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Abstract: Medical image analysis methods have been applied to clinical scenarios of tumor diagnosis
and treatment. Many studies have attempted to optimize the effectiveness of tumor MRI image
segmentation by deep learning, but they do not consider the optimization of local details and the
interaction of global semantic information. Second, although medical image pattern recognition
can learn representative semantic features, it is challenging to ignore useless features in order
to learn generalizable embeddings. Thus, a tumor-assisted segmentation method is proposed to
detect tumor lesion regions and boundaries with complex shapes. Specifically, we introduce a
denoising convolutional autoencoder (DCAE) for MRI image noise reduction. Furthermore, we
design a novel tumor MRI image segmentation framework (NFSR-U-Net) based on class-correlation
pattern aggregation, which first aggregates class-correlation patterns in MRI images to form a class-
correlational representation. Then the relationship of similar class features is identified to closely
correlate the dense representations of local features for classification, which is conducive to identifying
image data with high heterogeneity. Meanwhile, the model uses a spatial attention mechanism and
residual structure to extract effective information of the spatial dimension and enhance statistical
information in MRI images, which bridges the semantic gap in skip connections. In the study, over
4000 MRI images from the Monash University Research Center for Artificial Intelligence are analyzed.
The results show that the method achieves segmentation accuracy of up to 96% for tumor MRI images
with low resource consumption.

Keywords: MRI tumor segmentation; intelligent assisted diagnosis; classification; class-correlational
representation

MSC: 68T01

1. Introduction

Automatic tumor image recognition and analysis methods are of vast potential value
for improving the diagnosis and treatment planning of individual patients. During clinical
diagnosis, tumor detection methods include symptomatic examination, imaging exami-
nation, and pathological biopsy [1]. Among them, magnetic resonance imaging (MRI) is
an effective tool for diagnosing tumors. MRI causes little damage to biological tissues,
has multi-planarity with high tissue contrast resolution, and allows to demonstrate the
location of the lesion area and distinguish benign from malignant tumors. Nevertheless, in
the process of tumor diagnosis, massive redundant MRI image data is generated for each
tumor patient, and it is laborious for clinicians to identify tumor images.
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Due to their high clinical relevance, medical image processing techniques play a crucial
role in computer-aided diagnosis systems, giving rise to automatic, semi-automatic, and
interactive MRI image recognition methods for various tumor structures [2]. In the context
of a small image sample size and a lack of annotation data, transfer learning has become
a popular method to alleviate the problem of the scarcity of medical image annotation
data. Researchers have attempted to bypass data annotation and use semi-supervised
and unsupervised learning to solve the problem of label defects. Among them, domain-
adaptive algorithms are widely used in the field of medical image segmentation, which
trains classifiers by learning an image-to-image transformation model between the target
and source modalities to extend the data [3]. Moreover, few-shot classification methods are
also dedicated to learning new visual concepts through a small number of sample images
that provide transferrable information across categories and show good performance in the
low-data modality [4].

Medical image processing techniques provide a feasible solution for vision tasks
with low data modalities; however, medical images also suffer from problems such as
low resolution and noise redundancy. For image denoising, traditional image processing
techniques such as Gaussian smoothing, anisotropic diffusion, and wavelet denoising have
performed better in digital image signal processing [5], which facilitates the resolution of
image quality problems caused by external distortion and noise. Recently, researchers have
also proposed deep learning strategies for the image enhancement of medical images. In
the case of tumor MRI images, Mehta et al. [6] constructed an architecture consisting of
encoder-decoder pairs to denoise tumor MRI images and achieved a higher peak signal-to-
noise ratio (PSNR) at multiple fundamental noise levels. Yang et al. [7] proposed a joint
network applied to brain tumor denoising and classification that consists of a CNN baseline
for noise reduction of MRI scans and has an excellent performance in identifying noisy
medical images.

In conditions where the annotated data are sufficient, supervised learning can predict
the exact results more easily based on prior experience. Deep learning-based methods for
MRI tumor image analysis have several popular frameworks, among which, a transformer
with excellent global representation capability has been successfully applied in the field
of computer vision, and it possesses good performance for medical image segmentation
in scenarios with large datasets. However, the transformer still has certain shortcomings,
with problems such as complex calculations, high risk of overfitting, and large training
data required, which requires the high performance of the hardware equipment equipped
in the primary hospital [8]. In contrast, the U-shaped CNN architecture and its variants
with powerful local information extraction have achieved excellent performance in med-
ical image segmentation [9]. Compared with 3D structures, 2D structures require fewer
parameters and have lower computational complexity. The existing 2D U-Net focuses on
the optimization of local details and the interaction of global semantic information in MRI
tumor images by rationally improving the model structure, thus enabling the network to
exhibit significant segmentation performance [10].

Medical image processing technology has alleviated the challenge of low efficiency in
tumor diagnosis to some extent. However, due to the specificity of tumors, MRI images of
different tumors have diverse characteristics. Taking the MRI images of osteosarcoma as an
example, the current supervised learning approach still has the following difficulties:

(1) The process of osteosarcoma MRI detection relies mainly on manual identification
by professionals. Each patient with osteosarcoma generates 600–700 MRI images in
a single diagnosis, but few of them are valuable [11–13]. Redundant data aggravate
the workload of identification and consume a lot of time and energy from doctors,
resulting in low diagnostic efficiency and being prone to misdiagnosis [14,15].

(2) Osteosarcoma is very costly to diagnose [16,17]. Developing countries are economi-
cally backward and lack a well-developed medical system [18], facing difficulties in
acquiring high-priced MRI equipment and a scarcity of clinicians. Patients are prone
to delay the best treatment time due to economic and geographical reasons [19,20].
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(3) Osteosarcoma is very difficult to diagnose. Osteosarcoma has high variability in shape
and location [21,22], and the MRI images often contain redundant noise information
from outside the target background, which makes it difficult for doctors to distin-
guish tumor tissue from surrounding normal tissue [23,24]. Most hospitals lack a
complete osteosarcoma-assisted segmentation system to detect potential features of
osteosarcoma images that cannot be identified with the naked eye by quantitative
analysis [25].

(4) Weakness of osteosarcoma MRI image detection methods. In order to enhance the
tumor segmentation effect, many studies have learned the mapping relationships of
different features by machine learning [26–28], but they do not consider the implicit
features to obtain valid information. Although training the classifier by computing
numerous features can improve the segmentation accuracy, its overly complex struc-
ture can lead to a dramatic increase in parameters, making the training of the model
inefficient [29,30].

In this study, an osteosarcoma-assisted segmentation method based on an MRI image
segmentation framework (NFSR-U-Net) is proposed. In the method, we use the Mean
Teacher semi-supervised learning method to divide the original image dataset and input
it sequentially into the preprocessing process to enhance the training efficiency of the
model. Meanwhile, a denoising convolutional autoencoder (DCAE) with a lightweight
structure is introduced to perform noise reduction on the image, which facilitates the
accuracy of segmentation. In model design, we propose an MRI image segmentation
framework (NFSR-U-Net) based on class-correlation pattern aggregation to achieve detailed
boundary segmentation of osteosarcoma lesion tissues. The suggested osteosarcoma-
assisted segmentation method has high accuracy and few parameters, which have an
indispensable impact on the auxiliary diagnosis and treatment of the tumor.

The main contributions of the study are presented below:

(1) We employ the Mean Teacher method to partition the dataset and input it sequentially
into the preprocessing process, which is conducive to improving the training efficiency
of the model. At the same time, we introduce a denoising convolutional autoencoder
(DCAE) to eliminate unwanted noise, which improves the feasibility of osteosarcoma
image segmentation.

(2) We propose the NFSR-U-Net, which aggregates local correlation patterns in MRI
images to form class-correlational representations and identifies similar semantic
features in the discrete feature space for local matching to closely correlate dense
representations of local features. The model enables pixel-level embeddings of similar
classes to achieve a high fit for classification by learning intra-class similarity in MRI
images, which shows excellent performance in tumor tissue segmentation with large
shape differences.

(3) The NFSR-U-Net learns highly representative and hierarchical semantic features by
rescaling high-level features in the middle and late stages using the spatial attention
mechanism. The effectiveness of extracting spatial features of various depths by using
the residual structure is also used to enhance the statistical information of textures
and boundaries in MRI images. It bridges the semantic gap of skip connections in
U-Net.

(4) In this paper, over 4000 sample data acquired from the Monash University Research
Center for Artificial Intelligence were used for analysis. Compared with other meth-
ods, the tumor MRI image segmentation method has a better segmentation effect and
possesses fewer parameters, which facilitates model training.

2. Related Works

With the deepening of research on the assisted diagnosis of osteosarcoma and other
diseases, more and more medical image segmentation technologies have been applied to
the automatic segmentation of osteosarcoma, effectively improving the performance and
accuracy of tumor segmentation models.
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Osteosarcoma cells have multiple morphologies with large spatial and structural vari-
ability. Learning effective feature information from images and making reasonable feature
selections is beneficial for achieving higher accuracy in image segmentation.
Zhang et al. [31] put several supervised output blocks into the residual network, which
learned shape features from images and effectively segmented osteosarcoma.
Huang et al. [32] guided multi-scale feature learning by introducing supervised layers
into a convolutional network to depict osteosarcoma boundaries. Pan et al. [33] used
convolutional autoencoders with feature cross-fusion learning methods to generate fine
fusion features and combined them with residual neural networks for label prediction.
Nabid [34] introduced a network composed of convolution and recurrent unit blocks to
classify osteosarcoma images precisely. Shuai et al. [35] designed an osteosarcoma seg-
mentation model consisting of two U-shaped networks and dense skip connections by
combining adaptive monitoring methods.

Magnetic resonance imaging possesses great soft tissue recognition and high spatial
resolution, but it has different and unique intensity and texture, so the automatic segmenta-
tion of osteosarcoma MRI images is a challenging task. Obaid [36] introduced a method that
can effectively segment MRI images of osteosarcoma with different textures, positions, or in-
tensities by using k-means clustering and iterative Gaussian filtering strategies. Baidya [37]
adopted diffusion-weighted imaging to classify the MRI images of osteosarcoma, and this
method can quantitatively analyze the changes in tumor cells. Chen et al. [38] established a
set of CE FS T1WI features by comparing the radionics features of MRI, which facilitates
preoperative knowledge of the pathological characteristics of patients with osteosarcoma
in response to neoadjuvant chemotherapy.

Apart from the segmentation of osteosarcoma, researchers have also conducted re-
search related to image segmentation techniques for other tumors, such as brain tumors,
lung tumors, etc. Guan et al. [39] proposed an AGSE-VNet segmentation model that
combined channel relationships to strengthen the salient information in channels and
used attention mechanisms to weaken edge features. Zhang et al. [40] proposed a hybrid
clustering algorithm to segment brain tumors that fused K-means clustering with the
C-means algorithm and combined morphological operations, which effectively reduced
the image sensitivity to noise. Dutande et al. [41] combined the Maximum Intensity Pro-
jection method with DRS-CNN to accomplish automated segmentation of lung tumor CT
images. Zhang [42] introduced the scale attention composite mechanism into U-Net, which
completed the global spatial information modeling.

Medical image analysis techniques, with their powerful feature extraction capabilities,
have alleviated the challenge of tumor diagnosis to some extent. In response to the struggle
of models to detect potential features in images, researchers have attempted to analyze
similar classes of correlation patterns in images and use them as feature transformations
in deep learning to reveal the structural layout of images [43]. Kim et al. [44] learned
sampling patterns and correlation measures of local structures in images based on his
proposed FCSS descriptor, and finally matched points between different instances of the
same object class. Zheng et al. [45] applied a spatial correlation loss method to capture
the spatial relationships for the transformation of the amount of information in the image.
Inspired by the above work, we introduce the class-correlational representation which
is an approach more suitable for addressing the heterogeneity problem of image data.
This method uses convolutional structures in the feature representation process to ana-
lyze and aggregate class-correlation patterns within the image representation, making the
embeddings of similar classes as close as possible. Furthermore, on many vision tasks, P.
Ramachandran et al. [46] proposed stand-alone self-attention to compute class correlation
coefficients as attention weights for aggregation. Wang et al. [47] introduced non-local neu-
ral networks to apply non-local operations to capture remote dependencies. Nevertheless,
these methods lack the learning of representations in a way that utilizes the class correlation
tensor, and the models are prone to cause image semantic loss during image detection.
Therefore, we suggest packing properties in the form of Hadamard transformations to
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provide the model with the necessary semantic information in the feature representation
and to learn generalizable relational embeddings.

In multimodal biomedical image segmentation research, researchers have improved
the effectiveness of image segmentation by optimizing the model structure and combining
it with advanced CV techniques. Among them, U-Net [48] is suitable for the segmentation
of medical images. Drozdzal et al. [49] verified the utility of skip connections during image
segmentation, which allows models to pass spatial information and recover lost spatial
information during the stitching process. The bottleneck feature of U-Net is composed
of high-level semantic features collected by the contraction path. Its spatial features are
associated with the location information of the segmented object, and the features between
channels are concentrated on the semantic category. However, the bottleneck features come
from deeper layers with redundant features, which can interfere with the segmentation
results. In addition, the features coming from skip connections are calculated in the early
stage, and there is a semantic gap between the features of the bottleneck feature and the
features of the expansive path [50]. The attention mechanism based on a heuristic search
approach enables feature selection. Woo et al. [51] introduced the convolutional block
attention module, which improves the representational power by emphasizing salient
features in the channel and space dimensions. Networks such as SENet [52] and ECA [53]
correct the channels by learning the importance of channels. However, both of them adopt
the global average pooling (GAP) operation when compressing the feature map, which
directly calculates the average value of the feature map, resulting in the loss of spatial
information. These models ignore the spatial characteristics of each channel.

The above shows that medical image segmentation techniques have a major impact on
tumor diagnosis. However, the osteosarcoma MRI images have much noise, the bottleneck
features extracted by convolutional networks have redundant features, and there is a se-
mantic gap of skip connections, which affects the performance of the model. Therefore, we
introduce an MRI image segmentation framework (NFSR-U-Net) based on class-correlation
pattern aggregation in the decision-making system, which aggregates local correlation pat-
terns in MRI images to locally match similar semantic features in the discrete feature space
of tumor images, resulting in a high fit of pixel-level embeddings of similar classes, which
is conducive to addressing the heterogeneity problem of tumor image data. Furthermore,
NFSR-U-Net learns highly representative and hierarchical semantic features by rescaling
high-level features in the middle and late stages using the spatial attention mechanism.
The effectiveness of extracting spatial features of various depths by using the residual
structure is also used to enhance the statistical information of textures and boundaries in
MRI images. These initiatives bridge the semantic gap of skip connections in the network.
Through the strategies of data set segmentation, preprocessing, and osteosarcoma MRI
image segmentation, this medical decision-making system can detect the location and
edges of lesion regions and realize the automated segmentation of osteosarcoma images,
which effectively enhances the accuracy and reliability of medical diagnosis.

3. System Model Design

Osteosarcoma is a malignant neoplastic disease located in bone tissue. During MRI de-
tection of osteosarcoma, patients generate a lot of complex image data. The manual screen-
ing of images and tumor diagnosis by doctors alone can be time and energy-consuming,
and the tremendous workload can lead to an increased rate of misdiagnosis. Addition-
ally, in developing countries, medical resources are tighter, and the doctor–patient ratio is
severely imbalanced, making it difficult for patients to receive effective services. Moreover,
the long and costly diagnostic cycle of osteosarcoma requires many families to bear high
costs. AI-based image processing technology can automatically screen medical images
to achieve the diagnosis of patients. The diagnostic results provide an auxiliary basis
for doctors, thus improving their efficiency and reducing the cost of diagnosing. In this
study, an osteosarcoma-assisted medical system based on NFSR-U-Net is proposed to assist
doctors in classifying. Figure 1 shows the architecture of it.
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Figure 1. Overview of osteosarcoma segmentation system architecture.

This system is organized into three sections: dataset optimization, preprocessing,
and image segmentation. In dataset optimization, the dataset in this thesis was collected
from the Monash University Research Center for Artificial Intelligence [54]. We divide the
original osteosarcoma MRI image dataset into useful slices and normal slices by the Mean
Teacher algorithm and input each into the preprocessing process in turn. In preprocessing,
the MRI images of patients are input to the denoising convolutional autoencoder (DCAE),
and the image data are noise reduced, followed by feeding the dataset into the network.
Finally, NFSR-U-Net is used for image segmentation, which helps doctors complete the
subsequent diagnosis of osteosarcoma and discern the extent of tumor tissue invasion.

To further elaborate on the osteosarcoma segmentation system, we divide this chapter
into three subsections. In Section 3.1, we introduce the steps for optimizing the MRI image
dataset. Section 3.2 introduces the principle and structure of DCAE. Section 3.3 elaborates
on the NFSR-U-Net segmentation model.

Three strategies were set up to enhance the detection effect:

(1) Dataset optimization. We use the Mean Teacher semi-supervised learning method to
optimize the original dataset by dividing the osteosarcoma image dataset into US and
NS, which facilitates the training of the model.

(2) Preprocessing. We introduce an unsupervised denoising convolutional autoencoder
(DCAE), which eliminates unnecessary noise from osteosarcoma MRI images.

(3) NFSR-U-Net. We design several modules to improve the bottleneck features and skip
connections in U-Net for precise classification of tumor MRI images.

The relevant symbols involved in this paper are explained, as displayed in Table 1.

3.1. Dataset Optimization

For the original dataset of osteosarcoma MRI images, there are often images that are
difficult to train. These images contain noise, and the tumor area in them may be extremely
small, which makes it hard to be clearly visualized. Directly using these images as the
first input dataset may cause the model to become slow and inefficient during training.
Therefore, it is necessary to partition the original dataset. We used the ResNet-7 model to
partition the original osteosarcoma image dataset into useful slices (US) and normal slices
(NS), where US denotes the image slices that are easy to train and NS denotes the image
slices that are time-consuming during the training process. As shown in Figure 2 (below),
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the model is composed of 6 layers of residual modules and 1 layer of fully connected layers.
Between each connected layer, we add a 3 × 3 max-pooling layer to minimize the scale of
the feature map.

Table 1. Description of some symbols in this chapter.

Symbol Paraphrase

D1, D2 Original osteosarcoma MRI image data set
T1 MRI image labels of osteosarcoma in dataset D1

PS1, PS2 Predicted probability of Student Model output
PT2 Predicted probability of Teacher Model output

γS, γT Parameter set of Student Model and Teacher Model
E(r, q) Class-correlation computation

F(·) Local class-correlation pattern aggregation function
Z Class-correlational representation

P(·) Global feature pooling operation
|·|odd The nearest odd number calculation function
Q(·) Neighbor feature selection function
YNFS The output of neighbor feature selection

σ Sigmoid activation function
φS Spatial dimension extension function

S(·) Spatial attention operation
φC Channel dimension extension function

Qup 2 times upsampling bilinear interpolation operation
Mathematics 2023, 11, x FOR PEER REVIEW 8 of 26 
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model (below). Where the Student Model and Teacher Model are both based on the ResNet-7.

In order to better adapt to the additional osteosarcoma image dataset and to enhance
the robustness of the model, the Mean Teacher semi-supervised learning method [55] was
used to optimize the dataset. As shown in Figure 2 (upper), the general framework of the
method is divided into the Student Model and Teacher Model, which both use the ResNet-7,
and the parameters of the two parts are γS and γT. We randomly split the data sets into D1
(70%) and D2 (30%) at the patient level, containing 2756 MRI images and 1244 MRI images,
respectively, where the images in dataset D1 contain label T1 and dataset D2 is unlabeled.
The training procedure of the Mean Teacher is described below:

Input data sets D1 and D2 in the Student Model, and the prediction probability output by
the module is recorded as PS1 and PS2, respectively; then, input the data set D2 in the Teacher
Model, and the prediction probability value obtained by the module is recorded as PT2;
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The loss value l1 is calculated from the label T1 in the data set D1 and the predicted
probability value PS1 is obtained in the previous step. The loss function formula L1 is given
as follows:

L1 = − 1
M ∑M

i=0 ti · log(pi)
+(1− ti) · log(1− pi), ◦tiεT1, piεPS1

(1)

The loss value l2 is calculated from PS2, PT2 and loss function L2 (as illustrated in
Equation (4)).

Student Model generates the loss which is recorded as ltotal = l1 + l2. According to the
calculated loss value ltotal , the gradient descent is performed to update the parameter γ′S
of the model. Teacher Model updates parameter γ′T through Formula (2) moving average,
where α denotes the exponential moving average (EMA) decay:

γ′T = αγT + (1− α)γ′S (2)

Among them, L1 is the cross-entropy loss function. The loss function L2 uses the
Kullback–Leibler divergence (KL) calculation formula [56], which can be applied to estimate
the level of overlap between two distributions as a measure of the difference. A lower KL
divergence represents a greater degree of overlap, and the KL is calculated as follows:

KL(N‖M) = ∑ m(x) · log
(

m(x)
n(x)

)
(3)

However, KL divergence suffers from the disadvantage of asymmetry. Although the
experiments try to align the predicted distributions of the two models, it is difficult to know
which side has more accurate prediction results. Hence, the Jenson–Shannon (JS) method is
used to solve the asymmetry of KL divergence. The loss function is calculated as follows.

L2 =
1
2

KL(PS2‖PT2) +
1
2

KL(PT2‖PS2) (4)

After the above steps, the original dataset was segmented into US (52.7%) and NS (47.3%),
where US included 2108 osteosarcoma MRI images and NS included 1892. Finally, we input
the relatively simple dataset sample US into the segmentation model first, and the NS second.
Relevant studies show that it is more beneficial to the training of the model. Moreover, the
datasets are automatically divided by computer, which reduces the workload of manual image
screening by doctors and improves the efficiency of osteosarcoma detection.

3.2. Pretreatment

MRI medical imaging usually contains a lot of useless noise information from the
background of the task target, which will significantly affect the effect of osteosarcoma seg-
mentation. Therefore, in this study, we introduced a denoising convolutional autoencoder
(DCAE) to denoise the MRI image data of osteosarcoma. Compared with the traditional
automatic encoder, the convolution automatic encoder [57] is more suitable for image
processing because its convolution ability can make full use of the image structure. Addi-
tionally, its weight is shared among various inputs, thus maintaining a high local spatiality,
which also outperforms the NL mean and median filter according to the validation in the
literature [58].

DCAE uses a relatively simple architecture, which is illustrated in Figure 3. It is
composed of an encoder and a decoder. The encoder is made up of a convolution layer and
a max-pooling layer. The convolution layer extracts features from the osteosarcoma image
through convolution operation. After each convolution layer, there will be a ReLU activa-
tion and batch normalization layer. The max-pooling layer performs 2 times downsampling
to filter useless information, thus eliminating unnecessary noise and other artifacts in the
tumor MRI image. Then, the decoder expands the feature map and enlarges the important
feature information through deconvolution and 2 times upsampling, so as to restore the
image. Therefore, DCAE can effectively reduce the noise of the input image x̃ with noise.
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Compared with the original MRI image of osteosarcoma, the noise of the output image x is
greatly reduced and has more useful feature information, which is helpful for more accurate
segmentation of osteosarcoma in the following steps. At the same time, the MRI images of
osteosarcoma after noise reduction can be served as a reference for clinical diagnosis by
doctors and provide the necessary conditions for doctors to carry out further diagnosis and
treatment for patients.
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3.3. Osteosarcoma MRI Image Segmentation

Segmenting the diseased tissue from the surrounding normal tissue has been a major
challenge in medical image segmentation. In order to identify the osteosarcoma lesion
region more accurately, we used an MRI image segmentation framework (NFSR-U-Net)
based on class-correlation pattern aggregation, as shown in Figure 4. Compared with the
traditional U-Net structure, NFSR-U-Net achieves advanced feature filtering and effective
fusion of spatial features in osteosarcoma MRI images by adding the neighbor feature selec-
tion module to optimize the representation of bottleneck features between contracting and
expansive paths and by adding skip connection multi-level semantic feature residual fusion,
which helps the network perform fine-grained osteosarcoma MRI image segmentation. The
NFSR-U-Net model comprises four main structures:

Encoder: The contracting path is composed of four contracting blocks, each containing
two convolutional layers, where the convolutional layer comprises a 3 × 3 convolution,
a batch normalization (BN), and a rectified linear unit (ReLU). Each contracting block is
followed by a downsampling via 2 × 2 max-pooling with a stride of 2.

Decoder: The expansive path includes four expansive blocks, each of which uses 2 times
upsampling to produce the extended feature map. The extended feature map is spliced with
the high-resolution feature map of the same layer of the contracting path.

Bottleneck layer: The neighbor feature selection module (NFS) is designed to generate
the class-correlational representation by analyzing the local correlation patterns in MRI
images and then identifying the relationship between similar class features to correlate the
dense representation of image local features. NFS enables the embedding of similar classes
to achieve a high fit by learning the intra-class similarity in osteosarcoma images, which
exhibit high accuracy in tumor tissue segmentation with large shape differences.

Skip connections: The spatial attention module (SAM) and spatial feature residual
connection module (SFRC) are designed to optimize skip connections. SAM uses 1 × 1
convolution to compress the channel dimension to 1, followed by a sigmoid activation
function. SFRC uses the residual connection method to upsample the feature map after
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compressing the channel with 1 × 1 convolution for the lower-level features, and the result
is summed with the SAM-processed feature matrix.
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3.3.1. Neighbor Feature Selection Module

Medical image pattern recognition and analysis can learn data-driven, hierarchical
semantic features from sufficient image data, however, the distinctive differences and
variations of features within different classes in MRI images can easily make embeddings
of similar classes far apart. In contrast, class-correlational representation can provide
semantic information about similar classes and learn generalizable relational embeddings.
In this paper, for osteosarcoma MRI images with high heterogeneity, we introduce the
neighborhood feature selection module, as shown in Figure 4b. This module first aggregates
class-correlation patterns by measuring the similarity of nearby patches to form the class-
correlational representation. Then, it analyzes the correlational representations of features
between similar classes so that the embeddings of the same class are as close as possible.
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Class-correlation computation. For a basic representation of the input X ∈ RH×W×C,
this part obtains the class-correlation tensor E ∈ RH×W×L×N×C by computing the Hadamard
product of each position r ∈ [1, H]× [1, W].

E(r, q) =
X(r)
‖X(r)‖ ·

X(r + q)
‖X(r + q)‖ (5)

Class-correlational representation. Then, we design a convolutional structure F(·) for
the analysis and learning of class-correlation patterns. As shown in Figure 4b, F(·) consists
of several 4D convolutions. One convolution reduces the number of channels of the class-
correlation tensor E to C′, two 3× 3 convolutions transform the tensor, and one convolution
changes its channels to C and reduces the spatial dimension to 1× 1. Between convolutions,
there are ReLU and BN layers. Finally, use a squeeze to generate F(E) ∈ RH×W×C. By
gradually aggregating the local class-correlation patterns using F(·), we calculate the
class-correlational representation Z ∈ RH×W×C as follows.

Z = F(E) + X (6)

Global feature pooling operation. We improve the global average pooling (GAP)
operation in SENet [53] and propose the global feature pooling (GFP) operation to compress
the feature map. GFP takes a mixture of local features in class-correlational representation
Z to identify the relationship of dense features between similar classes, enabling a higher fit
of pixel-level embeddings of similar classes. Meanwhile, GFP improves the expressiveness
of the network by incorporating the spatial features of the osteosarcoma MRI images while
compressing feature maps.

P(Z) = Z ·
(

so f tmax
(

ZTWT
N

))
(7)

where P(Z) ∈ RC×1 represents the global feature pooling operation with input Z ∈ RC×HW .
WT

N ∈ RC×1 indicates the transpose of the 1×1 convolution matrix.
Neighbor feature selection (NFS). As shown in Q(·), NFS uses GFP operation in

compressing the feature maps of osteosarcoma MRI images. It identifies semantic features
in the discrete feature space of the tumor image by associating n neighboring feature
channels in the feature map and searches for similar class features for local matching
to more closely associate the dense representation of local features of the image for the
joint classification task. NFS facilitates more subtle feature representation while capturing
cross-channel interactions, which is suitable for processing osteosarcoma MRI images
with heterogeneous distribution of tumor lesion tissue. The NFS is implemented by 1D
convolution with a kernel of size k, which represents the coverage of channel interactions
in this group. To avoid manual adjustment of n, the formulation given by ECA-Net [53] is
used in this paper as follows:

n = k = ψ(C) =
∣∣∣∣ log2 C

γ
+

b
γ

∣∣∣∣
odd

(8)

where |·|odd indicates the nearest odd number, C denotes the number of feature channels.
The values of γ and b are 2 and 1, respectively. NFS is calculated as:

Q(Z, k) = σ
(
C1D

k (P(Z))
)

YNFS(Z, k) = φS(Q(Z, k)) · Z (9)

where Q(Z, k) ∈ RC×1 indicates the neighbor feature selection operation with input
Z ∈ RC×HW and convolution kernel size k. C1D

k denotes the 1D convolution with ker-
nel size k. φS is a spatial dimension expansion function to expand the spatial dimension of
Q(Z, k) consistent with the input Z. Output YNFS(Z, k) ∈ RC×HW.
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3.3.2. Spatial Attention Module

Medical image processing and analysis can learn highly representative and hierarchical
semantic features in MRI images, but it remains a potential challenge to ignore useless
features to learn generalizable embeddings. The spatial attention mechanism aims to
recalibrate the spatial location importance of feature maps and ignore relatively irrelevant
locations, which has a positive impact on fine-grained tumor image segmentation. To
extract highly representative features in the spatial axis dimension of MRI images and
improve the characterization ability of the model, we introduced the spatial attention
module (SAM). As shown in Figure 4c, SAM uses 1 × 1 convolution to compress the
channel dimension to 1 to ensure the spatial dimensional feature consistency. SAM is
calculated as:

S(X) = σ(WSX)
YSA(X) = φC(S(X)) · X (10)

where S(X) ∈ R1×HW denotes spatial attention operation. WS ∈ R1×C is a 1 × 1 con-
volution matrix for compressing the channel dimension to 1. The output of SAM is
YSA(X) ∈ RC×HW, and φC is the channel dimension extension function by which the
channel dimension can be extended to C.

3.3.3. Spatial Feature Residual Connection Module

To retrieve the spatial information of osteosarcoma MRI images lost by pooling and
reduce the semantic difference between contracting path and expansive path features, the
spatial feature residual connection module (SFRC) is introduced. SFRC effectively enhances
the statistical information of texture and boundary in osteosarcoma MRI images by extract-
ing effective information in different spatial dimensions and introducing advanced features
in the middle and late stages of early skip connections to learn the positional relationships
between pixels. As shown in Figure 4d, SFRC receives the upper feature (layer k) and
lower feature (layer k+1) of the model as input, and k is an integer in [1,4]. The calculation
formula for SFRC is:

YSFCF(Xk, Xk+1) = Xk + Qup (WFXk+1) (11)

where Xk ∈ RC×HW is the output feature from the k-layer contracting path, Xk+1 ∈ R2C×HW

is the output feature from SFRC of layer k+1, and Xk+1 is the output of NFS only when
k = 4. The HW indicates that the H and W sizes are halved respectively. WF ∈ RC×2C is a
1 × 1 convolution operation for the purpose of compressing the channel number from 2C
to C. Qup is a 2 times upsampling bilinear interpolation operation, by which the feature
map of the image can be expanded so that the output YSFCF is consistent with Xk in the
feature dimension.

3.3.4. Loss Function

To address the positive and negative sample imbalance in the osteosarcoma MRI
image dataset, we use a combination of binary cross-entropy (LBCE) and dice loss (LDice)
weighting in this paper after analyzing the stability and accuracy of training. Since LDice
may cause drastic gradient changes and thus affect the back-propagation, leading to
difficulties in training the osteosarcoma segmentation model, we will reduce the weight of
LDice appropriately. The loss function is calculated as:

L(y, ŷ) = ωLDice(y, ŷ) + (1−ω)LBCE(y, ŷ)
LBCE(y, ŷ) = −(y logŷ + (1− y) log(1− ŷ))

LDice(y, ŷ) = 1− 2|y∩ŷ|+ε
|y|+|ŷ|+ε

(12)

where y denotes the value of the true osteosarcoma segmentation map, ŷ is the value of
the osteosarcoma segmentation map predicted by the model, ω is the weight of the two
losses, and ε is the smoothing term set to avoid a denominator of 0. In the course of this
experiment, the loss function L is tested in general, and the smoothing term ε of LDice is



Mathematics 2023, 11, 1187 13 of 25

modified in this paper. We first set the weight parameter ω to 0.05, then progressively
increase the value of ω to increase the loss reward for fewer samples by adjusting the
contribution of the class weights to loss, and make the overall value of the two types of
loss functions reach an equilibrium minimum in each epoch. In the end, we adjusted the
smoothing term ε to achieve a relatively smaller value of loss at each epoch while refraining
from a denominator of 0. After the experiments, we set the loss weight parameter ω to 0.3
and the smoothing term ε to 1.0.

The above is the general architecture of NFSR-U-Net. Before image segmentation, we
preprocess the dataset with strategies such as dataset optimization and noise reduction. By
means of automatic computer screening and processing of MRI images, the efficiency of
osteosarcoma detection by doctors is improved. During segmentation, we designed the
NFS, SAM, and SFRC modules in NFSR-U-Net to optimize the bottleneck layer and the skip
connections of the network, realizing a finer-grained tumor lesion tissue segmentation of
osteosarcoma MRI images. After segmentation, the diagnostic results given by the system
provide an auxiliary basis for doctors to help treat patients. While ensuring segmentation
accuracy, the network has fewer parameters, which facilitates model training.

4. Results
4.1. Data Set

The datasets in the paper were acquired from the Monash University Research Center
for Artificial Intelligence [54]. We acquired over 4000 osteosarcoma MRI images and other
metric data from 204 patients with osteosarcoma disease. To prevent leakage of patient
information between training and testing and to avoid the risk of matching the model
to patients, the dataset is divided at the patient level in this paper. Since the volume of
MRI images collected from a single patient was not equal, we divided the 204 patients
according to the number 156:48, which is roughly an 8:2 ratio. The delineated image dataset
was used as the training set and the test set, containing 3108 MRI images versus 892 MRI
images, respectively. This trial studied 204 patients involved, and specific information on
their data is listed in Table 2. In the process of data splitting, this thesis conducts a 5-fold
cross-validation on the original image dataset. We randomly slice the dataset into 5 disjoint
subsets of the same size, pick four subsets each time as the training set, and the remaining
one as the test set, and repeat the process 5 times. Finally, the test errors generated were
averaged for cross-validation to estimate the robustness and repeatability of the model.

Table 2. Baseline of patient characteristics.

Characteristics Total Training Set Test Set

Age
<15 48 (23.5%) 38 (23.2%) 10 (25%)

15~25 131 (64.2%) 107 (65.2%) 24 (60.0%)
>25 25 (12.3%) 19 (11.6%) 6 (15.0%)

Sex
Female 92 (45.1%) 69 (42.1%) 23 (57.5%)
Male 112 (54.9%) 95 (57.9%) 17 (42.5%)

Marital status
Married 32 (15.7%) 19 (11.6%) 13 (32.5%)

Unmarried 172 (84.3%) 145 (88.4%) 27 (67.5%)

Surgery Yes 181 (88.8%) 146 (89.0%) 35 (87.5%)
No 23 (11.2%) 18 (11.0%) 5 (12.5%)

SES
Low SES 78 (38.2%) 66 (40.2%) 12 (30.0%)
High SES 126 (61.8%) 98 (59.8%) 28 (70.0%)

Grade
Low grade 41 (20.1%) 15 (9.1%) 26 (65%)
High grade 163 (79.9%) 149 (90.9%) 14 (35%)

Location
Axial 29 (14.2%) 21 (12.8%) 8 (20%)

Extremity 138 (67.7%) 109 (66.5%) 29 (72.5%)
Other 37 (18.1%) 34 (20.7%) 3 (7.5%)
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4.2. Evaluation Index

For the purposes of evaluating the segmentation effect of the model, we chose the
widely used evaluation metrics of accuracy (Acc), precision (Pre), recall (Re), F1-score
(F1), intersection of union (IOU), and dice similarity coefficient (DSC) for model perfor-
mance evaluation.

In this paper, the Params metric represents the number of parameters of the seg-
mentation model, which indicates the size of the storage space occupied by the model.
The floating-point operations (FLOPs) metric reflects the computational complexity of the
segmentation network. In this osteosarcoma MRI segmentation experiment, we circumvent
the occurrence of missed diagnoses by improving the recall evaluation index.

4.3. Comparison Algorithm

For the sake of evaluating the performance and complexity of the NFSR-U-Net, several
MRI image segmentation models were selected for analysis and these models were com-
pared with the NFSR-U-Net for the segmentation effect of osteosarcoma MRI images. These
segmentation models consist of U-Net [48], FCN [59], FPN [60], PSPNet [61], MSRN [62],
MSFCN [32], and AIMSost [63].

4.4. Training Strategy

Before formally training the NFSR-U-Net tumor MRI image segmentation model,
we performed noise reduction on the original dataset images to avoid the model from
over-focusing on invalid features and effectively enhance the robustness of the model.
At the same time, we expanded the osteosarcoma MRI image dataset by rotating and
expanding (or reducing) the images, and the dataset was increased by nearly 20%. During
the training of the NFSR-U-Net network, we set the learning rate to 0.01 and trained
a total of 800 epochs. The segmentation model set Adam as the optimizer and used
PolynomiaDecay to dynamically adjust the learning rate of each epoch.

4.5. Segmentation Effect Evaluation

Before training the segmentation model, we divided the dataset into US (52.7%) and
NS (47.3%), where US included 2108 osteosarcoma MRI images and NS included 1892. As
shown in Figure 5 (left), it is a useful-slice dataset, in which the tumor location in US is
very obvious, and the boundary between the tumor region and the surrounding tissues
is also clearer. These advantages speed up the convergence of the model during training,
improve the image segmentation accuracy of the model, and reduce the training burden
significantly, so it is suitable as the priority input training set. In Figure 5 (right), this image
is a normal-slices dataset, and the boundary between the tumor region and the surrounding
tissues is blurred. If it is used as the first input dataset, the model will become inefficient
during training, so it should be used as the later input dataset.
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The convergence and performance of the Mean Teacher model depend on the pa-
rameter settings of the model. Therefore, in this experiment, we selected two parameter
variables, train data size and α, where α is the decay of EMA, as is displayed in Table 3. We
estimate the performance of the mean teacher model by adjusting the values of these two
parameters under the conditions of a fixed epoch of 500 and a batch size of 32. The results
show that the mean teacher algorithm achieves the best enhancement of the segmentation
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model with the parameter setting of 70% of the train data size and α of 0.99, and the dice
coefficient reaches the highest value. This may be attributed to the fact that the EMA
strategy can effectively prevent the model from overfitting, especially when the larger-scale
network parameters are learned from the limited training data.

Table 3. The influence of the parameter settings of the Mean Teacher on the segmentation results
estimated by dice coefficient.

Method
Parameters Metrics

Train Data Size α Dice (%)

Mean Teacher

2756 0.98 91.89

2756 0.99 92.08

3108 0.98 91.72

3108 0.99 91.74

In order to study the influence of the data set optimization process on the results,
this paper compares the segmentation effect of the data optimization process after the
Mean Teacher algorithm with the unoptimized process in the training phase. Observing
Figure 6, the image shows the process of change in Acc metrics formed by the two cases of
data optimization and non-optimization, which are noted as the standard curve and the
under-optimization curve, respectively (800 training epochs were completed, and 50 epochs
were randomly selected). It can be concluded that the input of US and NS optimized by the
Mean Teacher algorithm as the combined order effectively enhances the training efficiency
of the model, which enables the convergence speed of NFSR-U-Net during training to be
accelerated, and the peak of Acc metrics is reached at the 10th epoch. Then, this paper
further analyzes the differences in the robustness of the model caused by the heterogeneity
of image data. Based on the inherent heterogeneity of osteosarcoma, patients may produce
MRI images that are difficult to identify during detection, such as containing edematous
areas, cartilage in the interstitial space, and may lack classical tumor markers. In this study,
we added 8 such images every 1 epoch to the standard curve, for a total of 400 images. The
course of this curve during the training phase of the model is shown in Figure 6 and is
noted as a heterogeneity curve. The results show that under the condition that the training
time is long and does not affect the practical use, although the Acc of the curve decreases
slightly during the training, the fluctuations of the metric are smoother, and it is closer to
the standard curve with enough iterations, which indicates that the robustness and fairness
of the model are enhanced to some extent by the strategy of increasing the heterogeneity of
the data.
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Immediately after that, we input the MRI image datasets US and NS of osteosarcoma,
which were divided by the Mean Teacher algorithm, as a combination, into the NFSR-U-Net
model sequentially, while at the same time, the initial image dataset NS was input into the
model as another separate group for comparison of test results. Observing Figure 7, the
image demonstrates the difference in the evaluation metric scores formed by the different
combinations of US+NS and NS only in the testing phase of the model. It can be concluded
that the NFSR-U-Net model shows better segmentation performance in the testing phase
after the sequential input of the US+NS combination optimized by the Mean Teacher
approach to the segmentation network, in which the scores of all metrics are improved.
On the contrary, with the under-optimized NS image set as the input to the segmentation
model, the NFSR-U-Net showed a weakness in the relevant metrics in the test phase, and
the scores of each metric decreased by 0.10 ± 0.04 points.
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After dataset optimization, we performed a data preprocessing process for image
noise reduction using DCAE on MRI image data. Figure 8 shows the results of model
segmentation with and without dataset preprocessing. Among them, Figure 8a indicates
the original label of the osteosarcoma image, and Figure 8b shows the MRI image segmen-
tation result of the network without data preprocessing. Figure 8c shows the MRI image
segmentation result with dataset preprocessing. It is observed that the tumor segmenta-
tion region in the middle column is not complete. In contrast, the tumor region obtained
from the segmentation after dataset optimization is more accurate, which indicates that
preprocessing effectively enhances the quality of MRI images and the segmentation effect
is substantially improved.
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With regard to the denoising process of osteosarcoma MRI images, a comparative
analysis of DCAE with two architectures [6,7] based on different deep learning algorithms
was performed. Combined with the cross-entropy and MSE loss functions, we evaluated
the performance of different architectures for the denoising task of osteosarcoma MRI scans,
as presented in Equation (13).

MSE = 1
n ∑n

i=1(xi − yi)
2

LCE(p, q) = −∑n
i=1 p(xi) log[q(yi)]

Lto = wLCE + (1− w)MSE
(13)

The mean accuracy values for the two-parameter settings are displayed in Table 4.
The table reveals that the DCAE architecture still exhibits the best denoising performance
with three various sets of weights w. DCAE filters the useless information in the noisy
osteosarcoma MRI scans, thus eliminating unnecessary noise and other artifacts in the
image and enhancing the image’s peak signal-to-noise ratio (PSNR).

Table 4. The mean accuracy exhibited by each architecture with various weighting parameters.

Weight Setting
Architecture

U-Net with 2 Encoder-Decoder Pairs ACDN DCAE

(0.4, 0.6) 0.954 0.955 0.962

(0.5, 0.5) 0.961 0.957 0.967

(0.7, 0.3) 0.958 0.962 0.965

In this experiment, we conducted a comparative analysis of the segmentation effect
of each model for osteosarcoma MRI images, as shown in Figure 9, in which the first and
second columns are the labels of the original image, label, respectively, while the later
columns are the effect maps of each model for osteosarcoma image segmentation. It can be
clearly seen that for some tumor images with complex shapes, the MSFCN, MSRN, and
FCN16 models show the problem of over-dividing the tumor regions, and among them, the
MSFCN model shows the problem that the tumor regions are more blurred and not well
differentiated from the surrounding tissues. In contrast, our proposed NFSR-U-Net model
delineates the detailed part of the osteosarcoma region well and effectively distinguishes
the tumor region from surrounding tissues, which means it achieves accurate segmentation
of tumor images with complex shapes.
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For the sake of evaluating the performance of segmentation models more clearly, we
used various evaluation indexes to quantitatively compare the segmentation results derived
from each model. Table 5 shows a detailed comparison of the evaluation index values of
different segmentation models. From this table, it is obvious that our proposed NFSR-U-Net
has higher values of Pre, Re, IOU, and other evaluation indexes than those of other models,
which indicates its good performance in MRI image segmentation. To further analyze the
properties of the NFSR-U-Net model on MRI image segmentation of osteosarcoma, we
compared it with the existing work of other researchers on this dataset. Compared with the
AIMSost model, NFSR-U-Net improved 0.014± 0.003 points in Pre, Re, F1, and IOU metrics,
but its Params increased by only 9.5 M. This indicates that although the model has a high
accuracy of osteosarcoma segmentation, its parameters and computational complexity do
not increase much, which is conducive to cost saving by ensuring that doctors obtain highly
accurate segmentation results while the performance requirements of primary hospitals
equipped with hardware equipment are low.

Table 5. Comparison of evaluation indexes of different MRI image segmentation models for osteosarcoma.

Model Pre Re F1 IOU DSC Params FLOPs

FCN-16s 0.922 0.882 0.9 0.824 0.859 134.3 M 190.35 G
FCN-8s 0.941 0.873 0.901 0.83 0.876 134.3 M 190.08 G
PSPNet 0.856 0.888 0.872 0.772 0.87 46.70 M 101.55 G
MSFCN 0.881 0.936 0.906 0.841 0.874 23.38 M 1524.34 G
MSRN 0.893 0.945 0.918 0.853 0.887 14.27 M 1461.23 G
FPN 0.914 0.924 0.919 0.852 0.888 48.20 M 141.45 G

U-net 0.922 0.924 0.923 0.867 0.892 17.26 M 160.16 G
AIMSost 0.928 0.931 0.926 0.882 0.912 15.91 M 171.72 G

Ours 0.943 0.945 0.943 0.893 0.921 25.41 M 204.01 G

We compared the values of Params metrics and DSC metrics of different segmentation
models, which are displayed in Figure 10. It is observed that the NFSR-U-Net has a
great improvement in accuracy compared with other segmentation models, and the value
of DSC reaches 0.921, which is nearly 3 percentage points higher than the second-place
U-Net model. Meanwhile, the model still maintains a low parameter size with only
25.41 M Params, which is much lower than the number of parameters of models such as
FCN-16s and FCN-8s, indicating that our proposed MRI image segmentation system for
osteosarcoma occupies few resources and the model is trained faster, which is beneficial to
the practical application of the system.
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Figure 11 shows the values of FLOPs and DSC metrics for different segmentation
models. It is observed that the NFSR-U-Net has the highest DSC values, and the seg-
mentation results are all better than the segmentation models such as U-Net, FCN-16s,
MSRN, and PSPNet. Moreover, it ensures high segmentation accuracy of osteosarcoma
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MRI images while maintaining the FLOPs at a low value of 204.01 G, which reflects the low
computational complexity of it. Compared with the MSFCN and MSRN, NFSR-U-Net has
a lower computational cost and is more conducive to the training and application of the
model. Observing the AIMSost model in the figure, it has a lower FLOPs index of 171.72 G.
It is attributed to its reconstruction of the component attention condenser in AttendSeg, and
the utilization of such a component reduces the computational complexity of the model to
a large extent. However, the NFSR-U-Net model performs better on the DSC metric, almost
0.01 points higher than the AIMSost model, but the computational complexity remains at a
low level, which is of importance for hospitals that are required to deliver highly accurate
osteosarcoma diagnoses.
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Figure 12 shows how the image segmentation accuracy of each model changes as the
number of training rounds increases. A total of 800 training epochs were completed, and
50 epochs (randomly select 1 epoch out of every 16 epochs) were randomly selected for
the comparative analysis of the segmentation accuracy values of different models. From
the line graph, it is observed that after training nearly 160 epochs, the training effect of
each segmentation model reaches a more stable state, in which the segmentation accuracy
value of NFSR-U-Net is close to 96%, higher than that of FPN, MSRN, and other models,
and its accuracy value is very stable. The accuracy ranking of each segmentation model is:
NFSR-U-Net (ours) > U-Net > FPN > MSRN > MSFCN > FCN-8s > PSPNet.
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Additionally, recall is also a very important evaluation index when evaluating the im-
age segmentation effect, which reflects the possibility of the occurrence of missed diagnoses.
Figure 13 shows the variation in recall for each model. It can be seen that the recall values
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of U-Net, FPN, and MSFCN change sharply in the early training period but stabilize in the
late training period, while the recall of the MSRN model fluctuates throughout the whole
process. In contrast, the Recall of NFSR-U-Net has less fluctuation and higher values after
stabilization, which reflects that it is capable of effectively circumventing the occurrence
of missed diagnoses and has better performance. Then, we compared the F1-score of
NFSR-U-Net with other partial models. Figure 14 displays the variation of the F1-score
for each model. It is observed that the F1-score of the NFSR-U-Net always maintains a
high value, and the final value remains stable, which indicates that the NFSR-U-Net is very
effective for osteosarcoma MRI image segmentation and has high robustness.
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Figure 15 plots the graph of the loss function values for individual models in epochs
based on the experimental data. In this experiment, we used L2 regularization for the
loss function, set the weight decay to 50, and used data enhancement techniques such as
image flipping and scaling to reduce the possibility of model overfitting. It can be observed
that the loss values of individual models decreased numerically in general and eventually
reached a smooth lower loss value, which indicates that the NFSR-U-Net and the other
models underwent normal convergence. The initial loss values of the loss functions of
MSRN and MSFCN are relatively large because the initial parameters of the models are set
separately, and the initial loss values might also differ. In addition, the MSRN model has
more dramatic fluctuations in the loss values compared to the other models, which may be
a result of differences in the generalization ability, complexity, learning rate, or probability
problems of individual models, leading to the models falling into local optima.
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5. Discussion

In tumor MRI image segmentation studies, low contrast and edge blurring often
tend to affect the segmentation performance of the network. It is an attractive research
direction for the current tumor segmentation domain to precisely segment tumor tissues
with variable shapes and locations.

From the experimental results, we observe that the data optimization and prepro-
cessing process on the original tumor MRI image dataset is an effective way to improve
the model training efficiency and tumor MRI image segmentation accuracy. In this way,
the convergence speed of the model during training was accelerated by dividing the MRI
image dataset into US and NS using the Mean Teacher algorithm. In addition, the process of
preprocessing using DCAE removes artifacts and noise from MRI images, which effectively
enhances the accuracy of tumor MRI image segmentation.

Meanwhile, the analysis of evaluation indexes such as DSC, IOU, and Pre indicates
that the NFSR-U-Net proposed in this paper has an excellent segmentation effect on tumor
tissues with variable shapes and locations. From Figure 9 and Table 5, it can be observed
that NFSR-U-Net obtained the highest values for the Pre, IOU, and DSC metrics. Among
them, the Pre of NFSR-U-Net reached 0.943, which exceeded 0.941 of the FCN-8s and 0.922
of the FCN-16s. Moreover, its DSC reached 0.921, which surpassed 0.892 of the U-Net and
0.888 of the FPN. Specifically, FCN-8s and FCN-16s are insensitive to MRI image details
and lack spatial coherence by not fully considering pixel-to-pixel relationships, resulting
in less refined tumor region segmentation results. The interpretable reasons for the high
segmentation accuracy achieved by NFSR-U-Net are divided into two aspects. On the one
hand, NFSR-U-Net enables pixel-level embeddings of similar classes to achieve a high fit
for classification by learning intra-class similarity in MRI images. On the other hand, this
network learns highly representative semantic features by rescaling high-level features
using the spatial attention mechanism, and the effectiveness of extracting spatial features
by using residual structures is also used to enhance the statistical information of textures
and boundaries in tumor MRI images.

In terms of computational complexity, the Params and FLOPs metrics are analyzed in
this experiment. Compared with other models, the NFSR-U-Net has a low parameter size
of 25.41 M Params, which is lower than 134.3 M of the FCN-8s and 46.70 M of the PSPNet,
and its FLOPs are maintained at a low value of 204.01 G, much lower than 1524.34 G of the
MSFCN and 1461.23 G of the MSRN. Although the MSRB and MSFCN merge hierarchical
image features and reconstruct them at the end of the network, the feature maps contain
cumbersome information, and simple concatenation of features at various scales will lead to
underutilization of local features, and thus have relatively high computational complexity.
In the NFSR-U-Net, we optimize the bottleneck section to ignore useless features and select
more relevant ones. Furthermore, the combination of the attention mechanism with the
residual structure allows NFSR-U-Net to migrate attention to refine the details of the tumor
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tissue portion of the MRI image by targeting particular regions of the MRI image that are
of interest rather than the entire image. As a result, there is low computational complexity.

From the analysis of Figures 13 and 14, it can be concluded that NFSR-U-Net achieves
the highest values in the Re and F1 metrics, and the final values remain stable. Among
them, its Re reaches 0.945, higher than 0.867 of the U-net, and F1 is 0.943, higher than
0.919 of the FPN, which reflects the better tumor MRI segmentation performance of the
network. This is attributed to the fact that we focus on the optimization of local details and
the interaction of global semantic information by improving the model structure rationally,
thus enabling the network to exhibit significant segmentation performance. Concerning
the limitations, the network is not optimized sufficiently for the traditional convolutional
blocks, so we will consider further improvements for it.

6. Conclusions

In the article, a tumor MRI image segmentation framework, NFSR-U-Net, based on
class-correlation pattern aggregation in medical decision-making systems is used with over
4000 MRI images from the Monash University Centre for Artificial Intelligence Research. In
this method, we achieve detailed segmentation of the boundaries of tumor lesion tissues by
optimizing the dataset, preprocessing, and image segmentation steps. Compared with other
models, the results show that this model achieves better segmentation effects for tumor
MRI images. Furthermore, the model is more lightweight and consumes fewer resources.

In the future, the framework will be improved to optimize the aggregation of feature
patterns so that it can better handle the interaction of local details and global information in
tumor MRI images. Meanwhile, we will enhance the statistical information in MRI images
to refine the segmentation boundaries of lesion regions and identify texture features of
tumor images. We aim to improve the generalization capability of the model so that it can
be applied to MRI images of other tumor types.
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