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Abstract: In the Dempster–Shafer evidence theory framework, extremum analysis, which should be
repeatedly executed for uncertainty quantification (UQ), produces a heavy computational burden,
particularly for a high-dimensional uncertain system with multiple joint focal elements. Although
the polynomial surrogate can be used to reduce computational expenses, the size of the solution
space hampers the efficiency of extremum analysis. To address this, a solution-space-reduction-
based evidence theory method (SSR-ETM) is proposed in this paper. The SSR-ETM invests minimal
additional time for potentially high-efficiency returns in dealing with epistemic uncertainty. In the
SSR-ETM, monotonicity analysis of the polynomial surrogate over the range of evidence variables
is first performed. Thereafter, the solution space can be narrowed to a smaller size to accelerate
extremum analysis if the surrogate model is at least monotonic in one dimension. Four simple
functions and an air spring system with epistemic uncertainty demonstrated the efficacy of the
SSR-ETM, indicating an apparent superiority over the conventional method.

Keywords: solution space reduction; Dempster–Shafer evidence theory; monotonicity analysis; air
spring; epistemic uncertainty; uncertainty quantification
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1. Introduction

Air springs are core components of the secondary suspension system of high-speed
trains, whose stiffness performance is closely related to the stability and safety of train
operations. The stiffness evaluation of air springs is conventionally based on deterministic
approaches [1,2]. However, air springs involve inevitable uncertainties, subject to various
raw materials and complex processing technologies. Their stiffness performance is more
elusive under the coupling effect of the atmosphere and chronic external excitation. Given
the crucial role of air springs in train operation, it is imperative to predict their stiffness
performance under uncertainty.

There are two categories of uncertainty: aleatory uncertainty and epistemic uncer-
tainty [3]. Aleatory uncertainty is attributed to the inherent variability of the system or
working environment [4]. Although probability-based aleatory uncertainty is broadly
researched in engineering [5–8], it is inappropriate for limited data. Epistemic uncertainty
results from an incomplete or inadequate knowledge of the physical system [9]. Thus far,
non-probabilistic methods such as the Dempster–Shafer evidence theory [10,11], fuzzy
set theory [12–14], interval analysis [15–18], and generalised p-boxes [19,20] have been
widely applied to describe epistemic uncertainty. Among the non-probabilistic methods
mentioned above, the Dempster–Shafer evidence theory supports a relatively flexible math-
ematical framework equivalent to interval analysis or probability-based methods under
particular conditions [9]. Such characteristics promote the extensive application of the
Dempster–Shafer evidence theory in reliability analysis and response analysis [21–23].

Mathematics 2023, 11, 1214. https://doi.org/10.3390/math11051214 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051214
https://doi.org/10.3390/math11051214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11051214
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051214?type=check_update&version=3


Mathematics 2023, 11, 1214 2 of 19

Recently, polynomial chaos expansion (PCE) [24–27], which approximates computa-
tional models through a linear combination of orthogonal polynomials, has been introduced
to the Dempster–Shafer evidence theory framework for UQ. Harsheel et al. [28] introduced
the Legendre polynomial surrogate to address engineering problems with hybrid uncertain-
ties. Subsequently, Yin et al. [9,29] employed a Jacobi polynomial surrogate and an arbitrary
PCE for the response analysis of acoustic systems with epistemic uncertainty. However, the
required number of model evaluations for a PCE increases significantly with the size of the
uncertain vector; this is also known as the ‘curse of dimensionality’. Consequently, sparse
PCE [30–33], which uses the sparsity-of-effects principle and powerful sparse regression
solvers to approximate high-dimensional computational models through a few model
evaluations, has been used [34].

Although sparse PCE provides an inexpensive approximation to the computational
model, the efficiency of extremum analysis is limited to the size of the solution space.
In particular, extremum analysis must be executed in each joint focal element for an
evidence-theory-based UQ. Many engineering problems involve a large number of uncer-
tain parameters, and the interval of the uncertain parameters is usually divided into as
many focal elements as possible to improve the reliability of UQ. The calculation time of the
conventional method [9,29] carrying out extremum analysis in the original solution space
is unacceptable. To narrow the size of the solution space, SSR-ETM, which takes advantage
of the monotonicity of the PCE-based surrogate model, is proposed. The monotonicity
over the range of evidence variables is available for all joint focal elements. If the surrogate
model is at least monotonic in one dimension, the size of the solution spaces can be reduced
to increase the computational efficiency.

The contributions of this paper are as follows: (1) the Dempster–Shafer evidence theory
was employed to quantify epistemic uncertainty; (2) the sparse PCE was introduced to
construct the surrogate model, and the input variables with arbitrary probability measures
were considered; (3) a method, namely SSR-ETM, was proposed to accelerate evidence-
theory-based UQ; (4) different types of numerical examples are designed to discuss the
shortcomings and advantages of SSR-ETM, and good results are obtained in an air spring
system with epistemic uncertainty.

The remainder of this paper is organised as follows. Section 2 presents the theoretical
framework of the Dempster–Shafer evidence theory. Section 3 introduces the SSR-ETM
framework and its core steps. In Section 4, four simple functions and an air spring system
with epistemic uncertainty are used to verify the superiority of the SSR-ETM. Section 5
presents the concluding remarks.

2. Fundamentals of the Dempster–Shafer Evidence Theory

The Dempster–Shafer evidence theory, abbreviated as evidence theory, owes its name
to the pioneering work by Dempster [35] and Shafer [36–38]; it is a generalisation of the
Bayesian theory of subjective probability [39]. In evidence theory, the frame of discernment
(FD) Θ is defined as a finite exhaustive set of w pairwise mutually exclusive propositions
as follows:

Θ = {h1, h2, . . . , hw}. (1)

where h1, h2, . . . , hw are the elementary propositions.
The combination of all subsets of Θ constitutes a power set 2Θ that contains the

following possible propositions:

2Θ = {∅, {h1}, {h2}, . . . , {hw}, {h1, h2}, {h1, h3}, . . . , {hw−1, hw}, . . . , Θ}. (2)

Basic probability assignment (BPA), an independent probability-like measure, is as-
signed to each possible proposition to indicate belief information [40]. The BPA m(A) of
the subset A is 

m(A) ≥ 0, ∀A ∈ 2Θ,
m(∅) = 0,

∑
A∈2Θ

m(A) = 1,
(3)
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where A is defined as the focal element once m(A) > 0.
The evidence theory model is an uncertainty model based on evidence theory that

converts the uncertain vector x = [x1, x2, . . . , xd] into an evidence vector ξ = [ξ1, ξ2, . . . , ξd]
composed of d independent evidence variables. A multi-index set κ that contains all index
combinations of the focal element is defined as

κ =
{

β ∈ Nd
+ : βi ≤ Ni, i = 1, 2, . . . , d

}
with card(κ) = N f =

d

∏
i=1

Ni, (4)

where N+ is the set of positive integers, Ni is the number of focal elements of ξi, and β is
a multi-index. The joint focal element εβ, which can be regarded as a solution space, is
spanned by focal elements, given by

εβ = εβ1 × εβ2 . . .× εβd (5)

where εβi = [εβi
, εβi ] is the βi−th focal element of ξi. The BPA of εβ, denoted by m(εβ), is

defined as the product of the BPAs of focal elements, as follows:

m(εβ) =
d

∏
i=1

m(εβi ) (6)

In the evidence theory model, the lower and upper bounds of the true extent of a
proposition B, belief (Bel) and plausibility (Pl), are defined as

Bel(B) = ∑
A⊆B

m(A), (7)

Pl(B) = ∑
A∩B=∅

m(A), (8)

Based on Bel and Pl, the cumulative belief function (CBF) and cumulative plausibility
function (CPF) of system response are defined as

CBF(u) = Bel(y(ξ) ≤ u) = ∑
{εβ |yβ≤u,β∈κ}

m(εβ), (9)

CPF(u) = Pl(y(ξ) ≤ u) = ∑
{εβ |yβ

≤u,β∈κ}
m(εβ), (10)

where y
β

and yβ are the minimum and maximum values, respectively, of the system

response in εβ, with u is a constant. As the lower and upper boundaries of the cumulative
distribution functions (CDFs), CBF and CPF enclose the real CDF of the system response.

Other statistical properties, such as the system response expectation and variance, can
be obtained. Owing to the uncertain probability distributions of the evidence variables, the
expectation and variance of the system response, denoted by µI and varI, are expressed in
the following variation ranges [41]:

µI = ∑
β∈κ

yI
βm(εβ), (11)

varI = ∑
β∈κ

(
yI

β − µI
)2

m(εβ), (12)

where yI
β = [y

β
, yβ] is the response interval determined via extremum analysis, which is

essentially equivalent to solving the following optimisation problem:

y
β
= min yβ or yβ = max yβ

s.t. ξβ ∈ εβ, β ∈ κ.
(13)
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3. SSR-ETM for Evidence-Theory-Based UQ
3.1. Framework of the SSR-ETM

In high-dimensional engineering applications, extremum analysis requires a large
amount of computation. The size of the solution space is one of the main factors. Thus,
SSR-ETM is proposed to mitigate the restriction of the size of solution space on efficiency
under the precondition that the surrogate model is monotonic in one or more dimensions.
As shown in Figure 1, the domain consists of solution spaces. In the SSR-ETM, the three-
dimensional original solution space shown in Figure 1 can be reduced to a low-dimensional
solution space. Depending on the number of monotonic dimensions, the reduced solution
space may be a two-dimensional plane, line segment, or point.

Figure 1. Domain, original solution space, and its reduced solution spaces.

The framework of the SSR-ETM is shown in Figure 2, which also presents the frame-
work of the conventional methods in [9,29], collectively known as the evidence theory
method (ETM) here, for a clear comparison. The grey parts, the blue part, and the red
part are performed in the domain, reduced solution spaces, and original solution spaces,
respectively. In the SSR-ETM, monotonicity analysis is performed only once, and the
extremum analysis must be executed N f times.

Figure 2. Framework of the SSR-ETM and ETM.
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3.2. Establishment of Sparse Representation

Suppose x = [x1, x2, . . . , xd] ∈ Rd is a d-dimensional random vector in a continuous
domain Ω, with each random variable being independent. Accordingly, the computational
model y(x) can be expressed using PCE as follows:

y(x) ≈ ∑
α∈
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(1) ( ) ( ){ }={ , , } with card( )d P
d d

dP
dτ τ

ττ
τ
+= ∈ ≤ ≡ =α α α α   , ,

!
: .

! !
 (15)

( )ψ α x  is defined as the tensor product of univariate orthogonal polynomials, i.e., 

1

( ) ( )
i

d

i
i

xαψ ψ
=

= ∏α x , (16)

where ( )
i ixαψ  is a iα -order univariate orthogonal polynomial related to the probabil-

ity density function (PDF) ( )ixρ . In addition, ( )ψ α x  satisfies orthogonality: 

1 2 1 2,( ) ( ) ( ) ,dψ ψ ρ δ
Ω

= α α α αx x x x  (17)

with 
1 2,δα α  as the Kronecker delta and 

1

( ) ( )
d

i
i

xρ ρ
=

= ∏x  as the joint PDF.  

Families of orthogonal polynomials about continuous distributions including Gauss-
ian, uniform, gamma, and beta distributions were elaborated in [44]. However, random 

fαψα(x), (14)

where α = [α1, α2, . . . , αd] ∈
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is a multi-index indicating the orders of multivariate orthog-
onal polynomials

{
ψα(x), α ∈
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1 2 1 2,( ) ( ) ( ) ,dψ ψ ρ δ
Ω

= α α α αx x x x  (17)

with 
1 2,δα α  as the Kronecker delta and 

1

( ) ( )
d

i
i

xρ ρ
=

= ∏x  as the joint PDF.  

Families of orthogonal polynomials about continuous distributions including Gauss-
ian, uniform, gamma, and beta distributions were elaborated in [44]. However, random 

d,τ

)
≡ P =

(τ + d)!
τ!d!

. (15)

ψα(x) is defined as the tensor product of univariate orthogonal polynomials, i.e.,

ψα(x) =
d

∏
i=1

ψαi (xi), (16)

where ψαi (xi) is a αi-order univariate orthogonal polynomial related to the probability
density function (PDF) ρ(xi). In addition, ψα(x) satisfies orthogonality:∫

Ω
ψα1(x)ψα2(x)ρ(x)dx = δα1,α2 , (17)

with δα1,α2 as the Kronecker delta and ρ(x) =
d

∏
i=1

ρi(x) as the joint PDF.

Families of orthogonal polynomials about continuous distributions including Gaus-
sian, uniform, gamma, and beta distributions were elaborated in [44]. However, random
variables are not always limited to these classical distributions. In arbitrary PCE [45],
orthogonal polynomials associated with arbitrary distributions can be constructed with
the raw moment of random variables. The k-th raw moment uk of a continuous random
variable is defined as

uk =
∫

Ωi

xkρ(x)dx. (18)

The coefficient to the q-th power of k-order univariate orthogonal polynomial, vq(q =
1, 2, . . . , k), is calculated by

u0 u1 · · · uk
u1 u2 · · · uk+1
...

...
...

...
uk−1 uk · · · u2k−1

0 0 · · · 1




v0
v1
...

vk−1
vk

 =


0
0
...
0
1

. (19)

Then, the k-order univariate orthogonal polynomial is given by

ψk(x) =
k

∑
q=0

vqxq. (20)
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However, the Vandermonde matrix may be ill-conditioned for a large value of k [46].
The alternative scheme relies on the following Hankel matrix [47]:

H =


u0 u1 · · · uk
u1 u2 · · · uk+1
...

...
...

...
uk uk+1 · · · u2k

 (21)

Condition det(H) > 0, if satisfied, supports the Cholesky decomposition of H = RTR,
with R being an upper triangular matrix. The matrix R provides information on recursive
coefficients [46]

ak =
rk,k+1

rk,k
−

rk−1,k

rk−1,k−1
, bk =

rk+1,k+1

rk,k
(22)

of the following recurrence formula:

ψ−1(x) = 0,
ψ0(x) = 1,
ψk+1(x) = (x− ak)ψk(x)− bkψk−1(x), k = 0, 1, 2, . . . .

(23)

In Equation (22), ri,j(i, j = 1, 2, . . .) denotes the entry in throw i and the column j of R,
with r0,0 = 1 and r0,1 = 0. a0 = µ1 is defined here.

For a given experimental design (ED) X =
{

x(1), . . . , x(N)
}T

and the corresponding

model evaluations Y =
{

y(1), . . . , y(N)
}T

, the least-squares approach can be used to solve

the polynomial coefficients η =
{

fα, α ∈
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η = argmin
α∈
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‖Y−Φη‖2; η =
(

ΦTΦ
)−1

ΦTY. (24)

In Equation (24), Φ ∈ RN×P is a measurement matrix with entries Φij = ψα(j)(x(i)).
In [34,49,50], N ≈ 2P, 3P is recommended for a robust and unique η. This implies that
numerous model evaluations are required for a multi-dimensional computational model
with high polynomial orders. To construct a polynomial surrogate using few model
evaluations, Blatman and Sudret [51] successfully applied least angle regression (LAR) to a
sparse PCE to find those features with the highest impact on system response. It should
be noted that the “curse of dimensionality” can be alleviated to some extent through the
truncation criteria (such as the total order expansion technique mentioned above) and LAR,
but it cannot be completely overcome. Referring to their work, we use sparse arbitrary
polynomial chaos expansion (SAPCE) to establish sparse representations, as follows:

y(x) ≈ C(x) = ∑
α∈
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d,τ . In SAPCE, Latin hypercube sampling [52]
is used as the ED generator. Then, one can rewrite Equation (13) as follows:

C(ξβ)/C(ξβ) = min/max C(ξβ)
s.t. ξβ ∈ εβ, β ∈ κ,

(26)

3.3. Monotonicity Analysis

On most occasions, the optimal solution to the optimisation problem is difficult
to solve analytically. Heuristic algorithms [53–55] are designed for desirable solutions
within acceptable computational expenses to substitute optimal solutions. However, the
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efficiency of heuristic algorithms is inevitably hindered by dimensionality. Favourably,
numerous surrogate models are monotonic in certain dimensions. Monotonicity analysis
can be employed to simplify the optimisation problem. Let us use SAPCE to approximate
a differentiable computational model whose partial derivative ∂C(ξ)

∂ξi
(i = 1, 2, . . . , d) is

given as

∂C(ξ)
∂ξi

= ∑
α∈
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min

fα
ψα(ξ)

ψαt(ξi)

∂ψαt(ξi)

∂ξi
, (27)

where ∂ψαt (ξi)
∂ξi

follows the three-term recurrence:

∂ψ0(ξi)
∂ξi

= 0,
∂ψ1(ξi)

∂ξi
= 1,

∂ψk+1(ξi)
∂ξi

= ψk(ξi) + (ξi − ak)
∂ψk(ξi)

∂ξi
− bk

∂ψk−1(ξi)
∂ξi

, k = 1, 2, . . . .

(28)

However, the PDF of evidence variables is undetermined. In other words, only the
probability assigned to each focal element is available. To construct optimal orthogonal
polynomials, the authors of [29] put forward a reasonable assumption that all focal elements
are assigned a uniform distribution. We employ the assumption in [29] and it yields the
following PDF of evidence variables:

ρ(ξi) =
Ni

∑
βi=1

δβi (ξi)m(εβi )

εβi − εβi

, i = 1, 2, . . . , d, (29)

where δβi (ξi) is an indicator function, indicating δβi (ξi) = 1 if ξi ∈ εβi , or else δβi (ξi) = 0.
PSO [53] can be used to determine whether the partial derivative satisfies

min
(

∂C(ξ)
∂ξi

)
≥ 0 or max

(
∂C(ξ)

∂ξi

)
≤ 0 (30)

If satisfied, then the surrogate model is an increasing or decreasing function related to
ξi; otherwise, it is a non-monotonic function. The procedure of monotonicity analysis is
shown in Algorithm 1. These three cases are mapped to pi = 1, 2, 3, respectively. Therefore,
the set ϑ = {1, 2, . . . , d}, which contains indices of the dimension, can be correspondingly
split into index sets p1 = {i ∈ ϑ|pi = 1}, p2 = {i ∈ ϑ|pi = 2}, and p3 = {i ∈ ϑ|pi = 3}.
Let ξβ(Ξ) ∈ εβ and ξ(Ξ) ∈ Ω be two evidence vectors under conditions Ξ. Given ξ

(1)
i ≤

ξ
(2)
i and ξ

(1)
i , ξ

(2)
i ∈ Ωi, the monotonicity of the surrogate model makes [56,57]C

(
ξ(ξi = ξ

(1)
i )
)
≤ C

(
ξ(ξi = ξ

(2)
i )
)

, pi = 1

C
(

ξ(ξi = ξ
(2)
i )
)
≥ C

(
ξ(ξi = ξ

(1)
i )
)

, pi = 2
. (31)

Thus, C
(

ξβ(ξi = εβi
)
)
≤ C(ξβ) ≤ C

(
ξβ(ξi = εβi )

)
, pi = 1

C
(

ξβ(ξi = εβi
)
)
≥ C(ξβ) ≥ C

(
ξβ(ξi = εβi )

)
, pi = 2

. (32)

Algorithm 1 Monotonicity analysis

Input: Surrogate model C(ξ) generated by SAPCE.
1. Calculate the partial derivatives of C(ξ) using Equations (27) and (28).
2. Use PSO to calculate the extremum of partial derivatives of each dimension.
3. Assess the monotonicity of the surrogate model using Equation (30).
Output: Monotonicity of the surrogate model.
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In essence, monotonicity analysis uses PSO to solve the extremum of the partial
derivative of the surrogate model d times. Because the extremum calculated by PSO must
not be a global extremum, it may lead to a false monotonicity judgment when the minimum
or maximum of the above partial derivative is very close to zero, resulting in a large
error in the subsequent calculation. Generally speaking, however, the global optimization
performance of PSO has been widely verified.

3.4. Solution Space Reduction for Extremum Analysis of Joint Focal Elements

The monotonicity of the surrogate model facilitates in narrowing the solution space.
Let r1, r2, and r3 be the number of elements in p1, p2, and p3, respectively. Assume p1, p2,
and p3 divide any vector or set into three parts. It can be deduced from Equation (32) thatC

(
ξβ(ξβp1 = εβp1

)
)
≤ C(ξβ) ≤ C

(
ξβ(ξβp1 = εβp1)

)
,

C
(

ξβ(ξβp2 = εβp2
)
)
≥ C(ξβ) ≥ C

(
ξβ(ξβp2 = εβp2)

)
,

(33)

where ξβ(ξβp1 = εβp1
), as an example, represents

ξβ(ξβp1 = εβp1
) = ξβ(ξβp1(1) = εβp1(1), ξβp1(2) = εβp1(2), . . . , ξβp1(r1)

= εβp1(r1)
) (34)

with βp1(r1)
being the r1−th index of βp1. The combination of the two inequalities in

Equation (33) yields

C
(

ξβ(ξβp1 = εβp1
, ξβp2 = εβp2)

)
≤ C(ξβ) ≤ C

(
ξβ(ξβp1 = εβp1 , ξβp2 = εβp2

)
)

. (35)

Equation (35) indicates that the extremums of the optimization problems are located
in the following reduced solution spaces:{

εmin
β = εβp1

× εβp2 × εβp3 ,
εmax

β = εβp1 × εβp2
× εβp3 ,

(36)

where εmin
β and εmax

β denote the reduced solution spaces corresponding to the minimisa-

tion/maximisation problem, respectively. The evidence vectors ξmin
β and ξmax

β generated in

εmin
β and εmax

β , respectively, are expressed as

ξmin
β /ξmax

β = [ξβ1 , ξβ2 , . . . , ξβd ], where ξβi (i = 1, 2, . . . , d) =


εβi

/εβi , pi = 1
εβi /εβi

, pi = 2
ξβi ∈ εβi , pi = 3

. (37)

For instance, provided that a four-dimensional surrogate model is increasing in the
first and fourth dimensions, decreasing in the second dimension, and non-monotonic
in the third dimension, then, based on Equation (36), the original solution space εβ

is reduced to εmin
β = εβ1

× εβ2 × εβ3 × εβ4
or εmax

β = εβ1 × εβ2
× εβ3 × εβ4 . The new so-

lution spaces are composed of only the third dimension. ξmin
β and ξmax

β are given by

ξmin
β = [εβ1

, εβ2 , ξβ3 , εβ4
] and ξmax

β = [εβ1 , εβ2
, ξβ3 , εβ4 ], respectively. In addition, we can find

ξβp1 = εβ2 , ξβp2 = [εβ1
, εβ4

], and ξβp3 = ξβ3 . Thus, ξβp1 and ξβp2 contain all constants, and
ξβp3 contains all unknown evidence variables, implying ψαp1(ξβp1) and ψαp2(ξβp2) as con-
stants, and ψαp3(ξβp3) as the part that should be solved iteratively. This example intuitively
illustrates the reduction in solution space.

The reduction in solution space depends on the number of monotonic dimensions
of the surrogate model. If r3 = d, the SSR-ETM is transformed into ETM, implying that
the solution space cannot be reduced. In this case, the SSR-ETM takes additional time
for monotonicity analysis, which is also the limitation of the SSR-ETM. Nevertheless, the
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SSR-ETM effectively narrows the size of the solution space from d to r3 as long as r3 < d.
Moreover, the solution space is reduced to a point when r3 = 0.

3.5. Evidence-Theory-Based Response Analysis Using the Solution Space Reduction Technique

The extremum of the system response in each joint focal element should be determined
for evidence-theory-based UQ. Suppose the monotonicity of the surrogate model deter-
mined by PSO is accurate, then, based on the inference in Section 3.4 and the solution space
reduction technique, the optimisation problem in Equation (26) is exactly equivalent to

C(ξβ)/C(ξβ) = min/max
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s.t.ξβ ∈ εβ, β ∈ k

(38)

This optimisation problem can be solved using PSO. Compared with Equation (26), the
surrogate model in Equation (38) is divided into three parts according to monotonicity. On
the premise that the monotonicity judgment is correct, the theoretical results of these two
equations are exactly the same, indicating the same calculation accuracy of the SSR-ETM
and ETM. Considering the randomness of PSO and the change in solution space, there may
be a slight deviation between the calculation results of these two methods. To sum up,
the SSR-ETM relies on the solution space reduction technique to improve computational
efficiency by reducing the solution space in extremum analysis, and the computational
accuracy is almost the same as that of the ETM.

After calculating C(ξβ) and C(ξβ), four indicators can be rewritten as

CBF(u) = ∑
{εβ |C(ξβ)≤u,β∈κ}

m(εβ), (39)

CPF(u) = ∑
{εβ |C(ξβ)≤u,β∈κ}

m(εβ), (40)

µI = ∑
β∈κ

CI(ξβ)m(εβ), (41)

varI = ∑
β∈κ

(
CI(ξβ)− µI

)2
m(εβ), (42)

where CI(ξβ) =
[
C(ξβ), C(ξβ)

]
.

Algorithm 2 shows the pseudo-code of the SSR-ETM. In Algorithm 2, ψαp1(ξβp1) and
ψαp2(ξβp2) remain unchanged in the entire loop, and the value of ψαp3(ξβp3) depends on
ξβp3 generated by PSO.

Essentially, both the SSR-ETM and ETM use PSO to calculate the extremum of the
surrogate model 2N f times. The difference is that the particle dimension of PSO in the SSR-
ETM is r3, while the particle dimension in the ETM is d. Therefore, when N f is relatively
large and r3 < d, the computational cost of the SSR-ETM for monotonicity analysis is
relatively small, thus it is more efficient than the ETM.
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Algorithm 2 Solution-space-reduction-based evidence theory method (SSR-ETM)

Input: Monotonicity of the surrogate model determined by Algorithm 1, joint focal elements
(solution spaces) εβ, and BPAs m(εβ), β ∈ κ.
1. For β ∈ κ

2. If r3 < d
3. Use Equation (37) to generate ξβp1 and ξβp2

4. Use Equation (16) to calculate ψαp1 (ξβp1 ) and ψαp2 (ξβp2 ).
5. End
6. While PSO has not searched the extremum of C(ξβ) and r3 > 0
7. Use PSO to generate ξβp3 .
8. Calculate ψαp3 (ξβp3 ) using Equation (16).
9. Calculate C(ξβ).
10. End
11. Store C(ξβ)/C(ξβ).
12. End
13. Calculate the four indicators using Equations (39)–(42).
Output: CBF, CPF, µI, and varI.

4. Numerical Examples

In this section, four simple functions and an air spring system with epistemic uncer-
tainty are used to compare the SSR-ETM and the ETM. The differences between the two
methods are discussed in Section 3. The results were acquired using MATLAB R2021b
on a 3.70 GHz AMD Ryzen Threadripper 3970X 32-Core CPU. The PSO used the built-in
function “Particleswarm” of MATLAB, and all other parameters were default values, except
for keeping the “Vectorized” on. The modified “leave-one-out” error ε was used as the
error metrics; more details can be found in [51]. We also used some open-source code from
UQLab [58]. The necessary parameters will be illustrated in each numerical example.

4.1. Simple Functions

Let us consider the following function:

y(ξ) = Im

m

∑
i=min{1,m}

(ξi + 2)4 + In

n

∑
j=min{1,n}

(ξ j − 0.5)4, (43)

where ξi, ξ j ∈ [−1, 1] are independent evidence variables; Im and In are defined as

Im =

{
0, m = 0
1
m , m 6= 0

, In =

{
0, n = 0
1
n , n 6= 0

. (44)

The partial derivative of the above function is given as

∂y
∂ξl

=

{
4(ξl+2)3

m , l = i > 0
4(ξl−0.5)3

n , l = j > 0
. (45)

Thus, the function is monotonic in m dimensions and non-monotonic in n dimensions.
Four functions derived from the function in Equation (43) are designed to illustrate the
superiority of the SSR-ETM. In these four functions, NBPA focal elements with the same
BPAs are allocated to each evidence variable. For example, the focal elements of an
evidence variable in NBPA = 2 are set to [−1,0] and [0,1], with BPAs of 50% and 50%,
respectively. Information on the four functions is presented in Table 1. In the simple
functions, the number of samples was N = 60(m + n), the “leave-one-out” error was
ε = 1× 10−20, and the highest order of the polynomial was eight. We set ε so small because
there are many items in the candidate base for high-dimensional functions. In practical
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engineering problems, 10−4∼ 10−3 is appropriate because PCE usually contains very few
lower order terms.

Table 1. Information on the four functions.

Function Values of m and n NBPA

Non-monotonic function m = 0, n = 1, 2, . . . , 20 2
Monotonic function m = 1, 2, . . . , 20, n = 0 2

15-dimensional function m + n = 15, m ≥ 0, n ≥ 0 2
5-dimensional function m + n = 5, m ≥ 1, n ≥ 0 2, 3, . . . , 8

The results showed that the four indicators about these simple functions obtained by
the two methods are almost identical to the analytical solutions, indicating the high com-
putational accuracy of the two methods. Because the plotted curves are almost coincident
(similar to Figures 8 and 9) and limited by the fact that CPF and CBF are not suitable for
drawing in the form of relative error, these indicators of simple functions are not exhibited
here to improve readability and to emphasize the advantages of the SSR-ETM in terms of
computational efficiency.

4.1.1. Non-Monotonic Function

The non-monotonic function shown in Equation (46) was used to study the perfor-
mance of the SSR-ETM when all dimensions are non-monotonic. In this case, the SSR-ETM
transforms into the ETM. This implies that the solution space remains unchanged.

y(ξ) =
1
n

n

∑
i=1

(ξi − 0.5)4, n = 1, 2, . . . , 20 (46)

As depicted in Figure 3, the SSR-ETM requires additional time for monotonicity
analysis and solution space reduction, yet it is entirely acceptable. The SSR-ETM takes only
approximately 0.54 s longer than the ETM when the number of non-monotonic dimensions
is 20. Therefore, the SSR-ETM features a low-risk cost. In addition, the computation time of
both methods rapidly increased with the number of dimensions. This is the limitation of
the ETM in dealing with high-dimensional uncertainty problems. The performance of the
SSR-ETM is not optimistic in this special case, either. However, it should be pointed out
that such a special case rarely occurs in high-dimensional engineering problems.

Figure 3. Computation time of the two methods for the non-monotonic function.
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4.1.2. Monotonic Function

To assess the performance of the SSR-ETM under the assumption that all dimensions
are monotonic, a monotonic function was designed as follows:

y(ξ) =
1
m

m

∑
i=1

(ξi + 2)4, m = 1, 2, . . . , 20 (47)

In this case, the SSR-ETM precisely locates the minimum and maximum points via
monotonicity analysis. Accordingly, we can see from Figure 4 that the efficiency of the
SSR-ETM is drastically improved compared with that of the ETM when m assumes a
large value. Although the SSR-ETM requires additional time for monotonicity analysis
and solution space reduction, it is still faster than the ETM. The SSR-ETM requires no
more than 580 s to deal with the uncertainty problem containing 220 joint focal elements,
while the ETM requires more than 90,000 s. Moreover, the SSR-ETM remains powerful
despite the increase in monotonic dimension, while the computation time of the ETM grows
explosively. Because of the short calculation time required for UQ, a small turn appeared
around m = 3.

Figure 4. Computation time of the two methods for the monotonic function.

4.1.3. Fifteen-Dimensional Function

Equation (48) expresses the 15-dimensional function designed to investigate the influ-
ence of the number of monotonic dimensions on computing efficiency.

y(ξ) = Im

m

∑
i=Im

(ξi + 2)4 + In

n

∑
j=In

(ξ j − 0.5)4, m + n = 15, m ≥ 0, n ≥ 0 (48)

As shown in Figure 5, the computation time of the SSR-ETM is notably shortened as
the number of monotonic dimensions increases, owing to the reduction in the solution
space. In contrast, the computation time of ETM fluctuates within a certain range. The
SSR-ETM can save approximately 2175 s for a completely monotonic function compared
with a completely non-monotonic function; this comparison result is valid only for a
function with a dimension of 15 and a number of joint focal elements of 215. Thus, the
efficiency improvement realized by solution space reduction is significant. Although the
time invested in monotonicity analysis and solution space reduction may add additional
time overall, it is worthwhile.
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Figure 5. Computation time of the two methods for the 15-dimensional function.

4.1.4. Five-Dimensional Function

Equation (49) expresses the five-dimensional function designed to illustrate the impact
of the number of joint focal elements on the computational efficiency advantage of the
SSR-ETM.

y(ξ) = Im

m

∑
i=min{1,m}

(ξi + 2)4 + In

n

∑
j=min{1,n}

(ξ j − 0.5)4, m + n = 5, m ≥ 1, n ≥ 0 (49)

Figure 6 reports the computation time ratio of the SSR-ETM to the ETM for different
m and NBPA. This illustrates that the computation time ratio of the two methods tends to
be stable when the number of joint focal elements reaches a certain degree, implying that
the efficiency advantage of the SSR-ETM is mainly affected by the number of monotonic
dimensions rather than the number of joint focal elements. Owing to the stability of the
SSR-ETM, it is suitable for dealing with epistemic uncertainty problems with numerous
joint focal elements.

Figure 6. Computation time ratio of the SSR-ETM to the ETM for the five-dimensional function.
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4.1.5. Summary of the Results of the Four Simple Functions

The results obtained for the above four simple functions support the following conclusions.

(i) The SSR-ETM features high computational accuracy that is almost the same as that
of the ETM because it only divides the surrogate model into monotonic and non-
monotonic parts.

(ii) Although the SSR-ETM requires a minuscule amount of time for monotonicity analysis
and solution space reduction, it may render remarkable benefits, specifically when
the surrogate model is monotonic in all dimensions. When the surrogate model is
non-monotonic in all dimensions, the SSR-ETM maintains almost the same computing
efficiency as the ETM.

(iii) The SSR-ETM performs better when there are more monotonic dimensions.
(iv) The number of joint focal elements exhibits a negligible effect on the calculation

efficiency advantage of the SSR-ETM over the ETM when it reaches a certain degree.

4.2. Air Spring System with Epistemic Uncertainty
4.2.1. Finite Element Model (FEM) of an Air Spring System

Figure 7 shows the air spring finite element model (FEM). The air spring system
comprises an upper cover, lower seat, capsule, and cord layers. A total of 119,360 elements
were used in modelling, including 30,960 C3D8H elements for the capsule, 35,360 C3D8R
elements for the upper cover and lower seat, 49,360 SFM3D4R elements for the cord layer
modelled by the rebar layer, and 80 C3D6H elements and 3600 C3D6 elements for the
junction between the upper cover and the capsule. The capsule is made of a hyper-elastic
material whose constitutive relation is characterised by the Mooney–Rivlin model [59,60].

Figure 7. FEM of an air spring.

4.2.2. Air Springs with Uncertain Parameters

Air springs are involved in these uncertainties. The uncertain vector Z, which is
composed of five uncertain parameters of air springs that are assumed to be independent,
is expressed as follows:

Z = [E, ϕ, l, S, δ]T, (50)

where E, ϕ, l, and S are the Young’s modulus, angle, spacing, and cross-sectional area of the
cords, respectively, and δ is the thickness of the capsule. The evidence theory model defines
these uncertain parameters as evidence variables, whose focal elements and corresponding
BPAs are listed in Table 2. The system response K, the vertical static stiffness of air springs,
can be obtained by solving the following finite element equation:

K = M(Z). (51)
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Table 2. Information about the air spring system.

E (MPa) ϕ (Degree) l (mm) S (mm2) δ (mm)

Focal
Element BPA (%) Focal

Element BPA (%) Focal
Element BPA (%) Focal

Element BPA (%) Focal
Element BPA (%)

[1657,1675] 3.90 [40.8,41.5] 0.85 [1.40,1.42] 5.05 [5.4,5.5] 0.47 [6.0,6.2] 0.65
[1675,1700] 7.64 [41.5,42.0] 1.07 [1.42,1.44] 7.28 [5.5,5.6] 0.99 [6.2,6.4] 2.12
[1700,1725] 7.11 [42.0,42.5] 3.06 [1.44,1.46] 8.33 [5.6,5.7] 4.74 [6.4,6.6] 25.36
[1725,1750] 5.62 [42.5,43.0] 4.13 [1.46,1.48] 17.95 [5.7,5.8] 9.67 [6.6,6.8] 20.36
[1750,1775] 7.28 [43.0,43.5] 5.11 [1.48,1.50] 14.63 [5.8,5.9] 20.97 [6.8,7.0] 21.21
[1775,1800] 7.67 [43.5,44.0] 9.67 [1.50,1.52] 19.51 [5.9,6.0] 25.98 [7.0,7.2] 18.54
[1800,1825] 7.78 [44.0,44.5] 8.75 [1.52,1.54] 11.46 [6.0,6.1] 20.86 [7.2,7.4] 5.10
[1825,1850] 9.04 [44.5,45.0] 14.68 [1.54,1.56] 8.40 [6.1,6.2] 9.62 [7.4,7.6] 4.33
[1850,1875] 7.25 [45.0,45.5] 12.61 [1.56,1.58] 5.98 [6.2,6.3] 4.95 [7.6,7.8] 1.98
[1875,1900] 5.38 [45.5,46.0] 8.92 [1.58,1.60] 1.41 [6.3,6.4] 1.33 [7.8,8.0] 0.35
[1900,1925] 7.47 [46.0,46.5] 7.61 [6.4,6.5] 0.42
[1925,1950] 7.69 [46.5,47.0] 7.05
[1950,1975] 7.82 [47.0,47.5] 9.11
[1975,1996] 8.35 [47.5,48.0] 4.62

[48.0,48.5] 1.73
[48.5,49.1] 1.03

4.2.3. SSR-ETM for Stiffness Evaluation

For a given ED X =
{

Z(1), . . . , Z(N)
}T

and its corresponding model evaluations

Y =
{

K(1), . . . , K(N)
}T

, one can use the two methods to calculate the bounds of expectation
and variance of the vertical static stiffness at different initial pressures. CBF and CPF at
different initial pressures are also available. Owing to fewer uncertain variables of the air
spring system, we incorporated 105 random samples and the vertex method [61] to obtain
the extremum in each joint focal element and the reference solutions of the four indicators.
Note that the reference solutions were obtained based on the surrogate model rather than
the computational model or FEM. In this numerical example, the number of samples was
200, the “leave-one-out” error was 1× 10−3, and the highest order of the polynomial was
12. The results of the stiffness evaluation are presented in Figures 8–10.

Figure 8. Bounds of the expectation (a) and variance (b) of the vertical static stiffness and their
reference solutions at different initial pressures.
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Figure 9. CBF and CPF of the two methods and their reference solutions for the air spring system.

Figure 10. Computation time of the two methods at different initial pressures.

We can observe from Figure 8 that the bounds of the expectation and variance of the
vertical static stiffness increase with the initial pressure. This is because the stress on the air
springs increases with the initial pressure, leading to a higher vertical static stiffness owing
to the adjustable stiffness characteristics.

As depicted in Figure 9, the curves of CPF are close to the CBF. This is because the
minimum in each joint focal element is close to that of the maximum. The curves of the four
indicators obtained by the two methods are almost coincident with that of the reference
solutions, proving both methods provide accurate results of stiffness evaluation at different
initial pressures as long as the surrogate model is well established.

Accelerated by the reduction in solution space, the SSR-ETM spends less time than the
ETM on UQ (see Figure 10). Particularly, the surrogate model of the air spring system is
monotonic in four dimensions when the initial pressure is between 0.46 MPa and 0.54 MPa.
The SSR-ETM saves about 1400 s for this uncertain system with only five uncertain variables.
The SSR-ETM still performs well under 0.56–0.68 MPa as two or three dimensions are
reduced. Thus, the SSR-ETM was proved to be valid.
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5. Conclusions

In this study, we propose the SSR-ETM. Initially, SAPCE was used to approximate the
computational model. Thereafter, PSO was employed for monotonicity analysis. Based
on monotonicity analysis, the solution space can be reduced if the surrogate model is
monotonic in at least one dimension. The reduced solution space is conducive to accel-
erating extremum analysis. Ultimately, four simple functions and an air-spring system
with epistemic uncertainty successfully verified the validity of the SSR-ETM. Our results
support the following conclusions:

(i) The SSR-ETM demonstrates a high computing accuracy almost comparable to that of
the ETM as long as the surrogate model is well established.

(ii) Compared with the ETM, the SSR-ETM adds minimal additional time for monotonicity
analysis and solution space reduction.

(iii) More monotonic dimensions contribute to a higher efficiency advantage of the SSR-
ETM. In particular, when all dimensions are monotone, the SSR-ETM exhibits a
significant efficiency advantage over the ETM.

(iv) The SSR-ETM performed better than the ETM in the stiffness evaluation of the air
springs with epistemic uncertainty.

In conclusion, the SSR-ETM is a promising UQ method with low risk and high return,
particularly suitable for engineering applications with prominent monotonicity. However,
the SSR-ETM still does not perform well for the high-dimensional surrogate model without
any monotonic dimension or with few monotonic dimensions. In addition, it requires
very high accuracy of the surrogate model. Moreover, the number of extremum analyses
in SSR-ETM multiplies with the number of focal elements contained in the number of
uncertain variables. Although we have listed several numerical examples with 220 joint
focal elements, the number of extremum analyses in SSR-ETM is the product of the number
of focal elements in all variables, which makes it difficult for the SSR-ETM to deal with
problems with many uncertainty variables. In future work, it is necessary to study further
how to solve these problems.
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