag squared returns autocorrelation and average number
of ARCH lags required by each model are listed in Table 3.
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Table 3. Summarized statistics of 2-s returns.

Wealth Dist. Activity Market Excess Kurtosis Sq. Ret. ACF(1) ARCH Lags Volatility

Homogeneous

One order
per minute

CDA 0.4958499 0.1171557 6 0.0495402
FBA (0.5) 0.6377159 0.1217220 7 0.0416056
FBA (1.0) 0.6897051 0.1377420 7 0.0367819
FBA (1.5) 0.9215440 0.1337277 7 0.0321935
FBA (2.0) 0.8343340 0.1612350 8 0.0295459
HVCDA 1.1266130 0.1167457 8 0.0631926

Two orders
per minute

CDA −0.0114440 0.1250040 4 0.0556924
FBA (0.5) 0.1288097 0.1397860 6 0.0411155
FBA (1.0) 0.2307138 0.1493982 5 0.0337665
FBA (1.5) 0.4093563 0.1458762 5 0.0288568
FBA (2.0) 0.3528189 0.1634221 5 0.0259002
HVCDA 0.9494757 0.1274548 6 0.0735755

Heterogeneous

One order
per minute

CDA 1.2846178 0.1180100 8 0.0470331
FBA (0.5) 1.3955374 0.1246145 8 0.0414064
FBA (1.0) 1.4268303 0.1395849 8 0.0385530
FBA (1.5) 1.6949561 0.1387837 9 0.0357148
FBA (2.0) 1.5673247 0.1577529 8 0.0336840
HVCDA 2.4992379 0.1084834 9 0.0598052

Two orders
per minute

CDA 0.6442329 0.1434038 6 0.0541321
FBA (0.5) 0.6094395 0.1640867 5 0.0447899
FBA (1.0) 0.7438894 0.1633802 7 0.0394049
FBA (1.5) 0.9142525 0.1553988 6 0.0350245
FBA (2.0) 0.8994299 0.1633061 5 0.0317284
HVCDA 2.2113189 0.1389214 8 0.0722568

Table 3 also compiles the average realized volatility values for each experiment type we
performed. As the return plots previously visually suggested (Figure 4b vs. Figure 2b), the
FBA-realized volatility values tend to be lower when compared to CDA numbers, and these
values decrease as we increase the batch interval length. Since the sampling frequency we
used to compute the realized volatility is the same for every market type, the number of
trades that happen during the day, which becomes lower as we increase the batch interval
length, is not in effect here, but the frequency in which the information becomes available
may be a factor. In HVCDA markets, where the only available information is the last traded
price, and traders can only use this price as a basis for the prices of their orders, the realized
volatility is significantly higher.

3.1.2. Limit Order Book Dynamics

After examining some of the typical stylized facts concerning the returns of time series,
we next look at limit order book dynamics. Using the average volume at each tick away
from the mid price, we plot the average shape of the limit order book [30]. Figure 8 shows
the examples of the average shape of the limit order book for each of the markets studied.
The behaviors in both sides of the book are very similar. The peak a few ticks from the mid
price is also anticipated, since orders at the top of the book will always be matched first,
regardless of the market type.

Figure 8 shows the most glaring difference between market types that we observe so
far. From the plots, we see that: as we change from CDA markets to FBA markets and as
we decrease the batch interval frequency of these markets, the average shape of the order
book becomes narrower. That is, the orders concentrate more around the mid price. Since
traders do not receive constant updates of the new best prices, they concentrate their order
prices around the last information they have. The more infrequent the market updates are,
the more this holds true. In HVCDA, we see a completely opposite behavior: the limit
order prices move away from the best prices. The mean and standard deviations of these
distributions are reported in Table 4. The same type of results are obtained regardless of
the market setup (parameters).
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Limit order book average shape. (a) CDA. (b) FBA (0.5). (c) FBA (1.0). (d) HVCDA. (e) FBA
(1.5). (f) FBA (2.0).

Table 4. Summarized limit order book average shape statistics. All amounts are in USD.

Wealth Dist. Activity Market Bid Mean Bid Std. Dev. Ask Mean Ask Std. Dev.

Homogeneous

One order
per minute

CDA 0.0577011 0.0295827 0.0578747 0.0298589
FBA (0.5) 0.0547337 0.0253258 0.0569897 0.0257233
FBA (1.0) 0.0501420 0.0242799 0.0487700 0.0236572
FBA (1.5) 0.0467273 0.0226029 0.0462799 0.0222431
FBA (2.0) 0.0451984 0.0207499 0.0468722 0.0212211
HVCDA 0.0706024 0.0428956 0.0707049 0.0427557

Two orders
per minute

CDA 0.0573983 0.0295731 0.0573891 0.0294566
FBA (0.5) 0.0509308 0.0228235 0.0527403 0.0231244
FBA (1.0) 0.0436461 0.0203388 0.0470477 0.0214659
FBA (1.5) 0.0410365 0.0197059 0.0410757 0.0196639
FBA (2.0) 0.0380582 0.0179998 0.0403234 0.0186927
HVCDA 0.0694732 0.0422374 0.0695179 0.0421476

Heterogeneous

One order
per minute

CDA 0.0541033 0.0312433 0.0540830 0.0312985
FBA (0.5) 0.0537294 0.0277527 0.0544613 0.0278451
FBA (1.0) 0.0501194 0.0272680 0.0494975 0.0270958
FBA (1.5) 0.0466275 0.0256340 0.0474848 0.0262115
FBA (2.0) 0.0464105 0.0248026 0.0453167 0.0245021
HVCDA 0.0642775 0.0437500 0.0643425 0.0450379

Two orders
per minute

CDA 0.0534300 0.0309182 0.0534770 0.0310784
FBA (0.5) 0.0499736 0.0241763 0.0566919 0.0265291
FBA (1.0) 0.0454737 0.0243595 0.0452253 0.0242873
FBA (1.5) 0.0417697 0.0226210 0.0422885 0.0229466
FBA (2.0) 0.0411947 0.0210223 0.0418526 0.0213886
HVCDA 0.0632684 0.0435426 0.0630271 0.0431246
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A very important measure is the spread (the difference between the best bid and
best ask at any moment in time). The spread is commonly used as a criterion for both
the liquidity and market quality [12,14]. Particularly, the spread autocorrelation (Figure 9)
should demonstrate signs of persistence [31], and the spread distribution (Figure 10)
should show a power law asymptotic shape. The FBA markets display higher first lag
autocorrelation values, and, similar to the volatility results, the memory of the spread time
series is longer. The values for all market parameter combinations are presented in Table 5.

The numerical statistics of the spread distribution in Table 5 confirm the visual obser-
vations in Figure 10. The FBA markets have a lower standard deviation of the spread when
compared to CDA, while HVCDA has a much higher standard deviation. Apart from FBA
(0.5), all other FBA markets present lower spread values (mean) and also consistently so
(standard deviation). Using the spread as the measure of market quality, we can conclude
that the FBA improve the market quality. In fact, we find that, in most cases, 1.5 s seems to
be the best batch interval frequency for our setup. This is similar to our results obtained us-
ing kurtosis. We note that this value should be further investigated, as it probably depends
on the available hardware. Nonetheless, the results point to the possibility of finding an
optimal batch interval size using similar experiments.

Finally, Table 5 also contains information on the average 95th percentile of the spread
distribution for each market. We use this number as a proxy for the worst spread value.
Similar to the results obtained above, FBA (0.5) seems to be a bad choice (at least in our
configuration), but other FBA market configurations have better (lower) spread values. The
HVCDA markets are the worse performers.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Spread autocorrelation. (a) CDA. (b) FBA (0.5). (c) FBA (1.0). (d) HVCDA. (e) FBA (1.5).
(f) FBA (2.0).
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Table 5. Summarized spread statistics. All amounts except ACF(1) are in USD.

Wealth Dist. Activity Market ACF(1) Mean Std. Dev. 95th Perc.

Homogeneous

One order
per minute

CDA 0.2507319 0.0383476 0.0261369 0.090
FBA (0.5) 0.2447688 0.0499764 0.0290913 0.103
FBA (1.0) 0.3069787 0.0342355 0.0228264 0.078
FBA (1.5) 0.3077515 0.0317048 0.0211640 0.071
FBA (2.0) 0.3230872 0.0379856 0.0223833 0.077
HVCDA 0.2187794 0.0448199 0.0345646 0.110

Two orders
per minute

CDA 0.0858149 0.0378784 0.0259295 0.090
FBA (0.5) 0.1361214 0.0467984 0.0262644 0.095
FBA (1.0) 0.1662251 0.0352314 0.0215043 0.076
FBA (1.5) 0.1459061 0.0271371 0.0187065 0.066
FBA (2.0) 0.2127666 0.0273466 0.0170182 0.059
HVCDA 0.0817038 0.0432109 0.0334046 0.110

Heterogeneous

One order
per minute

CDA 0.3074717 0.0345920 0.0254657 0.083
FBA (0.5) 0.2766983 0.0478824 0.0303539 0.104
FBA (1.0) 0.3055473 0.0368262 0.0263588 0.088
FBA (1.5) 0.3110681 0.0325339 0.0239745 0.080
FBA (2.0) 0.3389834 0.0341373 0.0243621 0.079
HVCDA 0.2761378 0.0390603 0.0324384 0.101

Two orders
per minute

CDA 0.1280019 0.0338610 0.0247486 0.080
FBA (0.5) 0.1552803 0.0533522 0.0296216 0.108
FBA (1.0) 0.1799899 0.0318500 0.0226879 0.078
FBA (1.5) 0.1906606 0.0268628 0.0195707 0.067
FBA (2.0) 0.2037995 0.0323805 0.0212976 0.072
HVCDA 0.1132685 0.0376259 0.0309964 0.100

(a) (b)

(c) (d)

Figure 10. Cont.
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(e) (f)

Figure 10. Spread sample distribution. (a) CDA. (b) FBA (0.5). (c) FBA (1.0). (d) HVCDA. (e) FBA
(1.5). (f) FBA (2.0).

3.1.3. Orders Execution Information

All previous measures can be obtained from typical financial data. However, the SHIFT
system contains account level information, and we can use this information to measure the
market quality in a manner not possible using publicly available data. Different markets
have different order execution profiles. Table 6 summarizes the average number of traded
shares for a given market, as well as the average execution time of liquidity providers and
liquidity takers in these markets. Given the lack of market orders in FBA and the auctioning
system, there is no way to distinguish between liquidity providers and liquidity takers in
these markets.

Table 6. Orders execution information. “Traded Shares” includes all shares that were executed during
the trading day. “Provider” refers to the liquidity provider in the operation, and “Taker” refers to the
liquidity taker in the operation. Since all orders are matched during the auction stage in FBA markets,
there is no notion of liquidity provider or taker. All execution times averages are per share.

Wealth Dist. Activity Market Traded Shares Provider Exec. Time Taker Exec. Time

Homogeneous

One order
per minute

CDA 98757500 1.9619518 s 0.0007400 s
FBA (0.5) 91592630 1.0670240 s
FBA (1.0) 91091700 1.0937140 s
FBA (1.5) 89287490 1.1265210 s
FBA (2.0) 87778520 1.1312940 s
HVCDA 118799580 1.5704159 s 0.0001776 s

Two orders
per minute

CDA 197323570 0.9798834 s 0.0007367 s
FBA (0.5) 176989880 0.5574615 s
FBA (1.0) 173888880 0.5766113 s
FBA (1.5) 168786160 0.5879257 s
FBA (2.0) 164907260 0.5999975 s
HVCDA 236678660 0.7775838 s 0.0001770 s

Heterogeneous

One order
per minute

CDA 98300040 2.8105986 s 0.0010819 s
FBA (0.5) 91590280 1.4231382 s
FBA (1.0) 91286410 1.4569833 s
FBA (1.5) 91061500 1.4174227 s
FBA (2.0) 89490260 1.4707875 s
HVCDA 114231670 2.2626305 s 0.0002593 s

Two orders
per minute

CDA 195242920 1.4073921 s 0.0010872 s
FBA (0.5) 179018740 0.7247442 s
FBA (1.0) 176254770 0.7324127 s
FBA (1.5) 172596140 0.7554315 s
FBA (2.0) 168931220 0.7839394 s
HVCDA 227837070 1.1274548 s 0.0002617 s

Looking at the amount of shares traded, there is a significant difference between the
CDA and HVCDA markets. This is even more evident in the more active markets. HVCDA
markets have larger trading volume than any of the other markets we experiment with.
Intuitively, the total amount of traded shares should drop for FBA markets, since there
are less trading opportunities in these markets. However, in our experiments, the changes
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between different FBA markets appear to be negligible, and not that different from CDA.
This is somewhat surprising.

HVCDA markets are also faster from the order execution time perspective, with av-
erages much better than CDA markets. FBA order execution times seem to lie close to
the average of the liquidity provider and liquidity taker average execution times in CDA
markets. One might conclude that there is not much loss in the order execution time when
moving from CDA to FBA markets. However, note that the promptness of market orders
execution is obviously lost. As with the total amount of traded shares, it is interesting to
note that, even though the execution time increases as we increase the batch interval length
of FBA markets, the change is very small. This was unexpected, and it may indicate that
the trading volume and the execution quality have less importance when looking for the
optimal batch interval size.

3.2. Experiment 2: Market Stress Scenarios

In our second set of experiments, we study market reactions when receiving an
exogenous shock mid operation. We performed a similar study in [9], where we analyzed
which of the four factors and their interactions were influential to market crashes. Here, we
augment the experiment by adding another factor: the market type.

The setup is very similar to the one described in Section 3.1. However, the total
simulation time is M = 3600 s (1 h). We do not need to simulate an entire trading day as
we are limiting statistics to be impacted by the crash. New traders join the N = 200 traders
about 30 min after the market opens. These new traders instigate a crash event at the
30 min mark, by placing large sell orders in the existing market. These new traders leave
the market as soon as they liquidate their inventory. Next, we introduce the factors studied.

Market factors:

• Market type: The market matching considered are continuous double auctions (CDA),
frequent batch auctions (FBA), or hidden volume continue double auctions (HVCDA).
For FBA, we only consider 1 s intervals (FBA (1.0)), since this choice provides us
with a good picture of the FBA results. Using multiple batch intervals would mean
an increase in the total amount of experiments as well as add to the complexity of
the analysis.

• Trading frequency: Traders submit orders on average once a minute (1 min) or twice
a minute (0.5 min).

• Wealth homogeneity: The initial wealth of traders can be either homogeneously
distributed (H), or non-homogeneously distributed (NH).

Crash condition factors:

• Stress size: The total size of the orders placed by the stress traders in order to create
the crash event is equivalent to either 5% (level one of the factor) or 10% (level two of
the factor) of the total number of shares in the market.

• Stress traders: This factor has three levels. The first level is a single stress trader
submitting a large order (labeled 1 in our tables). The second level is constituted of a
set of 20 such stress traders, all submitting their orders at the same time (20 s simulta-
neously). The third level consists of a similar set of 20 stress traders, but submitting
their orders in 3-second intervals (20 NS non-simultaneously). The total size of the
orders in the second and third level is equivalent to the size of the single order of the
first level.

We performed a total of 720 experiments, 10 for each possible factor combination,
which is 30 days worth of simulations. The results we gathered are stable and are presented
in Sections 3.2.1 and 3.2.2.
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3.2.1. Market Drawdown Analysis

Some sample results of the simulated market crashes for each of the market types
studied are shown in Figure 11. The level values for all factors except the market type are
kept the same. We see three different examples of pre-crash and post-crash market scenarios
illustrated. In Figure 11a, the market is stable before the crash. In Figure 11b, the market
price was already going down before the sell-off event, and the drop was exacerbated by
the event. Finally, in Figure 11c, the market price was increasing before the sell-off event,
and there was a strong immediate impact at the moment of the crash. We discuss the
concept of the immediate market impact in Section 3.2.2.

(a) (b)

(c)

Figure 11. Market drawdown examples in different market types. In all examples, the trading
frequency was 0.5 min, the wealth homogeneity was NH, the stress size was 10%, and the stress
traders were 20 S. (a) CDA. (b) FBA (1.0). (c) HVCDA.

In Figure 11, all the market types are impacted by the sell event. This is a typical
outcome in our experiments, particularly for those conducted with a large stress size
(10%) and larger time interval (20 S stress traders), but it is not the only type of result we
obtain. Figure 12 shows three results for experiments with other factor values (specified
in the caption). Figure 12a presents a market that is mostly unaffected by the orders from
the stress traders, and that, in fact, has a very strong upward movement just after the
event. Figure 12b shows a market with no apparent change caused by the stress traders.
In Figure 12c, the market experiences a large loss, but the market recovers at the end. It
is important to note that the plots we display in Figures 11 and 12 are merely illustrative,
and not indicative of performance in CDA, FBA, or HVCDA markets.

The point we are trying to illustrate in Figures 11 and 12 is just how hard it is to
analyze the resulting price path. We need to compute numerical values to help us identify
and distinguish between the various resulting situations. In all the presented figures, we
plot, in blue, the market drawdown slope caused by the crash event. We measure the
drawdown caused by the crash starting one minute before the known start time of the
stress event. The slope is computed by dividing the drawdown magnitude by its duration.
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(a) (b)

(c)

Figure 12. Market drawdown examples in different market types. In all examples, the trading
frequency was 1 min, the wealth homogeneity was H, the stress size was 5%, and the stress traders
were 20 NS. (a) CDA. (b) FBA (1.0). (c) HVCDA.

In the first analysis presented in Table 7, we use the drawdown slope as the response
variable for our ANOVA. This slope is a proxy for both the magnitude as well as the
duration of the market event; thus, we chose this numerical value to represent the impact
of the crash. Table 7 presents the final ANOVA model obtained after eliminating non-
significant factors.

The results show that four out of the five factors are significant, as well as the interac-
tions that are present among three of the factors. There is no evidence that wealth disparity
among market participants impacts the size of the drawdown slope. Next we apply Tukey’s
HSD test to the significant ANOVA factors. Table 8 presents the results for the main factors,
and Table A1 (in the Appendix A) for the interaction terms.

Table 7. Analysis of variance on the slope of the market drawdown in our simulated stress events.

Factor DF Sum Sq. Mean Sq. F-Value p-Value

Market Type
(MT) 2 5.55 × 10−8 2.78 × 10−8 602.558 <2 × 10−16

Trading
Frequency (TF) 1 5.72 × 10−9 5.72 × 10−9 124.021 <2 × 10−16

Wealth
Homogeneity

(WH)
1 4.00 × 10−11 3.90 × 10−11 0.847 0.358

Stress Size (SS) 1 1.51 × 10−8 1.51 × 10−8 328.017 <2 × 10−16

Stress Traders
(ST) 2 3.60 × 10−10 1.79 × 10−10 3.884 0.021

MT: TF 2 2.33 × 10−9 1.17 × 10−9 25.285 2.48 × 10−11

MT: SS 2 4.88 × 10−9 2.44 × 10−9 52.936 <2 × 10−16

TF: SS 1 7.30 × 10−10 7.30 × 10−10 15.831 7.64 × 10−5

Residuals 707 3.26 × 10−8 4.60 × 10−11

The most important result in Table 8 is the comparison between market types. The mar-
ket drawdown slope is significantly different for each market type. A lower slope value
means that either the drawdown magnitude was small, or that it lasted longer and, thus,
its impact was spread over a longer period of time. Looking at the results, the FBA markets
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have the least reaction to stress events. The HVCDA markets, on the other hand, seem to
have the strongest expected market drawdown movement.

Table 8. Tukey’s HSD test applied to the resulting non-interaction terms of the analysis of variance in
Table 7.

Factor Average 1 Factor Average 2 Diff. p-Value

Market Type Market Type
FBA (1.0) −7.6 × 10−6 CDA −1.1 × 10−5 0
FBA (1.0) −7.6 × 10−6 HVCDA −2.5 × 10−5 0

CDA −1.1 × 10−5 HVCDA −2.5 × 10−5 0

Trading Freq. Trading Freq.
1 min −1.2 × 10−5 0.5 min −1.7 × 10−5 0

Stress Size Stress Size
5% −1.1 × 10−5 10% −1.9 × 10−5 0

Traders Traders
20 NS −1.3 × 10−5 20 S −1.5 × 10−5 0.3790334
20 NS −1.3 × 10−5 1 S −1.6 × 10−5 0.0151148
20 S −1.5 × 10−5 1 S −1.6 × 10−5 0.3127922

The results about the trading frequency and the stress size factors are as expected.
More active markets (0.5 min) and larger stress events (10%) will cause steeper drawdowns.
Looking at the type of stress traders, the market stress caused by the 20 simultaneous
traders (20 S) is in the middle and not significantly different than either the market stress
generated by the single stress trader (1) or the 20 non-simultaneous stress traders (20 NS).
However, the drawdown slope caused by the single trader is significantly larger than
the one caused by the 20 non-simultaneous traders. As a parallel, consider consuming a
dose of medicine all at once, divided it into 20 smaller ones all consumed consecutively,
or spreading that dose into 20 to be consumed over certain time intervals. It would seem
the first two approaches would have the same effect while the third is different.

However, in our previous study [9], which did not include the FBA or HVCDA market
types, we did not find any significant difference among either case with 20 stress traders,
and both of them were significantly different than the case with a single trader. In that
paper, we interpret the results as caused by the price–time order priority of the order-driven
markets: “That is, the market order of the single stress trader will be executed in its entirety,
all at once. The 20 orders from the 20 simultaneous traders are programmed to be submitted
all at the same time. However, random orders from the other 200 market participants may
arrive between these orders, thus sometimes smoothing the stress event effect. This in turn,
produces statistically different results.”

The results we obtain now are caused by the introduction of new markets types in
the experiments. In a batch auction type, if the 20 orders are sent simultaneously, they are
likely to be processed within the same auction. As the orders are identical in price, they
accumulate to a large order, likely to be similar to the one order received from the single
trader. This is seen more clearly in Table 9, where the statistics are conditioned on the
market type. The results are not significant when conditioned—this may be an illustration
of the Simpson’s paradox and the fact that interaction terms are significant. Nonetheless,
Table 9 shows how close the results for 20 simultaneous stress traders are to the results for
20 non-simultaneous stress traders in the CDA markets. It also shows that, in FBA markets,
the results for a single stress trader are very close to the results for the 20 simultaneous
stress traders. We believe these results add to our previous conclusions related to the
price–time order priority effect of the order-driven markets.

We include the Tukey’s HSD test results for the interaction terms of the model in
Table A1, in the Appendix A. When analyzing the trading frequency and stress size together,
these terms interact. The larger stress events (10%) in more active markets (0.5 min) produce
a steeper drawdown movement than the individual level of factors separately.
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Table 9. Tukey’s HSD test applied to the stress traders factor, filtered by the market type factor.

Market Factor Average 1 Factor Average 2 Diff. p-Value

CDA
20 NS −1.042 × 10−5 20 S −1.115 × 10−5 0.9814210
20 NS −1.042 × 10−5 1 S −1.145 × 10−5 0.4449778
20 S −1.115 × 10−5 1 S −1.145 × 10−5 0.5578007

FBA (1.0)
20 NS −7.102 × 10−6 20 S −7.739 × 10−6 0.0781573
20 NS −7.102 × 10−6 1 S −7.917 × 10−6 0.1279579
20 S −7.739 × 10−6 1 S −7.917 × 10−6 0.9724697

HVCDA
20 NS −2.065 × 10−5 20 S −2.750 × 10−5 0.6112951
20 NS −2.065 × 10−5 1 S −2.817 × 10−5 0.0828875
20 S −2.750 × 10−5 1 S −2.817 × 10−5 0.4545344

The other conclusion we can draw from the interaction results is about the market
type. If only CDA and FBA markets are considered, we obtain a similar conclusion,
i.e., the combination of larger stress events in more active markets produce steeper market
movements than individually. Further, the HVCDA markets are more susceptible to
steeper drawdown movements than either CDA or FBA markets, regardless of the trading
frequency of the market participants, or the stress size of the crash event.

3.2.2. Immediate Market Impact Analysis

The slope of the drawdown may be seen as a longer term impact. Here, we wanted to
introduce a measure of immediate market impact. Figure 12c on page 20 has an example
of what we call an “immediate market impact”, i.e., a sharp price drop that is created by
stress events. Figure 13 presents several more examples, with the immediate market impact
highlighted in red. Sometimes the market will recover a little after the large drop, even
if it continues in a downward path afterward—Figure 13a,b. Other times, the drop will
be followed by another sharp drop, as in Figure 13c. We are concerned with only the first,
immediate impact.

(a) (b)

(c)

Figure 13. Immediate market impact examples in different market types. In all examples, the trading
frequency was 0.5 min, the wealth homogeneity was NH, the stress size was 10%, and the stress
traders were 20 S. (a) CDA. (b) FBA (1.0). (c) HVCDA.

In our experiments, these immediate market impacts happen in about 46% of the
cases. Clearly, manually looking for these is unfeasible with so many simulations; thus,



Mathematics 2023, 11, 1223 23 of 26

we devised an automated procedure to detect them. The procedure was introduced in [9]
and it is presented in details therein. Here, we explain the intuition behind the procedure
and we refer to the cited work for exact details. Since we know the time at which the large
order(s) are placed, we look at the largest negative return in a window of time including
this time. From the largest negative return, we look both backwards and forwards in
time for larger than normal returns. The distribution of “Normal” returns is based on the
return statistics of endogenous market scenarios with the same base parameters (wealth
distribution, trading frequency, etc.). We are including both large negative and positive
returns in this calculation, since either may be part of the stress event. The total final
negative return must meet a threshold based on past statistics, otherwise the immediate
market impact is set at 0.

We use this procedure to flag experiments with immediate market impacts. We create
a binary response variable with value 1 if there was an immediate market impact and 0 if
there was no immediate market impact. We then form a logistic model. From the analysis,
we found that only the individual factors are important, with no significant interaction
terms. Since interactions are not significant, the analysis may be simplified and Table 10
presents the results of pairwise t-tests performed for each of the individual factors.

Table 10. Factors pairwise t-tests for determining which values increase the probability of immediate
impact events.

Factor Average 1 Factor Average 2 Diff. p-Value

Market Type Market Type
CDA 34.2% FBA (1.0) 33.8% 0.92
CDA 34.2% HVCDA 70.0% 6.50 × 10−16

FBA (1.0) 33.8% HVCDA 70.0% 4.60 × 10−16

Trading Freq. Trading Freq.
1 min 47.8% 0.5 min 44.2% 0.33

Wealth Wealth
H 45.6% NH 46.4% 0.82

Stress Size Stress Size
5% 23.3% 10% 68.6% <2 × 10−16

Traders Traders
1 S 55.4% 20 NS 26.7% 2.10 × 10−10

1 S 55.4% 20 S 55.8% 0.92
20 S 55.8% 20 NS 26.7% 1.70 × 10−10

Once again, the results show that HVCDA is not a good exchange type. These ex-
changes not only cause steeper drawdown movements when there is a market stress event,
but, in 70% of the cases, there will also be an immediate impact: double the rate of CDA
and FBA markets. We also measure the average size of these immediate market impacts
when they happen. The average size for HVCDA markets was −1.18%, versus −0.60%
for CDA markets and only −0.33% for FBA markets. Therefore, even though there is no
significant difference in the probability of the immediate market impact for CDA compared
to FBA, when they do happen, they are almost double in size than in the FBA markets.
Again, the FBA markets stand out as a more stress-resistant alternative to CDA markets.

Different trading frequencies and wealth homogeneity profiles do not impact the
probability of the immediate market impact. The results for the two remaining factors, stress
size, and stress traders are again intuitive. The stress sizes of 10% will cause immediate
market impacts 68.6% of the time, with an average drop size of −0.92%, compared to stress
sizes of 5% causing immediate market impacts 23.3% of the time, with an average impact
size of −0.54%. As for the stress traders, the results are similar to the drawdown slope
results. There is no significant difference among a single trader and 20 simultaneous traders,
with both causing immediate market impacts around 55.6% of the time, against only 26.7%
when the stress event is caused by 20 non-simultaneous traders. The average impact sizes
are around −0.85% and −0.76%, respectively.
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4. Conclusions

This paper presents an attempt to implement the frequent batch auctions order-
matching mechanism in a system that closely resembles a real market exchange in terms
of functionality. The objective was to serve as a proof of concept for both FBA and SHIFT
(our platform) as a means to experiment with policies before actual implementation. There
are limitations to our study, as highlighted in Section 2.2, and all the experiments were
performed endogenously, with no source of outside information into the system. These
laboratory conditions led us to interesting initial conclusions, not to be taken as proof of
implementation at a real scale. Nonetheless, we believe studies similar to this are a neces-
sary step in evaluating the feasibility of alternative market types such as frequent batch
auctions (FBA). Furthermore, we were able to base our conclusions on market measures
(trades and order books) as well as specific account level data (e.g., average execution time
and provider and taker execution), which are not generally available for research.

Due to the sealed nature of the order submission stage of FBA markets, we created
the HVCDA markets as sort of an FBA market limit, specifically when the limit of the
batch interval time approaches zero. We thus included HVCDA in this study expecting to
find some similarity in the obtained results. However, the actual results showed that the
FBA markets are much closer statistically to the traditional CDA markets than we initially
expected. Moreover, looking at common measures of market quality, the FBA markets
seem to be a significant improvement in relation to CDA markets. The FBA markets are
less uncertain, with lower volatility values, and more liquid, with tighter spread values.
Of course, there is a loss of immediacy in order execution, but this would only be perceived
by the actual target group of the FBA proposal: high-frequency traders. We also note
that the results of our market stress experiments show how the FBA markets seem to be
intrinsically better suited to resist crash events.

When working on these experiments, our objective was not to pinpoint the best batch
interval length for frequent batch auctions, but we hoped we could obtain some insights.
Our results indicate that going in the direction of more frequent auctions may not be the
best solution. In fact, the results obtained indicate that it may be possible to optimize the
batch interval based on a certain criteria. Such criteria should be based, among other things,
on the market activity load of the target asset (volume and trading frequency). Different
financial assets could probably benefit from using different batch interval sizes.

The FBA markets do, however, present some downsides, as they may prove to be
technically challenging to implement in the real world. We mentioned the bottleneck we
hit with FIX messages that did not allow us to try batch intervals of less than 0.5 s. We
understand this is probably a limitation of the hardware available to us, but similar issues
(perhaps with a thinner time granularity) could arise in real market exchanges.

On this note, we also find it important to mention another issue we discovered while
sampling data from FBA markets that could turn into a real issue for researchers and
market participants. As we mentioned in Section 2.2, the CDA order book updates can be
sent to clients of the exchange as differentials from the previous information the clients
already have. In FBA, the whole order book changes every time there is an auction and,
thus, the entire book needs to be broadcasted. If a researcher or market participant is
sampling the market using a constant frequency, it is possible that they sample the current
bid order book and the previous ask order book, since the information may not have
arrived or been processed by the client yet. This could be a serious issue, especially when
sampling best prices or the spread (e.g., producing impossible negative spread values).
Such inconsistencies are impossible with differential updates. A possible solution would
be to have blackout periods when sampling is not possible or even allowed, which is yet
another technical challenge.

We should mention that we started this study from the perspective of: “these aca-
demics that proposed FBA have no idea how markets are functioning in reality, let us
dismantle this idea”. The results we obtained surprised us. We did not expect FBAs
to perform so well, particularly when compared with an exchange model that has been



Mathematics 2023, 11, 1223 25 of 26

functioning and continuously perfected for almost 100 years. The results completely trans-
formed our perception of FBAs and, instead, caused us to become believers in this idea.

This study ended up by opening more doors than it closed. Future work includes ex-
ploring the few things we mentioned in the paper that would require further investigation,
as well as a more thorough search for the optimal batch interval length of FBAs depending
on the market parameters (traded stock volume and market participants).
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Appendix A. Complete Tukey’s HSD Test Results

Table A1. Tukey’s HSD test applied to the resulting interaction terms of the analysis of variance
in Table 7.

Factor 1 Factor 2 Average 1 Factor 1 Factor 2 Average 2 Diff. p-Value

Market Type Trading Freq. Market Type Trading Freq.
FBA (1.0) 1 min −6.4 × 10−6 CDA 1 min −8.6 × 10−6 0.0162066
FBA (1.0) 1 min −6.4 × 10−6 FBA (1.0) 0.5 min −8.7 × 10−6 0.1271304
FBA (1.0) 1 min −6.4 × 10−6 CDA 0.5 min −1.3 × 10−5 0
FBA (1.0) 1 min −6.4 × 10−6 HVCDA 1 min −2.2 × 10−5 0
FBA (1.0) 1 min −6.4 × 10−6 HVCDA 0.5 min −2.9 × 10−5 0

CDA 1 min −8.6 × 10−6 FBA (1.0) 0.5 min −8.7 × 10−6 0.9772395
CDA 1 min −8.6 × 10−6 CDA 0.5 min −1.3 × 10−5 0.0000459
CDA 1 min −8.6 × 10−6 HVCDA 1 min −2.2 × 10−5 0
CDA 1 min −8.6 × 10−6 HVCDA 0.5 min −2.9 × 10−5 0

FBA (1.0) 0.5 min −8.7 × 10−6 CDA 0.5 min 1.3 × 10−5 0.0000011
FBA (1.0) 0.5 min −8.7 × 10−6 HVCDA 1 min −2.2 × 10−5 0
FBA (1.0) 0.5 min −8.7 × 10−6 HVCDA 0.5 min −2.9 × 10−5 0

CDA 0.5 min −1.3 × 10−5 HVCDA 1 min −2.2 × 10−5 0
CDA 0.5 min −1.3 × 10−5 HVCDA 0.5 min −2.9 × 10−5 0

HVCDA 1 min −2.2 × 10−5 HVCDA 0.5 min −2.9 × 10−5 0

Market Type Stress Size Market Type Stress Size
FBA (1.0) 5% −5.4 × 10−6 CDA 5% −7.6 × 10−6 0.0511931
FBA (1.0) 5% −5.4 × 10−6 FBA (1.0) 10% −9.8 × 10−6 0.0000214
FBA (1.0) 5% −5.4 × 10−6 CDA 10% −1.4 × 10−5 0
FBA (1.0) 5% −5.4 × 10−6 HVCDA 5% −1.9 × 10−5 0
FBA (1.0) 5% −5.4 × 10−6 HVCDA 10% −3.2 × 10−5 0

CDA 5% −7.6 × 10−6 FBA (1.0) 10% −9.8 × 10−6 0.3376176
CDA 5% −7.6 × 10−6 CDA 10% −1.4 × 10−5 0
CDA 5% −7.6 × 10−6 HVCDA 5% −1.9 × 10−5 0
CDA 5% −7.6 × 10−6 HVCDA 10% −3.2 × 10−5 0

FBA (1.0) 10% −9.8 × 10−6 CDA 10% −1.4 × 10−5 0.0000001
FBA (1.0) 10% −9.8 × 10−6 HVCDA 5% −1.9 × 10−5 0
FBA (1.0) 10% −9.8 × 10−6 HVCDA 10% −3.2 × 10−5 0

CDA 10% −1.4 × 10−5 HVCDA 5% −1.9 × 10−5 0.0000008
CDA 10% −1.4 × 10−5 HVCDA 10% −3.2 × 10−5 0

HVCDA 5% −1.9 × 10−5 HVCDA 10% −3.2 × 10−5 0

Trading Freq. Stress Size Trading Freq. Stress Size
1 min 5% −8.3 × 10−6 0.5 min 5% −1.3 × 10−5 0.0000032
1 min 5% −8.3 × 10−6 1 min 10% −1.6 × 10−5 0
1 min 5% −8.3 × 10−6 0.5 min 10% −2.2 × 10−5 0

0.5 min 5% −1.3 × 10−5 1 min 10% −1.6 × 10−5 0.000006
0.5 min 5% −1.3 × 10−5 0.5 min 10% −2.2 × 10−5 0
1 min 10% −1.6 × 10−5 0.5 min 10% −2.2 × 10−5 0
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