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Abstract: In this article, a high-order time-stepping scheme based on the cubic interpolation formula
is considered to approximate the generalized Caputo fractional derivative (GCFD). Convergence
order for this scheme is (4− α), where α (0 < α < 1) is the order of the GCFD. The local truncation
error is also provided. Then, we adopt the developed scheme to establish a difference scheme for the
solution of the generalized fractional advection–diffusion equation with Dirichlet boundary condi-
tions. Furthermore, we discuss the stability and convergence of the difference scheme. Numerical
examples are presented to examine the theoretical claims. The convergence order of the difference
scheme is analyzed numerically, which is (4− α) in time and second-order in space.
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1. Introduction

This work includes the numerical solution of the following generalized fractional
advection–diffusion equation,

C
0Dα

t;[ζ(t),ω(t)]U(x, t) = D ∂2U(x,t)
∂x2 − A ∂U(x,t)

∂x + g(x, t), x ∈ Ω, t ∈ (0, T],

U(x, 0) = U0(x), x ∈ Ω = Ω ∪ ∂Ω,

U(0, t) = ρ1(t), U(a, t) = ρ2(t), t ∈ (0, T],

(1)

where Ω = (0, a) is a bounded domain with boundary ∂Ω and the notation C
0Dα

t,[ζ(t),ω(t)]
denotes the GCFD (defined in [1] and related references therein) with respect to t of order α:

C
0Dα

t;[ζ(t),ω(t)]U(t) =
[ω(t)]−1

Γ(1− α)

∫ t

0

[ω(s)U(s)]′

[ζ(t)− ζ(s)]α
ds, 0 < α < 1, (2)

where ∂s =
∂
∂s , parameter D > 0 is the diffusivity, A > 0 is the advection constant and U

is the solute concentration; g, U0, ρ1 and ρ2 are continuous functions on their respective
domains with U0(0) = ρ1(0) and U0(a) = ρ2(0). Here scale and weight are sufficiently
regular functions and our model (1) reduces to the diffusion problem when A = 0. The
advection–diffusion equation is basically a transport problem that transports a passive
scalar quantity in a fluid flow. Due to diffusion and advection, this model represents the
physical phenomenon of species concentration for mass transfer and temperature in heat
transfer; for more details, refer to [2–6], and [7–11] for further history and significance of
the advection–diffusion equation in physics, chemistry and biology.

Mathematics 2023, 11, 1200. https://doi.org/10.3390/math11051200 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051200
https://doi.org/10.3390/math11051200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5198-4340
https://orcid.org/0000-0003-0634-2370
https://doi.org/10.3390/math11051200
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051200?type=check_update&version=2


Mathematics 2023, 11, 1200 2 of 24

The most used fractional derivatives in the problem formulation are the Riemann–Liouville
and the Caputo derivatives [12]. In the year 2012, the generalizations of fractional integrals
and derivatives were discussed by Agrawal [1]. Two functions, scale ζ(t) and weight
ω(t) in one parameter, appear in the definition of the generalized fractional derivative
of a function V(t). If ω(t) = 1 and ζ(t) = t then the generalized fractional derivative
reduces to the Riemann–Liouville (R-L) and the Caputo derivative; whereas if ω(t) = 1,
ζ(t) = ln(t), and ω(t) = tση , ζ(t) = tσ then it will convert to Hadamard [13], and mod-
ified Erdélyi–Kober fractional derivatives, respectively. The authors of [14] studied the
generalized form of R-L and the Hadamard fractional integrals, which is a special case of
the Erdélyi–Kober generalized fractional derivative, and some properties of this operator.
Atangana and Baleanu [15] discussed a new fractional derivative with a non-singular kernel
and used this derivative in the formation of a fractional heat transfer model. Therefore,
we obtain different types of fractional derivatives for different choices of weight and scale
functions. In the generalized derivative, the scale function ζ(t) manages the considered
time domain; it can stretch or contract accordingly to capture the phenomena accurately
over the desired time range. The weight function ω(t) allows the events to be estimated
differently at different times.

Over the last decade, many numerical methods were investigated to approximate the
Caputo fractional derivative. For example, Mustapha [16] presented an L1 approximation
formula to solve a fractional reaction–diffusion equation and second-order error bound
discussed on non-uniform time meshes. Alikhanov [17] constructed an L2− 1σ formula to
approximate the Caputo fractional time derivative and then used this derived scheme in
solving the time fractional diffusion equation with variable coefficients. Abu Arqub [18]
considered reproducing a kernel algorithm for approximate solution of the nonlinear time-
fractional PDEs with initial and Robin boundary conditions. Li and Yan [19] discussed the
idea of [20] (i.e., L2 approximation formula for time discretization), and also derived a new
time discretization method with accuracy order O(τ3−α) and finite element method for
spatial discretization. Cao et al. [21] presented a high-order approximation formula based
on the cubic interpolation to approximate the Caputo derivative for the time fractional
advection–diffusion equation. Xu and Agrawal [22] used the finite difference method
(FDM) to approximate the GCFD for solving the generalized fractional Burgers equation.
Kumar et al. [23] presented L1 and L2 methods to approximate the generalized time
fractional derivative which are defined as follows, respectively

C
0Dα

t;[ζ(t),ω(t)]V(t)|t=tn =
[ω(t)]−1

Γ(1− α)

n

∑
l=1

(
ωlVl −ωl−1Vl−1

ζl − ζl−1

) ∫ tl

tl−1

[ζ(t)− ζ(s)]−α (∂sζ(s)) ds + rn
1 , (3)

C
0Dα

t;[ζ(t),ω(t)]V(t)|t=tn =
[ω(t)]−1

Γ(1− α)

n

∑
l=1

∫ tl

tl−1

[ζ(t)− ζ(s)]−α ∂s(Πlω(s)V(s)) ds + rn
2 , (4)

where,

Π′l(ω(t)V(t)) = ζ ′(t)
{[

2ζ(t)− ζl − ζl−1
(ζl−2 − ζl−1)(ζl−2 − ζl−1)

]
ωl−2Vl−2 +

[
2ζ(t)− ζl − ζl−2

(ζl−1 − ζl−2)(ζl−1 − ζl)

]
ωl−1Vl−1 +

[
2ζ(t)− ζl−1 − ζl−2

(ζl − ζl−2)(ζl − ζl−1)

]
ωlVl

}
,

where the domain [0, T] was discretized into n equal subintervals, i.e., 0 = t0 < t1 <
. . . < tN = T with step-size τ = T

N , and errors rn
1 = O(τ2−α), rn

2 = O(τ3−α) were shown
in [23]. In this work, we discuss the numerical scheme for GCFD with convergence rate
(4− α); for this accuracy we have to assume that V ′(t0) = 0, V ′′(t0) = 0, V ′′′(t0) = 0. This
idea is discussed in [21] for Caputo derivative approximation, but the error bound was
discussed directly.
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Due to the non-local property of the fractional derivatives, the numerical solution of the
fractional partial differential equations is a very difficult task [24]. Several authors have pre-
sented some precise and efficient numerical methods for the fractional advection–diffusion
equation. For examples, Zheng et al. [25] used the finite element method (FEM) for space
fractional advection–diffusion equation. Mardani et al. [26] discussed meshless moving
least square method for solving the time-fractional advection–diffusion equation with
variable coefficients. Cao et al. [21] proposed the higher-order approximation of the Caputo
derivatives and further applied it in solving the fractional advection–diffusion equation.
They used the Lagrange interpolation method to discretize the time derivative and second-
order central difference for the spatial derivatives. Li and Cai [27] considered a three-step
process for the Caputo fractional derivative approximation; the first two steps include the
shifted Lubich formula derivation for infinite interval then for finite interval, and after
that it is generalized to the Caputo derivative. Yadav et al. [28] discussed the Taylor ex-
pansion for the approximation of the generalized time-fractional derivative to solve the
generalized fractional advection–diffusion equation. Tian et al. [29] presented a polynomial
spectral collocation method for the space fractional advection–diffusion equation. In [30],
the authors developed explicit and implicit Euler approximations to solve a variable-order
fractional advection–diffusion equation on a finite domain. Singh et al. [31] investigated
the numerical approximation of the Caputo–Prabhakar derivative and then used this ap-
proximation to solve the fractional advection–diffusion equation. Kannan et al. [32] used a
variant of the local discontinuous Galerkin (LDG2) flux formulation to discuss the high
accuracy of the 1D and 2D diffusion equations. In [33], the authors discussed three ap-
proaches, penalty approach, BR2 (Bassi and Rebay) method and LDG method, to study the
2D diffusion equation.

1.1. Motivation and Literature Review for Approximation of the GCFD

Up to now, there are only limited works available in the literature to approximate
the GCFD. These works include the finite difference method, L1-method, L1− 2-method
and collocation method used to approximate GCFD. In this article, we present the approxi-
mation of the GCFD based on cubic interpolation polynomials (say L1− 2− 3-method).

• Xu and Agrawal [22] considered the FDM for approximation of the GCFD for the
generalized fractional Burgers equation.

• Kumar et al. [34] presented a numerical scheme for the generalized fractional telegraph
equation in time.

• Cao et al. [35] worked on the generalized time-fractional Kdv equation. They used the
collocation method which is constructed using Jacobi–Gauss–Lobatto (JGL) nodes.

• Xu et al. [36] considered the FDM to approximate the GCFD of order 0 < α < 1 and
discussed the analytical and numerical solutions of the generalized fractional diffusion
equation.

• In [37], the authors used the generalized weighted and shifted Grünwald–Letnikov
difference operator to approximate the GCFD and then adopt it to solve the generalized
fractional diffusion equation.

• Yadav et al. [28] discussed the Taylor expansion and finite difference approach to
approximate the GCFD and then presented the numerical solution of the generalized
fractional advection–diffusion equation.

• Sultana et al. [38] presented a numerical scheme based on non-uniform meshes for
solution of the generalized time-fractional telegraph equation using quadratic in-
terpolation and compact finite difference approximations for temporal and spatial
directions respectively.

Motivated by all these works, the main focus of this paper is to present a much higher-order
numerical scheme to approximate the GCFD, and also establish the error analysis in both
time and space discretization. To the best of our knowledge, no work has been done yet for
a third-order error bound of cubic interpolation formula to approximate the GCFD.



Mathematics 2023, 11, 1200 4 of 24

1.2. The Main Contributions of This Work Are as Follows

(1) We extend the approximation method of Cao et al. [21] for approximating the
GCFD and obtain the convergence order (4 − α). Further, we show that the obtained
scheme reduces to the approximation scheme discussed by Cao et al. [21] for choice of the
scale and the weight functions as ζ(t) = t and ω(t) = 1.

(2) We establish the full error analysis of the presented higher-order numerical scheme
for the generalized time fractional derivative by using the Lagrange interpolation formula.

(3) We introduce some numerical results for different choices of scale and weight
functions for the high-order time discretization scheme with convergence order O(τ4−α)
for all α ∈ (0, 1) which achieves higher accuracy than the numerical methods developed in
Gao et al. [39] for ζ(t) = t and ω(t) = 1.

The remaining sections of the paper are arranged as follows: In Section 2, we discuss the
(4− α)-th order scheme to approximate the GCFD of order α of the function V . In Section 3,
a higher-order difference scheme to solve the generalized fractional advection–diffusion
equation is presented. Stability and convergence analysis are also discussed in this sec-
tion. We present three numerical examples which illustrate the error and convergence
order of our established numerical scheme in Section 4. Finally, Section 5 concludes with
some remarks.

2. Numerical Scheme for the Generalized Caputo Fractional Derivative

Motivated by the research carried out in [21,23], this section is devoted to presenting a
high-order approximation formula for the generalized Caputo-type fractional derivative
using cubic interpolation polynomials.
Suppose that V(t) ∈ C4[0, T] and grid points 0 = t0 < t1 < . . . < tN = T with step
length τ = tn − tn−1 for 1 ≤ n ≤ N. For simplicity, we use g(s) = ω(s)V(s), V(tl) = Vl ,
ω(tl) = ωl and ζ(tl) = ζl . The generalized Caputo fractional derivative of order α of the
function V(t) at grid point tn is given by,

C
0Dα

t;[ζ(t),ω(t)]Vn =
[ωn]−1

Γ(1− α)

n

∑
l=1

∫ tl

tl−1

g′(s)
[ζ(tn)− ζ(s)]α

ds. (5)

On the first interval [0, t1] of the domain, we use continuous linear polynomial Π1g(t)
to approximate the function g(t)(= ω(t)V(t)). Let g(tl) = gl and the difference operator
∇τ gl = gl − gl−1 for l ≥ 1. Then, we have

(Π1g(t))′ =
(g1 − g0)

τ
=

(∇τ g1)

τ
.

Thus, Equation (5) yields,

[ωn]−1

Γ(1− α)

∫ t1

0
[ζ(tn)− ζ(s)]−α g′(s) ds =

[ωn]−1

Γ(1− α)

(∇τ g1)

τ

∫ t1

0
[ζ(tn)− ζ(s)]−αds + E1

τ

= an−1(∇τ g1) + E1
τ , (6)

where E1
τ is the truncation error on the first interval and coefficients for this approxima-

tion are

an−l =
[ωn]−1

Γ(2− α)

{
[ζ(tn)− ζ(tl−1)]

1−α − [ζ(tn)− ζ(tl)]
1−α

[ζ(tl)− ζ(tl−1)]

}
.

Here, we denote notation α
(n)
0 = [ωn ]−1

Γ(2−α)
, 1 ≤ n ≤ N. Then

an−l = α
(n)
0

{
[ζ(tn)− ζ(tl−1)]

1−α − [ζ(tn)− ζ(tl)]
1−α

[ζ(tl)− ζ(tl−1)]

}
, 1 ≤ l ≤ n. (7)
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Remark 1. If the scale function ζ is a positive strictly increasing function on the domain [0, T],
then the following inequality holds

0 < [ζ(tn)− ζ(tl)]
1−α − [ζ(tn)− ζ(tl−1)]

1−α, 1 ≤ l ≤ n. (8)

Since tl > tl−1, then it implies ζ(tl) > ζ(tl−1) for 1 ≤ l ≤ n, also (1− α) > 0.

Remark 2. To estimate an−1, suppose that

Θ = [ζ(tn)− ζ(s)]⇒ dΘ = −ζ ′(s) ds = −
(

ζ(tl)− ζ(tl−1)

τ

)
ds, s ∈ (tl−1, tl),

therefore, ∫
[ζ(tn)− ζ(s)]−α ds =

−τ

ζ(tl)− ζ(tl−1)

[ζ(tn)− ζ(s)]1−α

(1− α)
.

On the second interval [t1, t2], we use the continuous quadratic polynomial Π2g(t) to
approximate the function g(t), then we get

(Π2g(t))′ =
(2t− t0 − t1)

2τ2 g2 −
(2t− t0 − t2)

τ2 g1 +
(2t− t1 − t2)

2τ2 g0.

Thus from Equation (5), we get,

[ωn]−1

Γ(1− α)

∫ t2

t1

[ζ(tn)− ζ(s)]−α g′(s) ds =
[ωn]−1

Γ(1− α)

∫ t2

t1

[ζ(tn)− ζ(s)]−α (Π2g(s))′ ds + E2
τ

= an−2(g2 − g1) + bn−2(g2 − 2g1 + g0) + E2
τ

= an−2
(
∇τ g2

)
+ bn−2

(
∇2

τ g2
)
+ E2

τ . (9)

Here, the truncation error on the second interval is E2
τ , and

bn−l = α
(n)
0

{
1

(2− α)

[
[ζ(tn)− ζ(tl−1)]

2−α − [ζ(tn)− ζ(tl)]
2−α

[ζ(tl)− ζ(tl−1)]2

]

− 1
2

[
[ζ(tn)− ζ(tl−1)]

1−α + [ζ(tn)− ζ(tl)]
1−α

[ζ(tl)− ζ(tl−1)]

]}
, 2 ≤ l ≤ n. (10)

On the other subdomains (l ≥ 3), we use the cubic interpolation polynomial Πl g(t) to
approximate the function g(t) using four points (tl−3, gl−3), (tl−2, gl−2), (tl−1, gl−1), (tl , gl).
As we know the cubic interpolation polynomial is defined as:

Πl g(t) =
3

∑
r=0

gl−r

3

∏
s=0,s 6=r

(
t− tl−s

tl−r − tl−s

)
,

then we get,

(Πl g(t))′ = gl−3
(t− tl−2)(tl + tl−1 − 2t) + (t− tl−1)(tl − t)

6τ3

+ gl−2
(t− tl−3)(2t− tl−1 − tl) + (t− tl)(t− tl−1)

2τ3

+ gl−1
(t− tl−2)(tl−3 + tl − 2t) + (t− tl−3)(tl − t)

2τ3

+ gl
(t− tl−2)(2t− tl−3 − tl−1) + (t− tl−1)(t− tl−3)

6τ3 .
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Therefore, from Equation (5), we have,

[ωn]−1

Γ(1− α)

n

∑
l=3

∫ tl

tl−1

[ζ(tn)− ζ(s)]−αg′(s) ds

=
[ωn]−1

Γ(1− α)

n

∑
l=3

∫ tl

tl−1

[ζ(tn)− ζ(s)]−α(Πl g(s))′ ds + En
τ

=
n

∑
l=3

[
A1,n−l gl + A2,n−l gl−1 + A3,n−l gl−2 + A4,n−l gl−3

]
+ En

τ , (11)

where En
τ (3 ≤ n ≤ N) is the truncation error, and

A1,n−l = α
(n)
0

{
1
6

[
2[ζ(tn)− ζ(tl−1)]

1−α − 11[ζ(tn)− ζ(tl)]
1−α

[ζ(tl)− ζ(tl−1)]

]

+
1

(2− α)

[
[ζ(tn)− ζ(tl−1)]

2−α − 2[ζ(tn)− ζ(tl)]
2−α

[ζ(tl)− ζ(tl−1)]2

]
+

1
(2− α)(3− α)

[
[ζ(tn)− ζ(tl−1)]

3−α − [ζ(tn)− ζ(tl)]
3−α

[ζ(tl)− ζ(tl−1)]3

]}
, (12)

A2,n−l = α
(n)
0

{
1
2

[
6[ζ(tn)− ζ(tl)]

1−α + [ζ(tn)− ζ(tl−1)]
1−α

[ζ(tl)− ζ(tl−1)]

]

+
1

(2− α)

[
5[ζ(tn)− ζ(tl)]

2−α − 2[ζ(tn)− ζ(tl−1)]
2−α

[ζ(tl)− ζ(tl−1)]2

]
+

3
(2− α)(3− α)

[
[ζ(tn)− ζ(tl)]

3−α − [ζ(tn)− ζ(tl−1)]
3−α

[ζ(tl)− ζ(tl−1)]3

]}
, (13)

A3,n−l = α
(n)
0

{
− 1

2

[
2[ζ(tn)− ζ(tl−1)]

1−α + 3[ζ(tn)− ζ(tl)]
1−α

[ζ(tl)− ζ(tl−1)]

]

+
1

(2− α)

[
[ζ(tn)− ζ(tl−1)]

2−α − 4[ζ(tn)− ζ(tl)]
2−α

[ζ(tl)− ζ(tl−1)]2

]
+

3
(2− α)(3− α)

[
[ζ(tn)− ζ(tl−1)]

3−α − [ζ(tn)− ζ(tl)]
3−α

[ζ(tl)− ζ(tl−1)]3

]}
, (14)

A4,n−l = α
(n)
0

{
1
6

[
[ζ(tn)− ζ(tl−1)]

1−α + 2[ζ(tn)− ζ(tl)]
1−α

[ζ(tl)− ζ(tl−1)]

]

+
1

(2− α)

[
[ζ(tn)− ζ(tl)]

2−α

[ζ(tl)− ζ(tl−1)]2

]
+

1
(2− α)(3− α)

[
[ζ(tn)− ζ(tl)]

3−α − [ζ(tn)− ζ(tl−1)]
3−α

[ζ(tl)− ζ(tl−1)]3

]}
, (15)
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where 3 ≤ l ≤ n. After simplifying Equation (11), we obtain the following form

[ωn]−1

Γ(1− α)

n

∑
l=3

∫ tl

tl−1

[ζ(tn)− ζ(s)]−α g′(s) ds

=
n

∑
l=3

[
an−l(gl − gl−1) + bn−l(gl − 2gl−1 + gl−2)

+ cn−l(gl − 3gl−1 + 3gl−2 − gl−3)
]
+ En

τ

=
n

∑
l=3

[
an−l(∇τ gl) + bn−l(∇2

τ gl) + cn−l(∇3
τ gl)

]
+ En

τ . (16)

Here, we introduce another coefficient cn−l , which is defined as

cn−l = α
(n)
0

{
1

(2− α)(3− α)

[
[ζ(tn)− ζ(tl−1)]

3−α − [ζ(tn)− ζ(tl)]
3−α

[ζ(tl)− ζ(tl−1)]3

]

− 1
(2− α)

[
[ζ(tn)− ζ(tl)]

2−α

[ζ(tl)− ζ(tl−1)]2

]
− 1

6

[
[ζ(tn)− ζ(tl−1)]

1−α + 2[ζ(tn)− ζ(tl)]
1−α

[ζ(tl)− ζ(tl−1)]

]}
, 3 ≤ l ≤ n, (17)

and coefficients an−l , bn−l are defined in Equations (7) and (10), respectively, and Equation (16)
gives a more compact form of Equation (11). Such forms of coefficients were missing in [21].
From this we can easily discuss properties of coefficients.

Motivated by [21] (developed for Caputo derivative), a new numerical scheme for the
generalized Caputo-type fractional derivative of order α of the function V(t) at grid point
tn, with the help of Equations (6), (9) and (11), is defined by

HDα
t;[ζ(t),ω(t)]V(t)

∣∣
t=tn

=
[ωn]−1

Γ(1− α)

∫ tn

0

g′(s)
[ζ(tn)− ζ(s)]α

ds

=
[ωn]−1

Γ(1− α)

[ ∫ t1

0

g′(s)
[ζ(tn)− ζ(s)]α

ds +
∫ t2

t1

g′(s)
[ζ(tn)− ζ(s)]α

ds

+
n

∑
l=3

∫ tl

l−1

g′(s)
[ζ(tn)− ζ(s)]α

ds

]

=
n

∑
l=0

λl ωn−l Vn−l , (18)

with g(s) = ω(s)V(s).

Lemma 1. For any α ∈ (0, 1) and V(t) ∈ C4[0, T], then

C
0Dα

t;[ζ(t),ω(t)]Vn =H Dα
t;[ζ(t),ω(t)]Vn + En

τ , n = 1, 2, . . . , N,

where, HDα
t;[ζ(t),ω(t)] is the approximation of GCFD and |En

τ | = O(τ4−α).

For distinct values of n, the coefficients in (18) can be expressed as below.
For n = 1, {

λ0 = a0,
λ1 = −a0.
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For n = 2, 
λ0 = a0 + b0,
λ1 = a1 − a0 − 2b0,
λ2 = −a1 + b0.

For n = 3, 
λ0 = A1,0,
λ1 = A2,0 + a1 + b1,
λ2 = A3,0 + a2 − a1 − 2b1,
λ3 = A4,0 − a2 + b1.

For n = 4, 

λ0 = A1,0,
λ1 = A1,1 + A2,0,
λ2 = A2,1 + A3,0 + a2 + b2,
λ3 = A3,1 + A4,0 + a3 − a2 − 2b2,
λ4 = A4,1 − a3 + b2.

For n = 5, 

λ0 = A1,0,
λ1 = A1,1 + A2,0,
λ2 = A1,2 + A2,1 + A3,0,
λ3 = A2,2 + A3,1 + A4,0 + a3 + b3,
λ4 = A3,2 + A4,1 + a4 − a3 − 2b3,
λ5 = A4,2 − a4 + b3.

For n ≥ 6, 

λ0 = A1,0,
λ1 = A1,1 + A2,0,
λ2 = A1,2 + A2,1 + A3,0,
λl = A1,l + A2,l−1 + A3,l−2 + A4,l−3 (3 ≤ l ≤ n− 3),
λn−2 = an−2 + bn−2 + A2,n−3 + A3,n−4 + A4,n−5,
λn−1 = an−1 − an−2 − 2bn−2 + A3,n−3 + A4,n−4,
λn = −an−1 + bn−2 + A4,n−3.

(19)

Lemma 2. If the scale function ζ fulfills (8), and the weight function ω is non-negative and non-
decreasing on uniform time grids, then
(i) Ref. [35] The linear approximation coefficient satisfies, 1 ≤ l ≤ n,

0 < an−1 < . . . < an−l < an−l−1 < . . . < a1 < a0.

(ii) The quadratic approximation coefficient satisfies, 2 ≤ l ≤ n,

0 < bn−2 < . . . < bn−l < bn−l−1 < . . . < b1 < b0.

Proof. (i) If scale function ζ is continuous on its respective domain then, by using mean-
value theorem, there exist x̂l ∈ (tl−1, tl) such that

1
τ

∫ tl

tl−1

[ζ(tn)− ζ(s)]−αds = [ζ(tn)− ζ(x̂l)]
−α, 1 ≤ l ≤ n. (20)
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Since [ζ(tn)− ζ(s)]−α is a monotone increasing function, we easily get our required
result.

(ii) Let η(s) = [ζ(tn)− ζ(s)]1−α; suppose scale function ζ is sufficiently smooth on domain
[0, T] then mean-value theorem yields

2
∫ tl

tl−1

η(s)ds−
(
η(tl−1) + η(tl)

)
= 2η(x̃l)−

(
η(tl−1) + η(tl)

)
, x̃l ∈ (tl−1, tl),

= −θ
(
η′(tl)− η′(tl−1)

)
, 0 < θ < 1

= −θτη′′(νl), νl ∈ (tl−1, tl),

=
θα(1− α)

τ
[ζ(tl)− ζ(tl−1)]

2[ζ(tn)− ζ(νl)]
−α−1 > 0. (21)

Using (21), we can easily get that bn−l > 0 for positive strictly increasing weight
function ω(t). Since [ζ(tn) − ζ(s)]−α−1 is a monotone increasing function on temporal
domain [0, T], so we get the desired result.

Lemma 3. Suppose that the scale function ζ is positive and strictly increasing, and the weight
function ω is non-negative and non-decreasing, then, for each α ∈ (0, 1), the following conditions
hold for coefficients in (19)
(1) λ0 > 0, ∀ n ≥ 1,
(2) ∑n

l=0 λl = 0.

Proof. (1) If n = 1, then

λ0 = a0 = α
(n)
0 [ζ1 − ζ0]

−α ,

as the scale function is strictly increasing, therefore ζn−1 < ζn, for n ≥ 1. This implies that
λ0 = a0 > 0.

If n = 2, then λ0 = a0 + b0,
since

b0 = α
(n)
0

{(
1

2− α
− 1

2

)
[ζ2 − ζ1]

−α

}
> 0,

and we have already shown that a0 > 0, therefore λ0 = a0 + b0 > 0.
If n ≥ 3 then, for 0 < α < 1,

λ0 = A1,0 = α
(n)
0

{(
1
3
+

1
(2− α)

+
1

(2− α)(3− α)

)
[ζn − ζn−1]

−α

}
> 0.

(2) If n = 1, then λ0 = −λ1 = a0 > 0, for 0 < α < 1. This implies that λ0 + λ1 = 0.

If n = 2, then there exists an α ∈ (0, 1), by numerical analysis

λ0 + λ1 + λ2 = (a0 + b0) + (a1 − a0 + 2b0) + (−a1 + b0) = 0.
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If n ≥ 3, then

n

∑
l=0

λl = A1,0 + A1,1 + A2,0 + A1,2 + A2,1 + A3,0

+
n−3

∑
l=3

(A1,l + A2,l−1 + A3,l−2 + A4,l−3) + an−2 + bn−2

+ A2,n−3 + A3,n−4 + A4,n−5 + an−1 − an−2 − 2bn−2 + A3,n−3

+ A4,n−4 − an−1 + bn−2 + A4,n−3

=
n−3

∑
j=0

(A1,j + A2,j + A3,j + A4,j) = 0.

Lemma 4. If scale function ζ is a Lipschitz function on interval [tl−1, tl ] with Lipschitz constant
L, then

|ζl − ζl−1| ≤ Lτ, 1 ≤ l ≤ n.

Truncation Error for Generalized Caputo Derivative Term

For truncation error of approximation of the generalized Caputo derivative defined
in (18), for simplicity, suppose that function g(t) = ω(t)V(t) such that g(t) ∈ C4((0, T])
and ζ(t) = v; this implies t = ζ−1(v). Therefore, g(v) = ω(ζ−1(v))V(ζ−1(v)).

Theorem 1. A triangle inequality gives the bound

|C0Dα
t;[ζ(t),ω(t)]gn −H Dα

t;[ζ(t),ω(t)]gn| ≤
N

∑
n=1
|En

τ |,

with

En
τ =

[ωn]−1

Γ(1− α)

∫ ζl

ζl−1

[ζn − v]−α[g(v)−Πl g(v)]′ dv, 1 ≤ l ≤ n.

(1) |E1
τ | ≤

α[ωn]−1

Γ(1− α)

[
1

8α
+

1
2(1− α)(2− α)

]
max

t0≤vs.≤t1
|g(2)(v)|L2−α(τ)2−α, n = 1,

(2) |E2
τ | ≤

α[ωn]−1

Γ(1− α)

{
1

12
max

t0≤vs.≤t1
|g(2)(v)|(t2 − t1)

−α−1L2−α(τ)3 +

[
1

12

+
1

3(1− α)(2− α)

(
1
2
+

1
(3− α)

)]
max

t0≤vs.≤t2
|g(3)(v)|L3−α(τ)3−α

}
, n = 2,

(3) |En
τ | ≤

α[ωn]−1

Γ(1− α)

{
1

72
max

t0≤x≤t2
|g(3)(x)|(tn − t2)

−α−1L3−α(τ)4 +

[
3

128α

+
1

12(1− α)(2− α)

(
1 +

3
(3− α)

+
3

(3− α)(4− α)

)]
max

t0≤x1≤tn
|g(4)(x1)|L4−α(τ)4−α

}
,

n ≥ 3.

Proof. (1) Ref. [23] For n = 1, the scheme (18) is a linear approximation of the GCFD and
the convergence order for this approximation formula is O(τ2−α).
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(2) Ref. [23] For n = 2, the scheme (18) is a quadratic approximation of GCFD and here
the convergence order of the approximation formula is O(τ3−α).
(3) For n ≥ 3, by the Lagrange interpolation remainder theorem, we use quadratic interpo-
lation function Π2g(v) to interpolate g(v) using node points (ζ0, g0), (ζ1, g1), (ζ2, g2) on in-
terval [ζ0, ζ2] and cubic interpolation function Πl g(v) depends on (ζl−3, gl−3), (ζl−2, gl−2),
(ζl−1, gl−1), (ζl , gl) to interpolate g(v) on [ζl−3, ζl ] as follows

g(v)−Π2g(v) =
g(3)(η1)

3!
(v− ζ0)(v− ζ1)(v− ζ2), vs. ∈ [ζ0, ζ2], η1 ∈ (ζ0, ζ2), (22)

g(v)−Πl g(v) =
g(4)(ηl)

4!
(v− ζl−3)(v− ζl−2)(v− ζl−1)(v− ζl), vs. ∈ [ζl−3, ζl ], ηl ∈ (ζl−3, ζl), (23)

where 3 ≤ l ≤ n.
Now,

En
τ =

[ωn]−1

Γ(1− α)

[ ∫ ζ2

ζ0

[g(v)−Π2g(v)]′ [ζn − v]−α dv

+
n

∑
l=3

∫ ζl

ζl−1

[g(v)−Πl g(v)]′ [ζn − v]−α dv
]

=
[ωn]−1

Γ(1− α)

{
[g(v)−Π2g(v)] [ζn − v]−α

∣∣ζ2
ζ0

− α
∫ ζ2

ζ0

[g(v)−Π2g(v)] [ζn − v]−α−1 dv

+
n

∑
l=3

[
g(v)−Πl g(v)] [ζn − v]−α

∣∣ζl
ζl−1

− α
∫ ζl

ζl−1

[g(v)−Πl g(v)] [ζn − v]−α−1 dv
]}

= − α [ωn]−1

Γ(1− α)

{ ∫ ζ2

ζ0

[g(v)−Π2g(v)] [ζn − v]−α−1 dv

+
n

∑
l=3

∫ ζl

ζl−1

[g(v)−Πl g(v)] [ζn − v]−α−1 dv
}

(24)

Since, from (22) and (23),

[g(v)−Π2g(v)] [ζn − v]−α
∣∣ζ2

ζ0
=

g(3)(η1)

3!
(v− ζ0)(v− ζ1)(v− ζ2)[ζn − v]−α

∣∣ζ2

ζ0
= 0,

[g(v)−Πl g(v)] [ζn − v]−α
∣∣ζl
ζl−1

=
g(4)(ηl)

4!
(v− ζl−3)(v− ζl−2)(v− ζl−1)(v− ζl)

∣∣ζl
ζl−1

= 0.

Consider the first integration of Equation (24)∣∣∣∣ ∫ ζ2

ζ0

[g(v)−Π2(v)] [ζn − v]−α−1 dv
∣∣∣∣

=

∣∣∣∣ ∫ ζ2

ζ0

g(3)(η1)

3!
(v− ζ0)(v− ζ1)(v− ζ2)[ζn − v]−α−1 dv

∣∣∣∣
≤ 1

6
max

ζ0≤η1≤ζ2

|g(3)(η1)|(ζn − ζ2)
−α−1 (ζ0 − ζ2)

3(ζ0 − 2ζ1 + ζ2)

12

≤ 1
6

max
ζ0≤η1≤ζ2

|g(3)(η1)|(ζn − ζ2)
−α−1 (ζ0 − ζ2)

3(ζ0 − ζ1)

12
.

Using Lemma (4), we have the following inequality∣∣∣∣ ∫ ζ2

ζ0

[g(v)−Π2g(v)] [ζn − v]−α−1 dv
∣∣∣∣ ≤ 1

72
max

t0≤x≤t2
|g(3)(x)|(tn − t2)

−α−1L3−α(τ)4. (25)
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Consider the second integration of Equation (24)∣∣∣∣ n

∑
l=3

∫ ζl

ζl−1

[g(v)−Πl g(v)] [ζn − v]−α−1 dv
∣∣∣∣

≤
∣∣∣∣ n−1

∑
l=3

∫ ζl

ζl−1

g(4)(ηl)

4!
(v− ζl−3)(v− ζl−2)(v− ζl−1)(v− ζl)[ζn − v]−α−1 dv

∣∣∣∣
+

∣∣∣∣ ∫ ζn

ζn−1

g(4)(ηn)

4!
(v− ζn−3)(v− ζn−2)(v− ζn−1)(v− ζn)[ζn − v]−α−1 dv

∣∣∣∣. (26)

Consider the first part of the RHS of Equation (26)∣∣∣∣ n−1

∑
l=3

∫ ζl

ζl−1

g(4)(ηl)

4!
(v− ζl−3)(v− ζl−2)(v− ζl−1)(v− ζl)[ζn − v]−α−1 dv

∣∣∣∣
≤ 1

24
max

ζ2≤η2≤ζn−1

|g(4)(η2)| f̃ (ζl−3, ζl−2, ζl−1, ζl)
∫ ζn−1

ζ2

[ζn − v]−α−1 dv

≤ 1
24α

max
ζ2≤η2≤ζn−1

|g(4)(η2)| f̃ (ζl−3, ζl−2, ζl−1, ζl)(ζn − ζn−1)
−α.

Here, f̃ (ζl−3, ζl−2, ζl−1, ζl) is the maxζ2≤vs.≤ζn−1 [(v − ζl−3)(v − ζl−2)(v − ζl−1)(v − ζl)]. Using
Lemma 4, we get the following inequality∣∣∣∣ n−1

∑
l=3

∫ ζl

ζl−1

g(4)(ηl)

4!
(v− ζl−3)(v− ζl−2)(v− ζl−1)(v− ζl)[ζn − v]−α−1 dv

∣∣∣∣
≤ 3

128α
max

t2≤x1≤tn−1
|g(4)(x1)|L4−α(τ)4−α. (27)

Remark 3. If scale function ζ fulfills the condition of the Lipschitz function such that |ζl − ζl−1| ≤ Lτ, then
maxζ2≤vs.≤ζn−1 |(v− ζl−3)(v− ζl−2)(v− ζl−1)(v− ζl)| is obtained at v = ζl−2 +

Lτ
2 , therefore

f̃ (ζl−3, ζl−2, ζl−1, ζl) = max
ζ2≤vs.≤ζn−1

[(v− ζl−3)(v− ζl−2)(v− ζl−1)(v− ζl)] ≤
9

16
L4(τ)4.

Consider the second part of the RHS of Equation (26)∣∣∣∣ ∫ ζn

ζn−1

g(4)(ηn)

4!
(v− ζn−3)(v− ζn−2)(v− ζn−1)(v− ζn)[ζn − v]−α−1 dv

∣∣∣∣
≤ 1

24
max

ζn−1≤η3≤ζn
|g(4)(η3)|

∣∣∣∣ ∫ ζn

ζn−1

(v− ζn−3)(v− ζn−2)(v− ζn−1)[ζn − v]−α dv
∣∣∣∣

≤ 1
12(1− α)(2− α)

(
1 +

3
(3− α)

+
3

(3− α)(4− α)

)
max

ζn−1≤η3≤ζn
|g(4)(η3)|(ζn − ζn−1)

4−α

≤ 1
12(1− α)(2− α)

(
1 +

3
(3− α)

+
3

(3− α)(4− α)

)
max

tn−1≤x2≤tn
|g(4)(x2)|L4−α(τ)4−α. (28)

Now combining (25), (27) and (28), then the error bound is

|En
τ | ≤

α [ωn]−1

Γ(1− α)

{
1
72

max
t0≤x≤t2

|g(3)(x)|(tn − t2)
−α−1L3−α(τ)4

+

[
3

128α
+

1
12(1− α)(2− α)

(
1 +

3
(3− α)

+
3

(3− α)(4− α)

)]
max

t0≤x1≤tn
|g(4)(x1)|L4−α(τ)4−α

}
. (29)

3. Numerical Scheme for the Generalized Fractional Advection–Diffusion Equation

In this section, we study the numerical scheme for solving the generalized fractional
advection–diffusion equation defined by (1).
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Let u(x, t) = ω(t)U(x, t)−ω(0)U0(x). We rewrite Equation (1) to a similar equation
using a unity weight function and the same scale function ζ(t). Then, Equation (1) converts
into the following form:

C
0Dα

t;[ζ(t),1]u(x, t) = D ∂2u(x,t)
∂x2 − A ∂u(x,t)

∂x + f (x, t), x ∈ Ω, t ∈ (0, T],

u(x, 0) = 0, x ∈ Ω = Ω ∪ ∂Ω,

u(0, t) = φ1(t), u(a, t) = φ2(t), t ∈ (0, T],

(30)

where φ1(t) = ω(t)ρ1(t) − ω(0)ρ1(0), φ2(t) = ω(t)ρ2(t) − ω(0)ρ2(0), and f (x, t) =
Dω(0)U′′0 (x)− Aω(0)U′0(x) + ω(t)g(x, t).

For the uniform spatial mesh, let 0 = x0 < x1 < . . . < xM = a of the interval [0, a] with
step size h = a

M where M denotes number of subintervals, the grid points x0 + ih (0 ≤ i ≤
M), and τ = T

N be the step size in the temporal direction with grids tn = nτ(0 = t0 < t1 <
. . . < tn = T).

Now, we discretize our problem (30) at (xi, tn), then we get

C
0Dα

t;[ζ(t),1]u(xi, tn) = Duxx(xi, tn)− Aux(xi, tn) + f (xi, tn). (31)

In Equation (31), for fixed tn and 1 ≤ i ≤ M− 1, the first- and second-order spatial
derivatives are discretized by using the following central difference approximations:

∂u(xi, tn)

∂x
=

ui+1
n − ui−1

n
2h

+O(h2), (32)

∂2u(xi, tn)

∂x2 =
ui+1

n − 2ui
n + ui−1

n
h2 +O(h2). (33)

With the help of Equation (18), we get an approximation of the generalized Caputo-
type fractional derivative term in (31) as follows:

HDα
t;[ζ(t),1]u(xi, tn) =λ0u(xi, tn) + λ1u(xi, tn−1) + λ2u(xi, tn−2) +

n−3

∑
l=3

λn−l u(xi, tl) (34)

+ λn−2u(xi, t2) + λn−1u(xi, t1) + λnu(xi, t0) +O(τ4−α).

where λl is defined in Equation (19). Next, we use Equations (32)–(34) in discretized
Equation (31), yielding

n

∑
l=0

λn−l u(xi, tl) = Duxx(xi, tn)− Aux(xi, tn) + f i
n + ei

n. (35)

where |ei
n| ≤ c̃(τ4−α + h2) for some constant c̃.

Now, we use a numerical approximation ui
n of u(xi, tn) to neglect the truncation error

term in Equation (35), then we determine the following finite difference scheme:

λ0ui
n + λ1ui

n−1 +
n−2

∑
l=3

λn−lui
l + λn−2ui

2 + λn−1ui
1 + λnui

0 = D
ui+1

n − 2ui
n + ui−1

n
h2

− A
ui+1

n − ui−1
n

2h
+ f i

n , (36)

where 1 ≤ n ≤ N, 1 ≤ i ≤ M− 1. That is,
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

( D
h2 +

A
2h )u

i−1
1 − (λ0 +

2D
h2 )ui

1 + ( D
h2 − A

2h )u
i+1
1 = λ1ui

0 − f i
1, n = 1,

( D
h2 +

A
2h )u

i−1
2 − (λ0 +

2D
h2 )ui

2 + ( D
h2 − A

2h )u
i+1
2 = λ1ui

1 + λ2ui
0 − f i

2, n = 2,

( D
h2 +

A
2h )u

i−1
n − (λ0 +

2D
h2 )ui

n + ( D
h2 − A

2h )u
i+1
n = λ1ui

n−1 + ∑n−2
l=0 λn−lui

l − f i
n, n ≥ 3.

ui
0 = 0, 0 ≤ i ≤ M,

u0
n = φ1(tn), uM

n = φ2(tn), 0 ≤ n ≤ N.

(37)

We rewrite the matrix form of the above equation as follows:
KU1 = λ1U0 − F1 + H1, n = 1,

KU2 = λ1U1 + λ2U0 − F2 + H2, n = 2,

KUn = λ1Un−1 + ∑n−2
l=0 λn−lUl − Fn + Hn, n ≥ 3,

(38)

where the matrix as well as vectors of Equation (38) are defined as follows:

K = tri
[

D
h2 +

A
2h , − λ0 − 2D

h2 , D
h2 − A

2h

]
(M−1)×(M−1)

,

Un = (u1
n, u2

n, . . . , uM−1
n )T ,

Fn = ( f 1
n , f 2

n , . . . , f M−1
n )T ,

Hn =

(
(− D

h2 − A
2h )u

0
n, 0, . . . , 0, (− D

h2 +
A
2h )u

M
n

)T

, 1 ≤ n ≤ N.

Remark 4. Since the coefficient matrix A is a tridiagonal and strictly diagonally dominant then
det(A) 6= 0 (Levy–Desplanques theorem). Therefore, at each time level tn, the proposed scheme (37)
has a unique solution for 1 ≤ n ≤ N.

Theorem 2. The local truncation error of difference scheme (36) at (xi, tn), 1 ≤ i ≤ M− 1, 1 ≤
n ≤ N, is

|ei
n| ≤ C(h2 + τ4−α), (39)

where C is the positive constant independent of the time and space step sizes.

Proof. From Equations (4.7) the LTE of difference scheme (36) is

ei
n = λ0u(xi, tn) + λ1u(xi, tn−1) + λ2u(xi, tn−2) +

n−3

∑
l=3

λn−lu(xi, tl) + λn−2u(xi, t2)

+ λn−1u(xi, t1) + λnu(xi, t0)− D
ui+1

n − 2ui
n + ui−1

n
h2 + A

ui+1
n − ui−1

n
2h

− f i
n

=

[
λ0u(xi, tn) + λ1u(xi, tn−1) + λ2u(xi, tn−2) +

n−3

∑
l=2

λn−lu(xi, tl) + λn−1u(xi, t1)

+ λnu(xi, t0)−H Dα
t;[ζ(t),1]u(xi, tn)

]
− D

[
ui+1

n − 2ui
n + ui−1

n
h2 − ∂2u(xi, tn)

∂x2

]
+ A

[
ui+1

n − ui−1
n

2h
− ∂u(xi, tn)

∂x

]
= O(τ4−α)− D O(h2) + A O(h2) = O(τ4−α + h2).
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In the next theorem, we use L2(Ω)-space with the norm ‖.‖2 and the inner product
〈., .〉.

Theorem 3. (see [22]) If the tridiagonal matrix elements satisfy the inequality

λ1 ≤ (λ0)
M−3

(
λ0 +

D
h2 −

A
2h

)(
λ0 +

D
h2 +

A
2h

)
, (40)

then the finite difference scheme is stable.

Proof. Equation (38) can be rewritten as follows, for 1 ≤ n ≤ N

KUn = λ1Un−1 +
n−2

∑
l=0

λn−lUl − Fn + Hn,

let, Vn = ∑n−2
l=0 λn−lUl − Fn + Hn.

Since matrix K is invertible then the above equation can be rewritten as

Un = λ1K−1Un−1 + K−1Vn.

Using the recurrence relation, we get the following equation

Un =(λ1K−1)2Un−2 + (λ1K−1)K−1Vn−1 + K−1Vn

=(λ1K−1)nU0 + (λ1K−1)n−1K−1V1 + (λ1K−1)n−2K−1V2 + . . . + K−1Vn. (41)

Let Ũn be the approximate solution of Equation (38), then we define the error at grid
point tn = nτ

en = Un − Ũn, 0 ≤ n ≤ N.

Then, we obtain
en = (λ1K−1)ne0, 1 ≤ n ≤ N.

From the definition of the compatible matrix norm

‖en‖ ≤ ‖(λ1K−1)n‖ ‖e0‖.

Since

‖(λ1K−1)n‖ ≤ ‖(λ1K−1)‖ ‖(λ1K−1)n−1‖ ≤ . . . ≤ ‖(λ1K−1)‖n.

According to the Ostrowski therorem ([40], Theorem 3.1), let K = [ai,j]M−1×M−1, then
the determinant of K satisfies

|det(K)| ≥
M−1

∏
i=1

(
|ai,i| −

M−1

∑
j=1,j 6=i

|ai,j|
)

= (λ0)
M−3

(
λ0 +

D
h2 −

A
2h

)(
λ0 +

D
h2 +

A
2h

)
. (42)

Using assumed inequality (40) into (42), we get |det(K−1)| ≤ 1
λ1

;

this implies that
|λ1| ‖K−1‖ ≤ 1.

Therefore, |en| ≤ |e0|.
Thus, the numerical scheme is stable.
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Theorem 4. The solution Ui
n of the difference scheme (36) satisfies

max
i,n
|U(xi, tn)− Ũ(xi, tn)| ≤ C(h2 + τ4−α) (43)

for some constant C.

Proof. The truncation error for the difference scheme at (xi, tn) ∈ [0, a]× [0, T] is

|ei
n| ≤ C(h2 + τ4−α)

by Theorem 2. Now, using the theorem of stability, it implies

max
i,n
|U(xi, tn)− Ũ(xi, tn)| ≤ C|U(xi, t0)− Ũ(xi, t0)| (44)

We obtain the desired result easily after using the truncation error as discussed in
Theorem 2.

4. Numerical Results

In this section, we will check the numerical accuracy of the proposed schemes (18)
and difference scheme (37), and also verify the theoretical convergence order discussed
in Theorem 4. Here, we provide three examples to numerically support our theory; in
the first example we check the convergence order and absolute error of approximation
for the GCFD, while the last two problems get the form (30) to describe the accuracy and
maximum absolute error of the difference scheme. All numerical results are implemented
in MATLAB R2018b.

To calculate the maximum absolute error E∞ and error E2 corresponding to the L2-
norm, we use the following formulas [19,21,39], respectively, due to the fact that the exact
solutions of the considered test problems are known.

E∞(M, N) = max
1≤i≤M−1

|Ui
N − ui

N |, (45)

E2(M, N) =

(
h

M−1

∑
i=1
|Ui

N − ui
N |2
)1/2

, (46)

where {Ui
n} is the exact solution of advection diffusion equation and {ui

n} is the approxi-
mate solution at the point (xi, tn).

Moreover, the convergence order in the space and time directions for the described dif-
ference scheme corresponding to L∞-norm can be evaluated using the following formulas.
Rx is the order of convergence on the space side and Rt on the temporal side.

Rx =
log(E(2M, N))− log(E(M, N))

log(2)
,

and

Rt =
log(E(M, 2N))− log(E(M, N))

log(2)
.

Example 1. Ref. [39] Take function u(t) = t4+α, t ∈ [0, 1], for 0 < α < 1. Determine the α-th
order GCFD for u(t) at T = 1 numerically.

The maximum absolute error and rate of convergence for the scheme (18) to approx-
imate the GCFD of function u(t) for α = 0.2, 0.5, 0.8 with uniform time steps 1/10, 1/20,
1/40, 1/80, 1/160 are calculated and shown in the following tables.

Table 1 shows the errors with respect to L∞-norm and convergence rates in time,
and these data are found after calculating the classical Caputo derivative (i.e., taking
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ζ(t) = t, ω(t) = 1) of function u(t) with the help of scheme (18). From this table, we can
see that the errors of our scheme (18) obtained from the GCFD approximation are lesser
compared to the scheme developed in Gao et al. [39] for approximation of the Caputo
derivative and the convergence rate of our scheme is (4− α), while accuracy for the time
derivative in [39] is (3− α). In Table 2, to compute the maximum errors E∞ and order of
convergence in the time direction, we take ω(t) = et while the scale function is fixed with t.
From Table 3, we validate the convergence for ζ(t) = t, ω(t) = t + 1 and the CPU time in
seconds for α = 0.8 are discussed. Table 4 shows maximum errors and order of convergence
for different choices of weight ω(t) = t0.5, t, t4, e2t; scale is ζ(t) = t and α = 1/3. In all
cases, accuracy in time is obtained as (4− α) for scheme (18), which is higher than [28,40].

Table 1. E∞ errors and convergence rates Rt for Example 1, when ζ(t) = t, ω(t) = 1, with different
αs.

α = 0.2 α = 0.5 α = 0.5 [39]

N E∞ Error Rt E∞ Error Rt E∞ Error Rt

10 1.6978× 10−4 1.5401× 10−3 1.3507× 10−2

20 1.3130× 10−5 3.6928 1.4383× 10−4 3.4206 2.6121× 10−3 2.3704
40 9.9792× 10−7 3.7178 1.3116× 10−5 3.4550 4.8618× 10−4 2.4256
80 7.4966× 10−8 3.7346 1.1811× 10−6 3.4731 8.8645× 10−5 2.4554

160 5.5944× 10−9 3.7442 1.0560× 10−7 3.4835 1.5975× 10−5 2.4722

Table 2. E∞ errors and convergence rates Rt for Example 1, when ζ(t) = t, ω(t) = et, with different
αs.

α = 0.2 α = 0.5 α = 0.8 α = 0.8

N E∞ Error Rt E∞ Error Rt E∞ Error Rt CPU Time (s)

10 7.5552× 10−4 6.3075× 10−3 3.2184× 10−2 11.354861
20 7.1075× 10−5 3.4101 6.7873× 10−4 3.2162 4.2148× 10−3 2.9328 33.306962
40 5.9370× 10−6 3.5815 6.6677× 10−5 3.3476 5.0375× 10−4 3.0647 82.772072
80 4.6934× 10−7 3.6610 6.2491× 10−6 3.4155 5.7497× 10−5 3.1312 180.064565

160 3.5650× 10−8 3.7186 5.7027× 10−7 3.4539 6.4090× 10−6 3.1653 419.978865

Table 3. E∞ errors and convergence rates Rt for Example 1, when ζ(t) = t, ω(t) = t + 1, with
different αs.

α = 0.2 α = 0.5 α = 0.8 α = 0.8

N E∞ Error Rt E∞ Error Rt E∞ Error Rt CPU Time (s)

10 3.5019× 10−4 3.1752× 10−3 1.7251× 10−2 10.194270
20 3.0621× 10−5 3.5155 3.1426× 10−4 3.3368 2.0904× 10−3 3.0448 25.931157
40 2.4466× 10−6 3.6457 2.9499× 10−5 3.4132 2.3982× 10−4 3.1238 65.689186
80 1.8844× 10−7 3.6986 2.6976× 10−6 3.4509 2.6799× 10−5 3.1617 155.623905

160 1.4248× 10−8 3.7252 2.4326× 10−7 3.4711 2.9560× 10−6 3.1805 384.953845

Table 4. E∞ errors and convergence rates Rt for Example 1, when ζ(t) = t, α = 1
3 , with different

weight functions.

ω(t) = t0.5 ω(t) = t ω(t) = t4 ω(t) = e2t

N E∞ Error Rt E∞ Error Rt E∞ Error Rt Rt

10 9.5450× 10−4 1.7465× 10−3 3.2557× 10−2

20 8.4374× 10−5 3.4999 1.5027× 10−4 3.5388 2.0348× 10−3 4.0000 3.2332
40 7.0877× 10−6 3.5734 1.2845× 10−5 3.5483 1.2749× 10−4 3.9964 3.4225
80 5.8166× 10−7 3.6071 1.0650× 10−6 3.5923 1.1169× 10−5 3.5129 3.5220

160 4.7123× 10−8 3.6257 8.6813× 10−8 3.6167 9.3941× 10−7 3.5716 3.5764
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Figure 1a,b show that the comparison of absolute error for the scheme defined in [39]
and the current scheme (18) for α = 0.5 and α = 0.8, respectively.
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(b)
Figure 1. Error plot of the numerical results for Example 1 at final time T = 1 for different values of α

(left side (a) for α = 0.5; right side (b) for α = 0.8).

Example 2. Ref. [21] We take the following generalized fractional advection–diffusion equation:
C
0Dα

t;[ζ(t),ω(t)]u(x, t) = ∂2u(x,t)
∂x2 − ∂u(x,t)

∂x + f (x, t), (x, t) ∈ (0, 1)× (0, 1),

u(x, 0) = 0, x ∈ (0, 1),
u(0, t) = t6+α, u(1, t) = et6+α, t ∈ (0, 1],

where f (x, t) = ext6 Γ(7+α)
720 . When ζ(t) = t and ω(t) = 1, then u(x, t) = ext6+α is the exact

solution.

To solve this example, we use the numerical scheme defined in (37). The maximum
errors at time t = 1 for different values of α with different step sizes, and rate of convergence
in time direction and space direction are displayed in Tables 5 and 6. In Table 5, we set
h = 1

2000 and describe the numerical errors and convergence rates in time Rt for different
values of N. In Table 6, we fix τ = 1

500 and present the numerical errors and spatial
convergence rates Rx for different values of M. It is shown that our scheme (37) gives
(4− α)-order convergence in the temporal direction and second-order convergence in the
spatial direction.

Figure 2 represents the exact and numerical solution of the Example 2 for different
values of α.
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(a) Exact solution for α = 0.95 (b) Numerical solution for α = 0.95

(c) Numerical solution for α = 0.6 (d) Numerical solution for α = 0.45

Figure 2. Exact and approximate solutions of Example 2 for different α’s with M = N = 200,
ω(t) = 1, ζ(t) = t.

Table 5. Errors E∞ and E2 with convergence rates in time for Example 2, when h = 1/2000 with
different αs.

α N E∞ Error Rt E2 Error Rt

0.8 8 1.6385 × 10−2 7.4195 × 10−3

16 2.2920 × 10−3 2.8377 1.3514 × 10−3 2.4569
32 2.8191 × 10−4 3.0233 1.8556 × 10−4 2.8645
64 3.2609 × 10−5 3.1119 2.2573 × 10−5 3.0392
128 3.6574 × 10−6 3.1564 2.5937 × 10−6 3.1215
256 4.0176 × 10−7 3.1864 1.2919 × 10−7 3.1721

0.5 8 3.7940 × 10−3 1.8168 × 10−3

16 4.2889 × 10−4 3.1451 2.5900 × 10−4 2.8104
32 4.3064 × 10−5 3.3160 2.8647 × 10−5 3.1765
64 4.0768 × 10−6 3.4010 2.8348 × 10−6 3.3371
128 3.7173 × 10−7 3.4551 2.6407 × 10−7 3.4243
256 3.0470 × 10−8 3.6088 9.8124 × 10−8 3.5948

0.2 8 5.4498 × 10−4 2.7293 × 10−4

16 5.1093 × 10−5 3.4150 3.1455 × 10−5 3.1172
32 4.2949 × 10−6 3.5724 2.8822 × 10−6 3.4480
64 3.3828 × 10−7 3.6663 2.3627 × 10−7 3.6087
128 2.2628 × 10−8 3.9020 1.6173 × 10−8 3.8687
256 1.8462 × 10−9 3.6155 5.7547 × 10−9 3.6574

It is clearly visible from the above Figure 3a,b that scale function ζ(t) can stretch or
contract the domain.



Mathematics 2023, 11, 1200 20 of 24

(a) ζ(t) = et, ω(t) = 1 (b) ζ(t) = t1/2, ω(t) = 1

Figure 3. Numerical solutions of Example 2 with different choices of weight functions ω(t) and scale
functions ζ(t), and M = N = 200 with α = 0.9.

Table 6. The maximum errors and convergence rates Rx for Example 2, when τ = 1/500 with
different αs.

α = 0.2 α = 0.5 α = 0.8

M E∞ Error Rx E∞ Error Rx E∞ Error Rx

8 2.3437× 10−4 2.1275× 10−4 1.8078× 10−4

16 5.8814× 10−5 1.9945 5.3334× 10−5 1.9960 4.5242× 10−5 1.9985
32 1.4733× 10−5 1.9971 1.3373× 10−5 1.9958 1.1319× 10−5 1.9990
64 3.6832× 10−6 2.0001 3.3408× 10−6 2.0010 2.7940× 10−6 2.0183
128 9.2088× 10−7 1.9999 8.3276× 10−7 2.0042 6.6258× 10−7 2.0762

In Table 7, we compare our scheme (37) with Gao et al. ([39], Example 4.1) in temporal
direction to fix M = 2000 for particular choices of scale ζ(t) = t and weight function
ω(t) = 1.

Table 7. The maximum errors and convergence rates Rt of Example 4.1 in [39] (page no 43) for
different values of α with h = 1/2000.

Current Scheme L1−2 [39]

α N E∞ Rt E∞ Rt

0.9 10 2.2536 × 10−3 1.8600× 10−2

20 3.2727 × 10−4 2.7837 4.7228× 10−3 1.9776
40 4.1906 × 10−5 2.9653 1.1488× 10−3 2.0395
80 5.1072 × 10−6 3.0366 2.7367× 10−4 2.0697

160 6.1092 × 10−7 3.0635 6.4520× 10−5 2.0846
0.5 10 2.5470 × 10−4 2.4936× 10−3

20 2.6005 × 10−5 3.2919 4.8366× 10−4 2.3662
40 2.4615 × 10−6 3.4012 9.0163× 10−5 2.4234
80 2.2827 × 10−7 3.4307 1.6457× 10−5 2.4539

160 2.3662 × 10−8 3.2701 2.9700× 10−6 2.4701
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Example 3. Take the following fractional advection–diffusion equation:
C
0Dα

t,[ζ(t),ω(t)]u(x, t) = ∂2u(x,t)
∂x2 − ∂u(x,t)

∂x + f (x, t), (x, t) ∈ (0, 1)× (0, 1),

u(x, 0) = 0, x ∈ (0, 1),
u(0, t) = 0,
u(1, t) = t7(sin 1), t ∈ (0, 1],

where f (x, t) = Γ8
Γ(8−α)

t7−αsin(x) + t7(sin(x) + cos(x)). When ζ(t) = t and ω(t) = 1,

the exact solution is u(x, t) = t7sin(x).

To solve this PDE, we use our difference scheme (37). Here, two Tables 8 and 9
are given in support of the numerical results. In Table 8, we take fixed space step size
h = 1/12000 and display maximum absolute errors and errors E2 with respect to norm
L2, and also the rate of convergence for the temporal direction with different time steps
N = 8, 16, 32, 64, 128, 256. In Table 9, we express maximum errors and convergence
order in the space direction to set time steps fixed with τ = 1/500 and taking different
M = 8, 16, 32, 64, 128.

Table 8. Errors E∞ and E2 with convergence rates in time for Example 3, when h = 1/12000 with
different αs.

α N E∞ Error Rt E2 Error Rt

0.8 8 5.2117 × 10−3 4.1672 × 10−1

16 7.4158 × 10−4 2.8159 5.9162 × 10−2 2.8163
32 9.1750 × 10−5 3.0148 7.2113 × 10−3 3.0364
64 1.0655 × 10−5 3.1062 8.3111 × 10−4 3.1171
128 1.1991 × 10−6 3.1515 9.3172 × 10−5 3.1571
256 1.3228 × 10−7 3.1803 1.0259 × 10−5 3.1830

0.5 8 1.5442 × 10−3 1.2679 × 10−1

16 1.7157 × 10−4 3.1700 1.3692 × 10−2 3.2111
32 1.7543 × 10−5 3.2898 1.3792 × 10−3 3.3113
64 1.6788 × 10−6 3.3854 1.3099 × 10−4 3.3964
128 1.5678 × 10−7 3.4207 1.2186 × 10−5 3.4262
256 1.4942 × 10−8 3.3913 1.1596 × 10−6 3.3935

0.2 8 2.8743 × 10−4 2.3613 × 10−2

16 2.5557 × 10−5 3.4914 2.0399 × 10−3 3.5330
32 2.2185 × 10−6 3.5261 1.7445 × 10−4 3.5476
64 1.7950 × 10−7 3.6275 1.4008 × 10−5 3.6385
128 1.5668 × 10−8 3.5181 1.2186 × 10−6 3.5230
256 2.2811 × 10−9 2.7800 1.7738 × 10−7 2.7803

Table 9. The maximum errors and convergence rates Rx for Example 3, when τ = 1/500 with
different αs.

α = 0.2 α = 0.5 α = 0.8

M E∞ Error Rx E∞ Error Rx E∞ Error Rx

8 3.0308× 10−4 2.7311× 10−4 2.3102× 10−4

16 7.6029× 10−5 1.9951 6.8533× 10−5 1.9946 5.8003× 10−5 1.9938
32 1.9050× 10−5 1.9968 1.7180× 10−5 1.9961 1.4560× 10−5 1.9941
64 4.7625× 10−6 2.0000 4.2962× 10−6 1.9996 3.6518× 10−6 1.9953
128 1.1909× 10−6 1.9997 1.0752× 10−6 1.9985 9.2444× 10−7 1.9820
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In Table 10, we validate the proposed scheme with [21] (Example 5.1). Firstly, we
present the max error, the convergence order with fixed h = 1

6000 and varying N with 8,
16, 32, 64, 128 for α = 0.368. It is noted that the convergence order of our scheme (37)
for the temporal direction is almost the same as [21]. After that, we express maximum
error and convergence rate for the spatial dimension to set τ = 1/200 and changing
M = 4, 8, 16, 32, 64 for the same value of α; we observe that the spatial convergence order
of our numerical scheme is same as [21]. Thus, the scheme presented in [21] becomes a
particular case of the proposed scheme (37) for ζ(t) = t and ω(t) = 1. Furthermore, we
can compute numerical results for different suitable choices of scale and weight functions.

Table 10. The maximum errors and convergence rates Rt for Example 5.1 in [21], when h = 1/6000,
and spatial convergence rates Rx, when τ = 1/200.

α = 0.368 Cao et al. [21] α = 0.368 Cao et al. [21]

N E∞ Error Rt Rt M E∞ Error Rx Rx

8 8.1539 × 10−4 4 8.8034 × 10−4

16 7.7720 × 10−5 3.3911 3.4031 8 2.2559 × 10−4 1.9643 1.9643
32 6.8845 × 10−6 3.4969 3.4972 16 5.6583 × 10−5 1.9953 1.9953
64 5.8739 × 10−7 3.5510 3.5528 32 1.4173 × 10−5 1.9972 1.9972

128 4.9904 × 10−8 3.5571 3.5836 64 3.5359 × 10−6 2.0030 2.0030

5. Conclusions

A high-order numerical scheme based on cubic interpolation formula is discussed for
approximation of GCFD of α-th order. Properties of discretized coefficients are analyzed and
local truncation error in approximation of GCFD is also discussed. Further, we establish
a difference scheme for the generalized fractional advection–diffusion equation using
the developed approximation formula for GCFD. The stability and convergence of this
established scheme to approximate the time fractional generalized advection–diffusion
equation are studied. Order of accuracy for the difference scheme is O(τ4−α + h2), with
step sizes τ in time and h in space directions. The convergence order of the difference
scheme is described by some numerical experiments.

Numerical calculations reveal that the proposed difference scheme has (4− α)-th
order convergence in time; and, in the space direction, it has second-order convergence.
The temporal rate of convergence of the scheme for the generalized fractional advection–
diffusion equation has the highest accuracy to date. In addition, the developed scheme can
be directly used to get other Caputo-type time fractional advection–diffusion equations
by selecting suitable scale ζ(t) and weight ω(t) functions in the generalized Caputo-
type fractional derivative. The developed scheme is tested for the cases having smooth
solutions of the considered fractional advection–diffusion equation. However, the case of
the nonsmooth solutions will be presented in our future works.

Author Contributions: Conceptualization, S.K., R.K.P. and R.P.A.; methodology, S.K. and R.K.P.;
software, S.K. and R.K.P.; validation, S.K. and R.K.P.; writing—original draft preparation, S.K., R.K.P.
and R.P.A.; writing—review and editing, R.K.P. and R.P.A.; supervision, R.K.P.; funding acquisition,
R.K.P. and R.P.A. All authors have equally contributed in preparation of the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors sincerely thank the reviewers for their comments incorporated
in the manuscript. The authors are thankful to K. Mustapha, Department of Mathematics and
Statistics, King Fahd University of Petroleum and Minerals, Saudi Arabia for his valuable comments
incorporated in the manuscript.



Mathematics 2023, 11, 1200 23 of 24

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Agrawal, O.P. Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc. Appl. Anal.

2012, 15, 700–711. [CrossRef]
2. Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. Application of a fractional advection-dispersion equation. Water Resour. Res.

2000, 36, 1403–1412. [CrossRef]
3. Zhou, L.; Selim, H. Application of the fractional advection-dispersion equation in porous media. Soil Sci. Soc. Am. J. 2003,

67, 1079–1084. [CrossRef]
4. Baleanu, D.; Wu, G.C.; Zeng, S.D. Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations.

Chaos Solitons Fractals 2017, 102, 99–105. [CrossRef]
5. Iqbal, M.S.; Yasin, M.W.; Ahmed, N.; Akgül, A.; Rafiq, M.; Raza, A. Numerical simulations of nonlinear stochastic Newell-

Whitehead-Segel equation and its measurable properties. J. Comput. Appl. Math. 2023, 418, 114618. [CrossRef]
6. Partohaghighi, M.; Mirtalebi, Z.; Akgül, A.; Riaz, M.B. Fractal–fractional Klein–Gordon equation: A numerical study. Results

Phys. 2022, 42, 105970. [CrossRef]
7. Dan, D.; Mueller, C.; Chen, K.; Glazier, J.A. Solving the advection-diffusion equations in biological contexts using the cellular

Potts model. Phys. Rev. E 2005, 72, 041909. [CrossRef]
8. Verwer, J.; Blom, J.; Hundsdorfer, W. An implicit-explicit approach for atmospheric transport-chemistry problems. Appl. Numer.

Math. 1996, 20, 191–209. [CrossRef]
9. Dehghan, M. Weighted finite difference techniques for the one-dimensional advection–diffusion equation. Appl. Math. Comput.

2004, 147, 307–319. [CrossRef]
10. Mohebbi, A.; Dehghan, M. High-order compact solution of the one-dimensional heat and advection–diffusion equations. Appl.

Math. Model. 2010, 34, 3071–3084. [CrossRef]
11. Owolabi, K.M. High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology. Chaos Solitons Fractals

2020, 134, 109723. [CrossRef]
12. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of

Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998.
13. Anatoly, A.K. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204.
14. Gaboury, S.; Tremblay, R.; Fugère, B.J. Some relations involving a generalized fractional derivative operator. J. Inequalities Appl.

2013, 2013, 1–9. [CrossRef]
15. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat

transfer model. arXiv 2016, arXiv:1602.03408.
16. Mustapha, K. An L1 approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-graded

meshes. SIAM J. Numer. Anal. 2020, 58, 1319–1338. [CrossRef]
17. Alikhanov, A.A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438.

[CrossRef]
18. Abu Arqub, O. Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on

the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 828–856. [CrossRef]
19. Li, Z.; Yan, Y. Error estimates of high-order numerical methods for solving time fractional partial differential equations. Fract.

Calc. Appl. Anal. 2018, 21, 746–774. [CrossRef]
20. Lv, C.; Xu, C. Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 2016,

38, A2699–A2724. [CrossRef]
21. Cao, J.; Li, C.; Chen, Y. High-order approximation to Caputo derivatives and Caputo-type advection-diffusion Equations (II).

Fract. Calc. Appl. Anal. 2015, 18, 735–761. [CrossRef]
22. Xu, Y.; Agrawal, O.P. Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation. Fract. Calc.

Appl. Anal. 2013, 16, 709–736. [CrossRef]
23. Kumar, K.; Pandey, R.K.; Sultana, F. Numerical schemes with convergence for generalized fractional integro-differential equations.

J. Comput. Appl. Math. 2021, 388, 113318. [CrossRef]
24. Diethelm, K. An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. Appl. Anal.

2011, 14, 475–490. [CrossRef]
25. Zheng, Y.; Li, C.; Zhao, Z. A note on the finite element method for the space-fractional advection diffusion equation. Comput.

Math. Appl. 2010, 59, 1718–1726. [CrossRef]
26. Mardani, A.; Hooshmandasl, M.R.; Heydari, M.H.; Cattani, C. A meshless method for solving the time fractional advection–

diffusion equation with variable coefficients. Comput. Math. Appl. 2018, 75, 122–133. [CrossRef]
27. Li, C.; Cai, M. High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations: Revisited.

Numer. Funct. Anal. Optim. 2017, 38, 861–890. [CrossRef]
28. Yadav, S.; Pandey, R.K.; Shukla, A.K.; Kumar, K. High-order approximation for generalized fractional derivative and its

application. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 3515–3534. [CrossRef]

http://doi.org/10.2478/s13540-012-0047-7
http://dx.doi.org/10.1029/2000WR900031
http://dx.doi.org/10.2136/sssaj2003.1079
http://dx.doi.org/10.1016/j.chaos.2017.02.007
http://dx.doi.org/10.1016/j.cam.2022.114618
http://dx.doi.org/10.1016/j.rinp.2022.105970
http://dx.doi.org/10.1103/PhysRevE.72.041909
http://dx.doi.org/10.1016/0168-9274(95)00126-3
http://dx.doi.org/10.1016/S0096-3003(02)00667-7
http://dx.doi.org/10.1016/j.apm.2010.01.013
http://dx.doi.org/10.1016/j.chaos.2020.109723
http://dx.doi.org/10.1186/1029-242X-2013-167
http://dx.doi.org/10.1137/19M1260475
http://dx.doi.org/10.1016/j.jcp.2014.09.031
http://dx.doi.org/10.1108/HFF-07-2016-0278
http://dx.doi.org/10.1515/fca-2018-0039
http://dx.doi.org/10.1137/15M102664X
http://dx.doi.org/10.1515/fca-2015-0045
http://dx.doi.org/10.2478/s13540-013-0045-4
http://dx.doi.org/10.1016/j.cam.2020.113318
http://dx.doi.org/10.2478/s13540-011-0029-1
http://dx.doi.org/10.1016/j.camwa.2009.08.071
http://dx.doi.org/10.1016/j.camwa.2017.08.038
http://dx.doi.org/10.1080/01630563.2017.1291521
http://dx.doi.org/10.1108/HFF-11-2018-0700


Mathematics 2023, 11, 1200 24 of 24

29. Tian, W.; Deng, W.; Wu, Y. Polynomial spectral collocation method for space fractional advection–diffusion equation. Numer.
Methods Partial Differ. Equations 2014, 30, 514–535. [CrossRef]

30. Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a
nonlinear source term. SIAM J. Numer. Anal. 2009, 47, 1760–1781. [CrossRef]

31. Singh, D.; Sultana, F.; Pandey, R.K. Approximation of Caputo-Prabhakar derivative with application in solving time fractional
Advection-Diffusion equation. Int. J. Numer. Methods Fluids 2022, 94, 896–919. [CrossRef]

32. Kannan, R.; Wang, Z.J. LDG2: A variant of the LDG flux formulation for the spectral volume method. J. Sci. Comput. 2011,
46, 314–328. [CrossRef]

33. Kannan, R.; Wang, Z.J. A study of viscous flux formulations for a p-multigrid spectral volume Navier Stokes solver. J. Sci.
Comput. 2009, 41, 165–199. [CrossRef]

34. Kumar, K.; Pandey, R.K.; Sharma, S.; Xu, Y. Numerical scheme with convergence for a generalized time-fractional Telegraph-type
equation. Numer. Methods Partial Differ. Equ. 2019, 35, 1164–1183. [CrossRef]

35. Cao, W.; Xu, Y.; Zheng, Z. Finite difference/collocation method for a generalized time-fractional KDV equation. Appl. Sci. 2018,
8, 42. [CrossRef]

36. Xu, Y.; He, Z.; Agrawal, O.P. Numerical and analytical solutions of new generalized fractional diffusion equation. Comput. Math.
Appl. 2013, 66, 2019–2029. [CrossRef]

37. Ding, Q.; Wong, P.J. A higher order numerical scheme for generalized fractional diffusion equations. Int. J. Numer. Methods Fluids
2020, 92, 1866–1889. [CrossRef]

38. Sultana, F.; Pandey, R.K.; Singh, D.; Agrawal, O.P. High order approximation on non-uniform meshes for generalized time-
fractional telegraph equation. MethodsX 2022, 9, 101905. [CrossRef] [PubMed]

39. Gao, G.; Sun, Z.; Zhang, H. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative
and its applications. J. Comput. Phys. 2014, 259, 33–50. [CrossRef]

40. Xu, Y.; He, Z.; Xu, Q. Numerical solutions of fractional advection–diffusion equations with a kind of new generalized fractional
derivative. Int. J. Comput. Math. 2014, 91, 588–600. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/num.21822
http://dx.doi.org/10.1137/080730597
http://dx.doi.org/10.1002/fld.5077
http://dx.doi.org/10.1007/s10915-010-9391-0
http://dx.doi.org/10.1007/s10915-009-9269-1
http://dx.doi.org/10.1002/num.22344
http://dx.doi.org/10.3390/app8010042
http://dx.doi.org/10.1016/j.camwa.2013.08.028
http://dx.doi.org/10.1002/fld.4852
http://dx.doi.org/10.1016/j.mex.2022.101905
http://www.ncbi.nlm.nih.gov/pubmed/36405364
http://dx.doi.org/10.1016/j.jcp.2013.11.017
http://dx.doi.org/10.1080/00207160.2013.799277

	Introduction
	Motivation and Literature Review for Approximation of the GCFD
	The Main Contributions of This Work Are as Follows

	Numerical Scheme for the Generalized Caputo Fractional Derivative
	Numerical Scheme for the Generalized Fractional Advection–Diffusion Equation
	Numerical Results
	Conclusions
	References

