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Abstract: The FLIP cipher was proposed at Eurocrypt 2016 for the purpose of meliorating the
efficiency of fully homomorphic cryptosystems. Weightwise perfectly balanced Boolean functions
meet the balancedness requirement of the filter function in FLIP ciphers, and the construction of them
has attracted serious attention from researchers. Nevertheless, the literature is still thin. Modifying the
supports of functions with a low degree is a general construction technique whose key problem is to
find a class of available low-degree functions. We first seek out a class of quadratic functions and then,
based on these functions, present the new construction of weightwise perfectly balanced Boolean
functions by adopting an iterative approach. It is worth mentioning that the functions we construct
have good performance in weightwise nonlinearity. In particular, some p-weight nonlinearities
achieve the highest values in the literature for a small number of variables.
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1. Introduction

With the development of cloud services, the privacy protection of data stored in
the cloud has become particularly important. One solution to providing secure cloud
computing on untrusted public clouds is Fully Homomorphic Encryption. This encryption
scheme supports the computation of encrypted data in a homomorphic way without
needing decryption on the cloud. Cloud services based on FHE frameworks play a role in
many applications, such as private data banks, encrypted search and multi-party security
calculations, while they have the well-known bottlenecks: high computational cost and
limited homomorphic capacity. See [1,2] for details.

To mitigate the bottlenecks and improve the efficiency of homomorphic encryption
for an acceptable fully homomorphic cryptosystem, Méaux et al. [2] presented a new type
of stream cipher, denoted as a filter permutator, at Eurocrypt 2016. They gave a general
structure of filter permutators as shown in Figure 1 [2]. A filter permutator consists of
three parts: the key register, which stores the original key; the permutation generator,
which is parameterized by a Pseudo Random Number Generator (PRNG) and generates a
permutation P to permute the key from the register; and the filter function, which filters
the permuted key to output the key stream.

Lastly, the encryption (resp. decryption) needs to XOR the key stream with the
plaintext (resp. ciphertext) to generate the ciphertext (resp. plaintext). A family of filter
permutators, called FLIP, is specified. FLIP utilizes Knuth shuffle as the permutation
generator parameterized by a forward secure PRNG based on the AES-128 and takes the
direct sum of three Boolean functions as the filter function.

Different from the Boolean function used in traditional stream ciphers, the inputs of
the Boolean function acting as a filter function in FLIP come from different permutations
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of the same key and, therefore, have the same Hamming weight. As a result, in order to
construct the filter function in FLIP, Boolean functions with restricted input, studied early
in [3,4], have now become a class of functions of great interest in cryptography.

Figure 1. The general structure of filter permutators.

It has been shown that, for Boolean functions with restricted input, balancedness,
nonlinearity and algebraic immunity continue to play a vital role in the corresponding
attacks on somewhat homomorphic cryptosystems in the framework of FLIP ciphers
(see [5,6]). Considering the first general cryptographic requirement, these functions need to
be balanced. Therefore, weightwise perfectly balanced (WPB) Boolean functions become
the focus of research on Boolean functions with restricted input.

If a Boolean function is always balanced when restricted to each subset of Fn
2 with the

same Hamming weight (not equal to 0 or n) and has different outputs when the input’s
Hamming weight is 0 and n, it is called a WPB function. In 2017, Carlet et al. constructed
the first class of WPB functions using recursive methods for FLIP [6]. In 2019, the author
in reference [7] proposed a class of WPB functions that belong to two-rotation symmetric
Boolean functions. Some classes of WPB functions are presented by modifying the supports
of Boolean functions with low algebraic degree not larger than 4 in [8–10].

The reference [11] analyzed the lower bound of weightwise nonlinearity of one class of
WPB functions. A family of WPB functions with the maximal algebraic immunity is given
in [12], and based on them, Mesnager et al. proposed two new concrete ones in 2022 [13]. Al-
though WPB functions have attracted great attention, it is still challenging work to construct
this class of functions, particularly the ones with other good cryptographic properties.

As mentioned above, modifying the supports of Boolean functions with low algebraic
degree is a useful technique, which has been used in [8–10] to build WPB functions.
The focus of this technique is to find low-degree functions. The authors in [8–10] found
different functions possessing degrees not higher than 4. In this paper, we obtain a class of
quadratic Boolean functions whose p-weight is easy to analyze and calculate. Utilizing these
functions, we propose a fresh class of 2m-variable WPB functions. We make a computer
program and compute the p-weight nonlinearity of functions with a small number of
variables. The experimental results show that our functions have significantly higher
p-weight nonlinearity compared with the other main existing functions. In addition, we
also analyze their algebraic degree and algebraic immunity.

The remainder of the paper is organized as follows. The formal definition and nec-
essary preparations are introduced in Section 2. A class of quadratic Boolean functions is
presented in Section 3. In Section 4, we give the construction of WPB functions and show
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the specific process of proving them. Then, we compare the p-weight nonlinearity of WPB
functions with other papers. Finally, we conclude the paper with Section 5.

2. Preliminaries

Let Fn
2 be the n-dimensional vector space over F2, x = (x1, x2, . . . , xn) be a vector

in Fn
2 , all zero vector 0n = (0, 0, . . . , 0) ∈ Fn

2 , and all one vector 1n = (1, 1, . . . , 1) ∈ Fn
2 .

The mapping f from Fn
2 to F2 is called an n-variable Boolean function. Bn is the set of all

n-variable Boolean functions. Usually, f can be represented by its truth table, i.e.,

f = [ f (0, 0, . . . , 0), f (0, 0, . . . , 1), . . . , f (1, 1, . . . , 1)].

For a vector x ∈ Fn
2 , we claim its support supp(x) is {1 ≤ k ≤ n|xk = 1}, and its

Hamming weight wt(x) is |supp(x)|. With being regarded as a vector, the Hamming
weight of f is wt( f ) = |supp( f )|, where f ’s support supp( f ) is often described as the set
of input vectors making f outputs 1—that is to say, supp( f ) = {x ∈ Fn

2 | f (x) = 1}. If wt( f )
takes the value 2n−1, we say that f is balanced.

In addition, f can be expressed by its algebraic normal form, i.e.,

f (x) =
⊕

v∈Fn
2

avxv,

where the coefficient av ∈ F2, xv = xv1
1 xv2

2 · · · x
vn
n . The algebraic degree of f is defined as

deg( f ) = max{wt(v)|v ∈ Fn
2 , av = 1}.

A Boolean function f is said to be affine if deg( f ) ≤ 1.
When talking about a Boolean function f with restricted input, we define it is p-weight

support as
suppp( f ) = {x ∈ Fn

2 | f (x) = 1, wt(x) = p},

where 0 ≤ p ≤ n. The p-weight of f is

wtp(x) =
∣∣∣suppp( f )

∣∣∣ = |{x ∈ supp( f ) | wt(x) = p}|. (1)

For the sake of argument, we denote zerosp( f ) = {x ∈ Fn
2 | f (x) = 0, wt(x) = p}.

Definition 1. Let f ∈ Bn. We claim that f is a WPB Boolean function if wtp( f ) = 1
2

( n
p

)
for

1 ≤ p ≤ n− 1 and f (0n) 6= f (1n).

Thus far, the existing research has indicated that the number of variables of the WPB
Boolean function is a power of 2 [6]. Therefore, the Boolean functions that we construct in
this paper have 2m variables.

In addition to the consideration of balancedness, the construction of Boolean functions
should also consider meeting high nonlinearity to achieve resistance against fast correla-
tion attacks. Nonlinearity is a particularly important cryptographic criterion of Boolean
functions, which describes the minimum Hamming distance between a Boolean function
and all affine functions. When the input of a Boolean function is restricted to the vector set
{x ∈ Fn

2 | wt(x) = p} with integer p ≤ n, we call its nonlinearity p-weight nonlinearity.

Definition 2. Let f ∈ Bn. For 0 ≤ p ≤ n, the p-weight nonlinearity of f is expressed as

NLp( f ) =
1
2

( n
p

)
− 1

2
max
a∈Fn

2

∣∣∣∣∣∣ ∑
x∈Fn

2 ,wt(x)=p
(−1) f (x)⊕a·x

∣∣∣∣∣∣,
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where a · x = a1x1 ⊕ · · · ⊕ anxn. {NL1( f ), NL2( f ), ..., NLn−1( f )} is called the weightwise
nonlinearity of f .

Remarkably, reference [6] gives the upper bound of the p-weight nonlinearity of f
as follows

NLp( f ) ≤
⌊

1
2

( n
p

)
− 1

2

√( n
p

)⌋
,

where bac is the largest integer not greater than a.
Another well-known cryptographic criterion of Boolean functions is algebraic immunity,

which should be as high as possible to make the Boolean function resist algebraic attacks.

Definition 3. Suppose f ∈ Bn. The algebraic immunity of f is defined as

AI( f ) = min{deg(g) | g ∈ Ann( f ) or Ann(1⊕ f )},

where Ann( f ) = {g | 0 6= g ∈ Bn, f g = 0}.

Previous studies have shown that AI( f ) ≤ d n
2 e. Specially, if AI( f ) reaches the value

d n
2 e, we say that f has the maximal algebraic immunity.

Next, we show the following two lemmas, which will be used later in the the paper.

Lemma 1. (Pascal’s Rule). Let k and j be two integers. We have( k
j

)
+
( k

j + 1

)
=
( k + 1

j + 1

)
. (2)

Lemma 2 ([14]). (Chu–Vandermonde’s Identity)). Let k,t and j be three integers. We have

j

∑
i=0

( k
i

)( t
j− i

)
=
( k + t

j

)
. (3)

3. Quadratic Functions

This section introduces a new class of quadratic functions, which is going to be utilized
to construct the following WPB functions.

Let fm be a 2m-variable Boolean function with the form defined as

fm(x1, x2, . . . , x2m) =x1 ⊕ x2 ⊕ · · · ⊕ x2m−1

⊕ x1x1+2m−2 ⊕ x2x2+2m−2 ⊕ · · · ⊕ x2m−1 x2m−1+2m−2 ,
(4)

where m ≥ 2, f1 = x1.

Example 1. If m = 2, f2(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x1x2 ⊕ x2x3.
If m = 3, f3(x1, x2, . . . , x8) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x1x3 ⊕ x2x4 ⊕ x3x5 ⊕ x4x6.

Lemma 3. For fm(x) defined in (4), it follows that

fm(x) = fm−1
(

x′
)
⊕ fm−1

(
x′′
)
,

where x = (x1, x2, . . . , x2m), x′ = (x1, x3, . . . , x2m−1), x′′ = (x2, x4, . . . , x2m), and m ≥ 3.

Proof. By (4), it can be deduced that

fm−1
(

x′
)
=x1 ⊕ x3 ⊕ · · · ⊕ x2m−1−1⊕

x1x1+2m−2 ⊕ x3x3+2m−2 ⊕ · · · ⊕ x2m−1−1x2m−1−1+2m−2 ,
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and
fm−1

(
x′′
)
=x2 ⊕ x4 ⊕ · · · ⊕ x2m−1⊕

x2x2+2m−2 ⊕ x4x4+2m−2 ⊕ · · · ⊕ x2m−1 x2m−1+2m−2 .

Then, we obtain

fm−1
(

x′
)
⊕ fm−1

(
x′′
)
=x1 ⊕ x2 ⊕ · · · ⊕ x2m−1

⊕ x1x1+2m−2 ⊕ x2x2+2m−2 ⊕ · · · ⊕ x2m−1 x2m−1+2m−2

= fm(x).

By Lemma 3, we can easily know that fm(x) = 1 if and only if fm−1(x′) 6= fm−1(x′′),
where x′ and x′′ are defined as same as in Lemma 3. The p-weight support of fm in (4) can
be derived from this fact, which is

suppp( fm) =
p⋃

i=0

{
x ∈ F2m

2 | x′ ∈ suppi( fm−1), x′′ ∈ zerosp−i( fm−1)
}
∪

p⋃
i=0

{
x ∈ F2m

2 | x′ ∈ zerosi( fm−1), x′′ ∈ suppp−i( fm−1)
}

.

(5)

Lemma 4. The p-weight of fm defined in (4) is

wtp( fm) = 2
p

∑
i=0

wti( fm−1)

[( 2m−1

p− i

)
−wtp−i( fm−1)

]
, (6)

where 1 ≤ p ≤ 2m − 1 and m ≥ 3.

Proof. Assuming that p− i = j, from (5), we have

suppp( fm) =
p⋃

i=0

{
x ∈ F2m

2 | x′ ∈ suppi( fm−1), x′′ ∈ zerosp−i( fm−1)
}
∪

p⋃
j=0

{
x ∈ F2m

2 | x′ ∈ zerosp−j( fm−1), x′′ ∈ suppj( fm−1)
}

=
p⋃

i=0

{
x ∈ F2m

2 | x′ ∈ suppi( fm−1), x′′ ∈ zerosp−i( fm−1)
}
∪

p⋃
i=0

{
x ∈ F2m

2 | x′′ ∈ suppi( fm−1), x′ ∈ zerosp−i( fm−1)
}

,

where x = (x1, x2, . . . , x2m), x′ = (x1, x3, . . . , x2m−1), and x′′ = (x2, x4, . . . , x2m). Thus,
we obtain

wtp( fm) = | suppp( fm)| = 2
p

∑
i=0

wti( fm−1)

[( 2m−1

p− i

)
−wtp−i( fm−1)

]
.

Lemma 5. Suppose m and p are two integers, then we have
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∑
0≤i≤p

(p−i) is even

1
2

( 2m−1

i

) (−1)
p−i

2

2

( 2m−2

p−i
2

)

= ∑
0≤i≤p
i is even

1
2

( 2m−1

p− i

) (−1)
i
2

2

( 2m−2

i
2

)
.

(7)

Proof. Assuming that p− i = j, we have

∑
0≤i≤p

(p−i) is even

1
2

( 2m−1

i

) (−1)
p−i

2

2

( 2m−2

p−i
2

)

= ∑
0≤j≤p
j is even

1
2

( 2m−1

p− j

) (−1)
j
2

2

( 2m−2

j
2

)

= ∑
0≤i≤p
i is even

1
2

( 2m−1

p− i

) (−1)
i
2

2

( 2m−2

i
2

)
.

Theorem 1. The p-weight of fm defined in (4) is

wtp( fm) =


1
2

( 2m

p

)
, p 6≡ 0(mod2),

1
2

( 2m

p

)
− (−1)

p
2

2

( 2m−1
p
2

)
, p ≡ 0(mod2),

(8)

where 1 ≤ p ≤ 2m − 1 and m ≥ 2.

Proof. When m = 2, the p-weights of f2(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x1x2 ⊕ x2x3 in (4) are

wt1( f ) =
1
2

( 4
1

)
= 2, wt2( f ) =

1
2

( 4
2

)
+ 1 = 4, wt3( f ) =

1
2

( 4
3

)
= 2.

Thus, the p-weights of f2 clearly satisfy (8).
The p-weights of the Boolean function f3(x1, x2, . . . , x8) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x1x3 ⊕

x2x4 ⊕ x3x5 ⊕ x4x6 when m = 3 in (4) are given in Table 1. It is easy to see that all the
p-weights of f3 satisfy (8).

Table 1. The p-weights of f3 defined in (4).

p 1 2 3 4 5 6 7

wtp( f3) 4 16 28 32 28 16 4
1
2

(
8
p

)
4 14 28 35 28 14 4

Now, we will use mathematical induction to complete this proof. We first assume
that (8) holds for fm−1 when m ≥ 3, i.e.,

wtp( fm−1) =


1
2

( 2m−1

p

)
, p 6≡ 0(mod2),

1
2

( 2m−1

p

)
− (−1)

p
2

2

( 2m−2
p
2

)
, p ≡ 0(mod2).

(9)
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In what follows, we prove that (8) holds for fm.

(1) When p is a odd, it can be easily deduced that p− i is even if i is odd, or that p− i is
odd if i is even. Then, we have

wtp( fm)

= 2
p

∑
i=0

wti( fm−1)

[( 2m−1

p− i

)
−wtp−i( fm−1)

]

= 2 ∑
0≤i≤p
i is even

[
1
2

( 2m−1

i

)
− (−1)

i
2

2

( 2m−2

i
2

)]1
2

( 2m−1

p− i

)
+

2 ∑
0≤i≤p
i is odd

1
2

( 2m−1

i

)[1
2

( 2m−1

p− i

)
+

(−1)
p−i

2

2

( 2m−2

p−i
2

)]

= 2 ∑
0≤i≤p
i is even

[
1
2

( 2m−1

i

)1
2

( 2m−1

p− i

)
− 1

2

( 2m−1

p− i

) (−1)
i
2

2

( 2m−2

i
2

)]
+

2 ∑
0≤i≤p
i is odd

[
1
2

( 2m−1

i

)1
2

( 2m−1

p− i

)
+

1
2

( 2m−1

i

) (−1)
p−i

2

2

( 2m−2

p−i
2

)]

= 2
p

∑
i=0

1
2

( 2m−1

i

)1
2

( 2m−1

p− i

)
=

1
2

( 2m

p

)
,

where the first, second and fourth equations hold due to (6), (9) and (7), respectively,
and the last one is from fact (3).

(2) When p is even, we find that i is odd if p− i is odd, or that i is even if p− i is even.
Then, we have

wtp( fm)

= 2
p

∑
i=0

wti( fm−1)

[( 2m−1

p− i

)
−wtp−i( fm−1)

]

= 2 ∑
0≤i≤p
i is even

[
1
2

( 2m−1

i

)
− (−1)

i
2

2

( 2m−2

i
2

)][1
2

( 2m−1

p− i

)
+

(−1)
p−i

2

2

( 2m−2

p−i
2

)]

+ 2 ∑
0≤i≤p
i is odd

1
2

( 2m−1

i

)[( 2m−1

p− i

)
− 1

2

( 2m−1

p− i

)]

= 2 ∑
0≤i≤p
i is even

[
1
2

( 2m−1

i

)1
2

( 2m−1

p− i

)
− (−1)

i
2

2

( 2m−2

i
2

) (−1)
p−i

2

2

( 2m−2

p−i
2

)]

+ 2 ∑
0≤i≤p
i is odd

1
2

( 2m−1

i

)1
2

( 2m−1

p− i

)

= 2
p

∑
i=0

1
2

( 2m−1

i

)1
2

( 2m−1

p− i

)
− 2 ∑

0≤i≤p
i is even

(−1)
i
2

2

( 2m−2

i
2

) (−1)
p−i

2

2

( 2m−2

p−i
2

)

=
1
2

( 2m

p

)
− (−1)

p
2

2

( 2m−1
p
2

)
,
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where the first, second and fourth equations hold due to (6), (9) and (7), respectively,
and the last one is from fact (3).

4. WPB Functions

Let hm be a 2m-variable Boolean function, which can be defined as

hm(x) = fm(x)⊕ hm−1(x)
2m−1

∏
i=1

(
xi ⊕ x2m−1+i ⊕ 1

)
, (10)

where m ≥ 2, x = (x1, x2, ..., x2m) ∈ F2m

2 , x = (x1, x2, ..., x2m−1) ∈ F2m−1

2 , h1 = x1, and fm(x)
is defined in (4).

Example 2. It is clear that h1 is WPB. When m = 2, then

h2(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3 ⊕ x1x3x4.

The p-weight supports of h2 are as follows,

supp0(h2) = ∅,

supp1(h2) = {(1, 0, 0, 0), (0, 1, 0, 0)},
supp2(h2) = {(1, 1, 0, 0), (0, 1, 0, 1), (1, 0, 0, 1)},
supp3(h2) = {(1, 1, 0, 1), (1, 0, 1, 1)},
supp4(h2) = {(1, 1, 1, 1)}.

Thus, h2 is WPB acoording the definition of WPB functions.

Lemma 6. Let fm be defined in (4). Given a vector x = (x1, x2, ..., x2m) ∈ F2m

2 such that
xi = x2m−1+i for all 1 ≤ i ≤ 2m−1, we have fm(x) = wt(x)(mod 2), where
x = (x1, x2, ..., x2m−1) ∈ F2m−1

2 .

Proof.

fm(x)

= x1 ⊕ x2 ⊕ · · · ⊕ x2m−1 ⊕ x1x1+2m−2 ⊕ x2x2+2m−2 ⊕ · · · ⊕ x2m−2 x2m−1

⊕ x2m−2+1x2m−1+1 ⊕ x2m−2+2x2m−1+2 ⊕ · · · ⊕ x2m−1 x2m−1+2m−2

= x1 ⊕ x2 ⊕ · · · ⊕ x2m−1 ⊕ x1x1+2m−2 ⊕ x2x2+2m−2 ⊕ · · · ⊕ x2m−2 x2m−1

⊕ x2m−2+1x1 ⊕ x2m−2+2x2 ⊕ · · · ⊕ x2m−1 x2m−2

= x1 ⊕ x2 ⊕ · · · ⊕ x2m−1

= wt(x)(mod 2),

where x = {x1, x2, ..., x2m−1}.

When m ≥ 2, we note two facts: (1) the 2m-variable function ∏2m−1

i=1
(
xi ⊕ x2m−1+i ⊕ 1

)
takes 1 if and only if xi = x2m−1+i for all 1 ≤ i ≤ 2m−1, and (2) hm = 1 if and only if

fm 6= hm−1 ∏2m−1

i=1
(

xi ⊕ x2m−1+i ⊕ 1
)
. Therefore, we have come to the following conclusion.

Corollary 1. The p-weight support of Boolean function hm(x) defined in (10) is

suppp(hm) = suppp( fm) ∪
{
(x, x) | x ∈ supp p

2
(hm−1)

}
\
{
(x, x) | x ∈ supp p

2
(hm−1), wt(x) is odd

}
,

(11)
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where m ≥ 2, x = (x1, x2, . . . , x2m) ∈ F2m

2 , x ∈ F2m−1

2 , fm(x) is defined in (4), and 1 ≤ p ≤ 2m − 1.

Theorem 2. hm defined in (10) is a weightwise perfectly balanced function.

Proof. We use mathematical induction on m in the proof process. First, by Example 2, we
learn that h1 and h2 are WPB functions. Next, we assume that hm−1 is a WPB function for
m ≥ 3 with hm−1(0m−1) = 0 and hm−1(1m−1) = 1. Thus, for 1 ≤ p ≤ 2m−1 − 1,

wtp(hm−1) =
1
2

( 2m−1

p

)
. (12)

The calculation of the p-weight of hm(x) defined in (10) is divided into three specific
cases according to the value of p.

(1) If p is odd, we claim ∏2m−1

i=1
(

xi ⊕ x2m−1+i ⊕ 1
)
= 0, and then

wtp(hm) = wtp( fm) =
1
2

( 2m

p

)
,

where the last identity holds by Theorem 1.
(2) If p is even, there is one case where there is an integer i such that xi is not equal to

x2m−1+i. In this case, wtp(hm) =
1
2

(
2m
p

)
, similarly to case (1). There is another case

where the fact holds that xi = x2m−1+i for all 1 ≤ i ≤ 2m−1. In this case, we will discuss
the p-weight of hm(x) on the basis of the parity of p

2 .

(2-1) If p
2 is odd, we claim

wtp(hm) =
∣∣∣x ∈ suppp(hm)

∣∣∣
=
∣∣∣suppp( fm)

∣∣∣+ ∣∣∣ supp p
2
(hm−1)

∣∣∣− 2
∣∣∣{x ∈ supp p

2
(hm−1) | wt(x) is odd

}∣∣∣
=

1
2

( 2m

p

)
− (−1)

p
2

2

( 2m−1
p
2

)
+

1
2

( 2m−1
p
2

)
− 2× 1

2

( 2m−1
p
2

)
=

1
2

( 2m

p

)
,

where x ∈ F2m

2 , x ∈ F2m−1

2 . The second equality can be derived from Corollary 1,
the third equality holds due to (8) and (12), and the last equality holds because p

2
is odd.

(2-2) If p
2 is even, we claim

wtp(hm) =
∣∣∣x ∈ suppp(hm)

∣∣∣
=
∣∣∣suppp( fm)

∣∣∣+ ∣∣∣ supp p
2
(hm−1)

∣∣∣− 2
∣∣∣{x ∈ supp p

2
(hm−1) | wt(x) is odd

}∣∣∣
=

1
2

( 2m

p

)
− (−1)

p
2

2

( 2m−1
p
2

)
+

1
2

( 2m−1
p
2

)
=

1
2

( 2m

p

)
,

where x ∈ F2m

2 , x ∈ F2m−1

2 . The second equation holds because of Corollary 1, the
third equation is given by (8) and (12), and the last equation holds because of the
condition that p

2 is even.

Now, we consider the vectors 02m and 12m . It is easy to see that hm(02m) = 0, and
hm(12m) = 1 since fm(12m) = 0, hm−1(12m−1) = 1.
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Based on the above discussion, the result follows that hm(x) defined in (10) is a
WPB function.

Theorem 3. The algebraic degree of WPB function hm(x) defined in (10) is

deg(hm) = 2m − 1.

Proof. Let the 2m-variable Boolean fuction gm(x) = hm−1(x)∏2m−1

i=1
(
xi ⊕ x2m−1+i ⊕ 1

)
, where

x ∈ F2m−1

2 . Since deg(hm) = max{deg( fm), deg(gm)}, we can easily obtain
deg(hm) = deg(gm).

Based on the obvious fact that deg(h1) = 1 and deg(h2) = 3, we assume
deg(hm−1) = 2m−1 − 1. Then, we have

deg(hm) = deg(gm) = 2m−1 − 1 + 2m−1 = 2m − 1.

We simulate the p-weight nonlinearity of h3 and h4 using the computer program and
compare them with existing WPB functions. As shown in Tables 2 and 3, the p-weight

nonlinearity of h3 and h4 are close to the upper bound

⌊
1
2

( n
p

)
− 1

2

√( n
p

)⌋
and reach

higher values than those of most existing functions. In addition, the p-weight nonlinearity
of h4 is the highest when p = 6, 7, 8, 9, 10.

Table 2. The p-weight nonlinearity of known eight-variable WPB functions.

Functions [7] [8] [9] [11] [10] g3 in
[13]

h3 in
(10)

Upper
Bound

NL2 ≤9 2 2 2 2 6 6 11
NL3 ≤22 12 14 12 12 8 17 24
NL4 ≤27 19 19 19 19 26 23 30
NL5 ≤22 12 14 12 12 8 17 24
NL6 ≤9 2 2 2 6 6 6 11

Table 3. The p-weight nonlinearity of known 16-variable WPB functions.

Function NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

[8] 4 56 350 1312 3176 4782 5443 4782 3176 1312 350 56 4
[9] 4 112 686 1806 3436 4994 5603 4994 3436 1806 686 112 4
[11] 4 56 350 1288 3108 4774 5539 4902 3236 1672 654 152 28
[10] 4 56 350 1288 3108 4774 5539 4902 3228 1664 638 152 12
h4 in
(10) 12 104 590 1765 3487 5154 5827 5154 3491 1765 590 104 12

upper
bound 54 268 888 2150 3959 5666 6378 5666 3959 2150 888 268 54

In the end, the algebraic immunities of the function hm in (10) for m = 2, 3, 4 are given
in Table 4. Their algebraic immunrere is relatively poor when m takes the value 4. Therefore,
we still need to make more efforts on the WPB function for the optimal algebraic immunity
with high weightwise nonlinearity.

Table 4. The algebraic immunity of hm defined in (10), m = 2, 3, 4.

m AI(hm)
Optimal Algebraic

Immunity

2 AI(h2) = 2 2
3 AI(h3) = 3 4
4 AI(h4) = 3 8
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5. Conclusions

In this paper, we gave a class of new 2m-variable WPB functions and discussed the
cryptographic properties of the new constructed WPB functions. We proved that their
algebraic degree is 2m − 1. The experimental results demonstrated that some of the p-
weight nonlinearity of this class of WPB functions is higher than any currently known WPB
functions for small m. Although the state-of-the-art studies regarding WPB functions show
that the p-weight nonlinearity is difficult to prove theoretically, we still need to conduct
more research to obtain the p-weight nonlinearity for large m in the future. In addition,
while Boolean functions motivated by FLIP have attracted the attention of many researchers
in recent years, there is little research on filter functions of b-FLIP (b instances of FLIP in
parallel), which is also a direction worthy of study.
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