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Abstract: This article investigates the size dependent on piezoelectrically layered perforated nanobeams
embedded in an elastic foundation considering the material Poisson’s ratio and the flexoelectric-
ity effects. The composite beam is composed of a regularly squared cut-out elastic core with two
piezoelectric face sheet layers. An analytical geometrical model is adopted to obtain the equivalent ge-
ometrical variables of the perforated core. To capture the Poisson’s ratio effect, the three-dimensional
continuum mechanics adopted to express the kinematics are kinetics relations in the framework of the
Euler–Bernoulli beam theory (EBBT). The nonlocal strain gradient theory is utilized to incorporate the
size-dependent electromechanical effects. The Hamilton principle is applied to derive the nonclassical
electromechanical dynamic equation of motion with flexoelectricity impact. A closed form solution
for resonant frequencies is obtained. Numerical results explored the impacts of geometrical and
material characteristics on the nonclassical electromechanical behavior of nanobeams. Obtained
results revealed the significant effects of the mechanical, electrical, and elastic foundation parameters
on the dynamic behavior of piezoelectric composite nanobeams. The developed procedure and the
obtained results are helpful for many industrial purposes and engineering applications, such as
micro/nano-electromechanical systems (MEMS) and NEMS.

Keywords: piezoelectric composite nanobeam; perforated core; Pasternak elastic foundation;
regularly squared cut-out; electromechanical effects; equivalent geometrical variables; nonlocal strain
gradient theory; flexoelectricity

MSC: 74f15

1. Introduction

The usage of flexoelectric nanobeams is a newer generation of nanotechnology indus-
trial applications, such as actuators, sensors, energy harvesters, biology, medical science,
etc. Flexoelectricity depicts the coupling between electric polarizations and mechanical
strain gradients. The flexoelectric effects have been considered in the industry because it
has different crystalline structures as piezoelectric materials [1].

For piezo/flexo-electricity analysis, Liang et al. [2] included the surface influence on a
piezoelectric nanobeam and found that bulk flexoelectricity is increased and deflection is
decreased by increasing the surface effects. Bhaskar et al. [3] manufactured flexoelectric
cantilever nanobeam with a single flexoelectrically active layer. Baroudi et al. [4] developed
analytical static and dynamic responses of piezoelectric–flexoelectric nanobeams in frame
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of a strain gradient theory. Chu et al. [5] presented the flexoelectric effects on mechanical
responses of functionally graded (FG) piezoelectric modified strain gradient nanobeams
by using the Navier analytical method. Ebrahimi and Karimiasl [6] analytically studied
the buckling behavior of flexoelectric sandwich nonlocal nanobeams with surface effects.
Wang et al. [7] developed a reduced order model for an array of flexoelectric layered
nanobeams to provide higher electrical power output and wider frequency bandwidth.
Shijie et al. [8] presented the influences of flexoelectricity, piezoelectricity, dielectricity,
and surface elasticity on the buckling stability of nanobeam by using the finite element
method. Basutkar [9] derived analytical solutions of bimorph piezoelectric–flexoelectric
cantilever energy harvester. Eltaher et al. [10,11] developed a modified continuum model to
investigate static and vibration behaviors of perforated piezoelectric nanobeam in the frame
of nonlocal elasticity and surface energy. Zhao et al. [12] numerically studied the influences
of porosity and flexoelectricity on static and vibration of FG piezoelectric nanobeams.
Malikan and Eremeyev [13] investigated the effect of flexoelectricity on a piezoelectric
nanobeam involving internal viscoelasticity.

Malikan and Eremeyev [14] evaluated the nonlinear bending of a piezo–flexomagnetic
strain gradient nanobeam based on an analytical-numerical solution. Malikan [15] and
Malikan and Eremeyev [16] examined the nonlinear buckling of the electro-mechanical
and flexomagnetic nanoplate, including the nonlinear strains of von Karman. Bagheri and
Tadi Beni [1] analyzed the flexoelectric forced response of viscoelastic Euler nanobeams
incorporating von Karman strain–displacement nonlinearities. Esen et al. [17,18] analyt-
ically examined the natural frequencies and buckling loads of a cracked FG microbeam
exposed to magnetic and thermal environments. Wang et al. [19] exploited nonlocal Don-
nell’s nonlinear shell theory in analyzing the vibration of FG piezoelectric nanoshells.
Liu et al. [20,21] solved vibrations of FG piezoelectric shells in a multi-physics field and
rested on an elastic foundation. Gao et al. [22] investigated wave propagation of FG metal
foam plates with piezoelectric actuator and sensor layers. Melaibari et al. [23] developed a
mathematical model to examine vibration response of a sandwich perforated nanobeam in-
corporating the flexoelectricity effect. Jena et al. [24] developed a novel numerical approach
to study the stability of a nanobeam embedded in an elastic foundation and exposed to
hygro–thermo–magnetic environments. Sun et al. [25] developed a finite element model to
predict the flexoelectric nonlocal nanobeam energy harvesters with a nonuniform cross-
section. Thai et al. [26] proved the effects of geometry, topology, and materials on the
nonlinear vibration response of curved flexoelectric–piezoelectric microbeam energy har-
vesting. Momeni-Khabisi and Tahani [27] developed a solution procedure to investigate the
stability of piezomagnetic nanosensors, including flexomagnetic, thermal, and geometrical
imperfection effects.

In the frame of nonlocal strain gradient theory, Jena et al. [28] studied the vibrational
response of micro/nanoobeam rested on various types of Winkler elastic foundations.
Jena et al. [29,30] examined the vibration of the nonlocal strain gradient single-walled car-
bon nanotube under the hygro–magnetic environment and nonlinear temperature distribu-
tion. Malikan et al. [31] examined the torsional stability capacity of a nano-composite first-
order shear deformation shell under a three-dimensional magnetic field. Karami et al. [32]
investigated the vibration response of a 2D-tapered porous FG Timoshenko beam, including
temperature and porosity influences on the material properties. Chakraverty and Jena [33]
studied the vibration of single-walled carbon nanotubes (SWCNT) and single-layered
graphene nanoribbons resting on exponentially varying Winkler elastic foundations us-
ing the differential quadrature method. Abdelrahman et al. [34] studied the effects of
a moving load on the vibration response of reinforced FG nanobeams rested on a foun-
dation. Tocci Monaco et al. [35] examined the magneto–electro–elastic static response
of nanoplates in a hygro–thermal environment. Ghandourah et al. [36] examined static
and buckling behaviors of FG-laminated nanoplates by quasi-3D hyperbolic shear theory.
Alazwari et al. [37] derived a model to investigate the dynamic response of FG nanobeams
under thermo–magnetic fields and a moving load. Alam and Mishra [38] studied the post
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stability of nonlocal strain gradient FG piezoelectric cylindrical shells under thermo–electro–
mechanical loads. Boyina and Piska [39] studied the impact of surface and magnetic field
effects on the wave propagation response of viscoelastic nanobeams.

According to the shortlisted literature and the authors’ backgrounds, influences of the
material Poisson’s ratio and the elastic foundation on the nonclassical electromechanical
dynamic behavior of piezoelectric composite nanobeams with the flexoelectricity effect
has not been considered. This present work develops an analytical nonclassical procedure
to investigate the size-dependent electromechanical free vibration behavior of piezoelec-
tric composite nanobeam with a perforated core resting on an elastic foundation with
the flexoelectricity effect based on the nonlocal strain gradient theory. In the context
of continuum mechanics, all kinematics and kinetics equations are developed based on
the Euler–Bernoulli beam theory. Regular squared cut-outs perforation configuration is
considered for the elastic perforated core. Hamilton’s principle is adopted to obtain the
nonclassical electromechanical dynamic equation of motion, including the elastic foun-
dation as well as the flexoelectricity effects. The accuracy of the proposed procedure is
checked, and good agreement is obtained. Numerical results are obtained and discussed.
Conclusions and recommendations are summarized.

2. Theory and Mathematical Formulation

Consider a composite piezoelectric nanobeam with a regularly squared perforated
core and two piezoelectric face sheets embedded in two elastic foundation parameters, as
shown in Figure 1. The top and bottom face layers are assumed to be made of the same
material, and each has height hp. The perforated core is assumed to be made of an elastic
material with elasticity modulus Ec, and it has a height of hc. All layers have the same beam
length L and width Wb. The entire composite beam thickness is h, and h = hc + 2hp. The
polarization direction of both piezoelectric face sheets is assumed upward. Mathematical
formulations of the physical phenomena will be presented in the following subsections.

Figure 1. Perforated composite piezoelectric nanobeam rested on elastic foundation.
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2.1. Geometrical Model for Regular Squared Cutouts

Consider a regularly squared perforation pattern, as shown in Figure 1, with the
following geometrical variables: ls and ls−ts, are a spatial period, a hole side, respectively.
N is the number of hole rows through a beam width. The filling ratio, α can be given
by [40,41]:

α =
ts

ls
0 ≤ α ≤ 1, α =

{
0 Fully perforated (artifitial case)

1 Fully filled (solid beam)
(1)

The bending (EI) and shear (GA) stiffness ratios for perforated and full beam are

Kb =
(EI)eq

(EI)s
=

{
α(N + 1)

(
N2 + 2N + α2)

(1− α2 + α3)N3 + 3αN2 + (3 + 2α− 3α2 + α3)α2N + α3

}
(2)

Ks =
(GA)eq

(EA)s
=

(
(1 + N)α3

2N

)
(3)

where subscripts (:)eq, (:)s are equivalent and fully filled solid beams, respectively. The
equivalent mass and inertia ratios are [41]

IA =
(ρA)eq

(ρA)s
=

{
[1− N(α− 2)]α

N + α

}
(4)

IB =
(ρI)eq

(ρI)s
=

{
α
[
(2− α)N3 + 3N2 − 2(α− 3)

(
α2 − α + 1

)
N + α2 + 1

]
(N + α)3

}
(5)

2.2. Basic Elastic and Flexoelectric Kinematic Relations

The displacement and the electric fields for Euler–Bernoulli beam theory (EBBT) can
be prescribed by [38]: 

u(x, z, t)

w(x, z, t)

Ez

 =


−z ∂w(x,t)

∂x

w(x, t)

− ∂φz(z,t)
∂z

 (6)

where w(x, t) and φz(z, t) refer to the transverse displacement and the electric potential
field, respectively.

Based on the described displacement field, the nonzero strain component is given
by [42,43]:

εxx(x, z, t) = −z
∂2w(x, t)

∂x2 (7)

Considering an isotropic elastic material behavior for the perforated core, the material
constitutive law for the EBBT could be expressed as [44]:


σxx(x, z, t)

σyy(x,z,t)

σzz(x, z, t)

 =


Êεxx(x, z, t)

λεxx(x, z, t)

λεxx(x, z, t)

 =


(1−ν)E

(1+ν)(1−2ν)

(
−z ∂2w(x,t)

∂x2

)
λ
(
−z ∂2w(x,t)

∂x2

)
(

ν
1−ν

)
σxx(x, z, t)

 (8)

where Ê = 2µ + λ refers to the equivalent elasticity modulus, v is the Poisson’s ratio, σxx,
σyy, and σzz are the components of the Cauchy normal stress tensor, respectively. λ and µ
are Lame’s constants that can be expressed by:

µ =
E

2(1 + ν)
, λ =

νE
(1 + ν)(1− 2ν)

(9)
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Taking into accounts the electric and flexoelectric effects, the electric enthalpy energy
density function is expressed as [2]:

H = −1
2

aklEkEl +
1
2

cijklεijεkl − eijk Ek εij − uijkl Ei ε jk,l (10)

where akl refers to permittivity tensor, cijkl denotes elasticity tensor, eijk refers to piezoelectric
coefficients, uijkl is the electric field strain gradient coupling coefficients.

The electric field is presented in terms of the electric enthalpy energy by:

Di = −
∂H
∂Ei

= aijEj + eijk ε jk + uijkl ε jk,l (11)

Based on the Gaussian theorem, the following condition is verified:

∂Dz

∂z
= 0⇒ a33

∂Ez

∂z
+ e311

∂εxx

∂z
+ u3111

∂2εxx

∂x∂z
+ u3113

∂2εxx

∂z2 = 0. (12)

Substituting Equation (8) into Equation (12), yields

a33
∂Ez

∂z
− e311

(
∂2w(x, t)

∂x2

)
− u3111

(
∂3w(x, t)

∂x3

)
= 0. (13)

Rearranging terms in Equation (13), the 1st derivative of the electric field is given by:

∂Ez

∂z
=

1
a33

[
e311

(
∂2w(x, t)

∂x2

)
+ u3111

(
∂3w(x, t)

∂x3

)]
(14)

Integrating Equation (14) with respect to z one can write:

Ez − Ez0 =
z

a33

[
e311

(
∂2w(x, t)

∂x2

)
+ u3111

(
∂3w(x, t)

∂x3

)]
(15)

Equation (15) can be rewritten as:

Ez = Ez0 −
1

a33

[
e311 (εxx) + u3111

(
∂εxx

∂x

)]
, (16)

in which Ez0 is initial electric field through thickness direction.

2.3. The Modified Nonlocal Strain Gradient Theory with Flexoelectricity Effect

According to the nonlocal strain gradient theory (NSGT), the stress field, including
the flexoelectricity effect and nonlocal electric potential, can be presented by [45,46]:

(
1− (e0a)2 ∂2

∂x2

)
σt

xx
σ113
σ111
Dz

 =



{
E
(

1− l2 ∂2

∂x2

)
+

e2
311
a33

}
εxx +

e311
a33

µ3111
∂εxx
∂x − e311Ez0

µ3113
a33

(
e311εxx + µ3111

∂εxx
∂x

)
− µ3113Ez0

µ3111
a33

(
e311εxx + µ3111

∂εxx
∂x

)
− µ3111Ez0

a33Ez0 + µ3113
∂εxx
∂z


(17)

3. Dynamic Equation of Motion of Piezoelectric Composite Nanobeam

Applying the Hamiltonian principle, the dynamic equation of motion is given as [47,48]:

δ
∫ t2

t1

[
T −

∫
Ω

HdΩ + Wex

]
dt = 0 (18)
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with Ω indicates a volume integral, T is the total kinetic energy of the composite beam. The
variation in the total kinetic energy, δT can be expressed as:

δT = δ
{

1
2

∫
Ω ρ

( .
u2

+
.

w2
)

dΩ
}

=
∫ L

0

{(
[ρc Ic]eq + ρp Ip

)
∂4w

∂x2∂t2 −
(
[ρc Ac]eq + 2ρp Ap

)
∂2w
∂t2

}
δwdx,

(19)

With [
Ic Ip Ac Ap

]
=
[

h3
c

12
h3

12 − Ic hcwb hpwb

]
(20)

On the other hand, the variation in the electric enthalpy energy density function,
δ
∫

Ω HdΩ can be expressed as:

δ
∫

Ω HdΩ =
∫

Ω

(
σt

xxδεxx − DzδEz + σ111 δεxx,x + σ113 δεxx,z
)
dΩ

=
∫ L

0

(
Mδεxx0 + M′δεxx0,x

)
dx

(21)

where [
εxx0 M M′

]
=
[
− ∂2w

∂x2 M + e311
a33

MD + N113
µ3111
a33

MD + N111

]
(22)

Based on the nonlocal strain gradient elasticity theory, the following equations could
be written:

(
1− (e0a)2 ∂2

∂x2

)
M

N113
M111
MD



=



(
1− l2 ∂2

∂x2

){
(Ec Ic)eq − Ep Ip

}
εxx0 +

e2
311
a33

Ipεxx +
e311µ3111 Ip

a33

∂εxx0
∂x − e311 I1Ez0

0

wb

{
µ3111
a33

Ip

(
e311εxx0 + µ3111

∂εxx0
∂x

)
− µ3111 I1Ez0

}
wba33 I1Ez0



(23)

in which
I1 =

1
4

(
h2 − h2

c

)
(24)

The variation in the external work completed, Wex is given by:

δWex = −wb

∫ L

0
p(x, t)δw(x, t)dx (25)

where p(x, t) = q(x, t)Ds
(
x− xp

)
+ Nb

∂2w(x,t)
∂x2 +

[
kww(x, t)− kp

∂2w(x,t)
∂x2

]
is the applied

external load function, Ds (.) is the Dirac delta function. kw and kp are the Winkler shear
foundation constants, respectively.

Substituting Equations (19)–(25) into Equation (18), the governing equation of motion
is given by:

∂2M
∂x2 −

∂3M′

∂x3 − p(x, t) =
[
(ρc Ac)eq + 2ρp Ap

]∂2w
∂t2 −

[
(ρc Ic)eq + ρp Ip

] ∂4w
∂x2∂t2 (26)

The governing equilibrium equations are generalized by using:

W =
w
h

, X =
x
L

, q =
qL3

EI
, P =

NbL2

EI
(27)
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Then,

dx = LdX and
dW
dX

=

(
L
h

)
dw
dx
→ dw

dx
=

(
h
L

)
dW
dX

(28)

and
d4w
dx4 =

d3

dx3

[(
h
L

)
dW
dX

]
=

(
h
L4

)
d4W
dX4 and

d6w
dx6 =

(
h
L6

)
d6W
dX6 (29)

Substituting from Equations (19) and (27)–(29) into Equation (26), yields the non-
dimensional dynamic equation of motion as:

−
[{

(Ec Ic)eq + Ep Ip

}
+ Ip

e2
311
a33

](
h
L4

)[
∂4W(X,t)

∂X4

]
+

(
l2
[
(Ec Ic)eq − Ep Ip

]
+ Ip

µ2
3111
a33

)(
h
L6

)
∂6W(X,t)

∂X6

−
(

1− (e0a)2

L2
∂2

∂X2

)
p(X)

= h
[
(ρc Ac)eq + 2ρp Ap

][
∂2W(X,t)

∂t2 − (e0a)2

L2
∂4W(X,t)

∂X2∂t2

]
−
(

h
L2

)[
(ρc Ic)eq + ρp Ip

][
∂4W(X,t)

∂X2∂t2 −
(e0a)2

L2
∂6W(X,t)

∂X4∂t2

]
(30)

Disregarding the nonlocality impact, motion equation of sandwich piezoelectric
nanobeam with the microstructure effect will be:

−
[{

(Ec Ic)eq + Ep Ip

}
+ Ip

e2
311
a33

](
h
L4

)[
∂4W(X,t)

∂X4

]
+

(
l2
[
(Ec Ic)eq − Ep Ip

]
+ Ip

µ2
3111
a33

)(
h
L6

)
∂6W(X,t)

∂X6

−
(

1− (e0a)2

L2
∂2

∂X2

)(
q(X, t) + hNb

L2
∂2W(X,t)

∂X2

+
[
kwhW(X, t)− hkp

L2
∂2W(X,t)

∂x2

])
= h

[
(ρc Ac)eq + 2ρp Ap

] [
∂2W(X,t)

∂t2

]
−
(

h
L2

)[
(ρc Ic)eq + ρp Ip

][
∂4W(X,t)

∂X2∂t2

]

(31)

Taking only the nonlocality effect, the equation of motion will be:

−
[{

(Ec Ic)eq + Ep Ip

}
+ Ip

e2
311
a33

](
h
L4

)[
∂4W(X,t)

∂X4

]
+

(
Ip

µ2
3111
a33

)(
h
L6

)
∂6W(X,t)

∂X6

−
(

1− (e0a)2

L2
∂2

∂X2

)(
q(X, t) + hNb

L2
∂2W(X,t)

∂X2

+
[
kwhW(X, t)− hkp

L2
∂2W(X,t)

∂x2

])
= h

[
(ρc Ac)eq + 2ρp Ap

][
∂2W
∂t2 −

(e0a)2

L2
∂4W(X,t)

∂X2∂t2

]
−
(

h
L2

)[
(ρc Ic)eq + ρp Ip

][
∂4W

∂X2∂t2 −
(e0a)2

L2
∂6W(X,t)

∂X4∂t2

]
(32)
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Ignoring the nonclassical effects, results the classical equation of motion as:

−
[{

(Ec Ic)eq + Ep Ip

}
+ Ip

e2
311
a33

](
h
L4

)[
∂4W(X,t)

∂X4

]
+

(
Ip

µ2
3111
a33

)(
h
L6

)
∂6W(X,t)

∂X6

−
(

q(x, t) + hNb
L2

∂2W(X,t)
∂X2

+
[
kwhW(x, t)− hkp

L2
∂2W(X,t)

∂x2

])
= h

[
(ρc Ac)eq + 2ρp Ap

][
∂2W(X,t)

∂t2

]
−
(

h
L2

)[
(ρc Ic)eq + ρp Ip

][
∂4W(X,t)

∂X2∂t2

]
(33)

Neglecting the flexoelectric, piezoelectric, and the nonclassical effects leads to the
classical equation of motion of perforated beam as:

−(Ec Ic)eq

(
h
L4

)[
∂4W(X,t)

∂X4

]
−
(

q(x, t) + hNb
L2

∂2W(X,t)
∂X2

+
[
kwhW(x, t)− hkp

L2
∂2W(X,t)

∂x2

])
= h

[
(ρc Ac)eq

][
∂2W(X,t)

∂t2

]
−
(

h
L2

)[
(ρc Ic)eq

][
∂4W(X,t)

∂X2∂t2

]
(34)

4. Analytical Solution Methodology

Within this section, analytical solutions for the size-dependent electromechanical
free vibration behavior of composite nanobeams with a perforated core and piezoelec-
tric face sheets are proposed. Neglecting the applied external loadings, the nonclassical
electromechanical dynamic equation of motion could be written as:[{

(Ec Ic)eq + Ep Ip

}
+ Ip

e2
311
a33

](
h
L4

)[
∂4W(X,t)

∂X4

]
+

(
l2
[
(Ec Ic)eq − Ep Ip

]
+ Ip

µ2
3111
a33

)(
h
L6

)
∂6W(X,t)

∂X6

−
[
kwhW(x, t)− hkp

L2
∂2W(X,t)

∂x2

]
+

(
(e0a)2

L2

)[
kwh ∂2W(x,t)

∂X2 − hkp
L2

∂4W(X,t)
∂x4

]
= h

[
(ρc Ac)eq + 2ρp Ap

][
∂2W(X,t)

∂t2 − (e0a)2

L2
∂4W(X,t)

∂X2∂t2

]
−
(

h
L2

)[
(ρc Ic)eq + ρp Ip

][
∂4W(X,t)

∂X2∂t2 −
(e0a)2

L2
∂6W(X,t)

∂X4∂t2

]

(35)

Assume that the solution of Equation (35) is given in the following form [47]:

W =
∞

∑
n=1

WnΦn(X)eiωnt (36)
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where, Wn, Φn(X), respectively, refer to the unknown variable and mode shape function
that satisfy the boundary conditions (BCs), i2 = −1, ωn denotes to vibration frequency for
each mode, for simply supported beam, Φn(X) = sin(nπX).

∂2W(X,t)
∂X2

∂2W(X,t)
∂t2

∂4W(X,t)
∂X4

∂4W(X,t)
∂X2∂t2

∂6W(X,t)
∂X6

∂6W(X,t)
∂X4∂t2

 =
∞

∑
n=1



−(nπ)2 −(ωn)

2

(nπ)4 (nπ)2(ωn)
2

−
∞
∑

n=1
(nπ)6 −(nπ)4(ωn)

2

Wn sin(nπX)eiωnt

 (37)

Substituting Equations (36) and (37) into Equation (35) yields:[
∞
∑

n=1

{[{
(Ec Ic)eq + Ep Ip

}
+ Ip

e2
311
a33

](
h
L4

)
(nπ)4

+

(
l2
[
(Ec Ic)eq − Ep Ip

]
+ Ip

µ2
3111
a33

)(
h
L6

)
(nπ)6

+
(

kwh +
(

hkp
L2

)
(nπ)2

)
(1

+ (e0a)2

L2 (nπ)2
)}

Wn sin(nπX)eiωnt
]

= (ωn)
2
[(

∞
∑

n=1

{
h
[
(ρc Ac)eq + 2ρp Ap

](
1 + (e0a)2

L2 (nπ)2
)

+
(

h
L2

)[
(ρc Ic)eq + ρp Ip

]
(nπ)2(1

+ (e0a)2

L2 (nπ)2
)}

Wn sin(nπX)eiωnt
)]

(38)

The nonclassical electromechanical resonant frequencies could be expressed as:(
ωNELEM

n
)2

=

[{
(Ec Ic)eq+Ep Ip

}
+Ip

e2
311
a33

]
( nπ

L )
4
+

(
l2
[
(Ec Ic)eq+Ep Ip

]
+Ip

µ2
3111
a33

)
( nπ

L )
6
+
(

kw+
( kp

L2

)
(nπ)2

)(
1+(e0a)2( nπ

L )
2)(

1+(e0a)2( nπ
L )

2){[
(ρc Ac)eq+2ρp Ap

]
+
[
(ρc Ic)eq+ρp Ip

]
( nπ

L )
2}

(39)

Neglecting the nonclassical effects, the classical resonant frequency could be given by:(
ωCELEM

n
)2

=

[{
(Ec Ic)eq+Ep Ip

}
+Ip

e2
311
a33

]
( nπ

L )
4
+

(
Ip

µ2
3111
a33

)
( nπ

L )
6
+
(

kw+
( kp

L2

)
(nπ)2

)
{[

(ρc Ac)eq+2ρp Ap

]
+
[
(ρc Ic)eq+ρp Ip

]
( nπ

L )
2}

(40)

Neglecting the piezoelectric and flexoelectric effects, the nonclassical mechanical
frequency could be written as:(

ωNMEC
n

)2

=
(Ec Ic)eq(

nπ
L )

4
+l2

[
(Ec Ic)eq

]
( nπ

L )
6
+
(

kw+
( kp

L2

)
(nπ)2

)(
1+(e0a)2( nπ

L )
2)(

1+(e0a)2( nπ
L )

2){[
(ρc Ac)eq

]
+
[
(ρc Ic)eq

]
( nπ

L )
2} (41)

Neglecting the piezoelectric, flexoelectric as well as nonclassical effects, the classical
mechanical frequency could be written as:

(
ωCMEC

n

)2
=

(Ec Ic)eq
( nπ

L
)4

+
(

kw +
(

kp
L2

)
(nπ)2

)
{[

(ρc Ac)eq

]
+
[
(ρc Ic)eq

]( nπ
L
)2
} (42)
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Considering the other BCs, for clamped-clamped (CC) BCs are:

W =
∂W
∂X

= 0 at X = 0 and X = 1 (43)

While the mode shape function, Φn(X) is expressed as:

Φn(X) = cosh(knX)− cos(knX)− βn[sinh(knX)− sin(knX)],

βn = cosh(kn)−cos(kn)
sinh(kn)−sin(kn)

, and cos(kn) cosh(kn) = 1
(44)

On the other hand, for clamped-free (CF) BCs are given as:

W =
∂W
∂X

= 0 at X = 0 and
∂2W
∂X2 =

∂3W
∂X3 = 0 at X = 1 (45)

While the mode shape function, Φn(X) is expressed as:

Φn(X) = cosh(knX)− cos(knX)− βn[sinh(knX)− sin(knX)],

βn = cosh(kn)+cos(kn)
sinh(kn)+sin(kn)

, and cos(kn) cosh(kn) = −1
(46)

Additionally, for clamped-simple (CS) configuration, the boundary conditions are
given as:

W =
∂W
∂X

= 0 at X = 0 and
∂2W
∂X2 = W = 0 at X = 1 (47)

While the mode shape function, Φn(X) is expressed as:

Φn(X) = cosh(knX)− cos(knX)− βn[sinh(knX)− sin(knX)],

βn = cosh(kn)−cos(kn)
sinh(kn)−sin(kn)

, and tan(kn) = tanh(kn)
(48)

Applying the Galerken’s procedure, the resonant frequencies for CC, CF, and CS beam
configurations could be expressed as:(

ωNELEM
n

)2

=

[{
(Ec Ic)eq+Ep Ip

}
+Ip

e2
311
a33

]
( kn

L )
4
+

(
l2
[
(Ec Ic)eq+Ep Ip

]
+Ip

µ2
3111
a33

)
( kn

L )
6
(ξn)+

(
kw+kpξn( kn

L )
2)(

1+(e0a)2( kn
L )

2
(ξn)

)
(

1+(e0a)2( kn
L )

2
(ξn)

)([
(ρc Ac)eq+2ρp Ap

]
+
[
(ρc Ic)eq+ρp Ip

]
( kn

L )
2
(ξn)

) (49)

where ξn is given by:

ξn =
∫ 1

0 {(cosh(kn) + cos(kn))

−βn(sinh(knX) + sin(knX))}{(cosh(kn)− cos(kn))
−βn(sinh(knX)− sin(knX))}dX

(50)

where kn, βn, and ξn are numerically evaluated for the different vibration modes, Zeng et al. [42].

5. Numerical Results and Discussion

Within this section, the proposed analytical procedure is first verified to check the
numerical efficiency. Numerical experiments are performed to explore the influences of
the design variables on the nonclassical electromechanical dynamic behavior of composite
nanobeams embedded in an elastic foundation.
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5.1. Verification of the Developed Methodology for Free Vibration Analysis

To prove the accuracy of the analytical technique in investigating the piezoelectric
vibration response of the composite beam structure, consider a simply supported (SS) com-
posite beam macro having the following material and geometrical parameters: the elastic
core modulus (Ec = 130 MPa), the piezoelectric modulus (Ep = 32 GPa), and the core mass
density (ρc = 126 kg/m3) of the piezoelectric density (ρp = 1380 kg/m3). A beam length of
L = 1.2 m, hc = 10 mm is the core thickness, hp = 0.5 mm is the piezoelectric thickness, and
ht = 11 mm is the overall beam thickness. The same problem is previously analyzed analyti-
cally by Zeng et al. [42] and Chanthanumataporn and Watanabe [48] and numerically using
the finite element (FE) analysis by Chanthanumataporn and Watanabe [48]. Neglecting the
piezoelectricity as well as the size-dependent effects, a comparison of the obtained classical
circular frequencies for the first lowest eight modes with those found in the literature is
illustrated in Figure 2. It can be observed that there is an excellent agreement with the
published results, especially for analytical solutions.

Figure 2. Variation in the classical mechanical circular frequencies with vibration modes of simply-
simply (SS) supported composite beam for, l/h = ea/h = 0 nm, and νc = νp = =kw = kp = 0 [42,48].

Seeking for deeper verification of the proposed analytical methodology to efficiently
examine a nonclassical electromechanical vibration response of sandwich nanobeam struc-
tures, we considered the following geometrical parameters of piezoelectric composite beam:
the elastic core thickness, hc = 0, the overall beam thickness, ht = 2 nm, the thickness of
each piezoelectric face layer, hp = 1 nm. The Young’s modulus of the piezoelectric layer
Ep = 132 GPa and the mass density, ρp = 7500 kg/m3 were utilized. The piezoelectric pa-
rameters are given as: e311 =−4.1 C/m2, a33 = 7.124× 10−9 N/(m2.K). The nondimensional
nonlocal parameter is given as (ea/L) = 0.1, the nondimensional strain gradient param-
eter as (l/L) = 0, and the perforation parameter as α = 1. The problem was considered
previously by Ke et al. [49] and Zeng et al. [42]. The nondimensional frequency is eval-
uated by λ1 = ωn1L

√
ρp
Ep

. The nondimensional foundation parameters are expressed as

Kw = kw L4

Ep Ip
and Kp = kw L2

Ep Ip
. Comparison of λ1 for the piezoelectric nanobeam at different

beam aspect ratios, L/ht and nondimensional elastic foundation parameters, Kw at Kp = 0
for various BCs is shown in Table 1. It observed a good agreement between the obtained
results and that obtained by Ke et al. [49] and Zeng et al. [42].
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Table 1. Variations in the nonclassical fundamental electromechanical frequency parameter, λ1 =

ωn1L
√

ρp
Ep , at different values of the nondimensional elastic foundation parameter, Kw, and beam

slenderness ratio for different BCS for (l/L) = 0 a33 = 7.124 × 10−9 N/(m2.K), (ea/L) = 0.1, Kp = 0, α = 1.

L/ht Kw

SS CC CS CF

Present Ref [49] Ref [44] Present Ref [44] Present Ref [49] Ref [44] Present Ref [44]

6
0 0.4519 0.4570 0.4571 1.0149 1.0245 0.7012 0.7077 0.7087 0.1699 0.1714

102 0.6562 -------- -------- -------- -------- 0.8454 -------- -------- 0.5098 --------
104 4.7786 -------- -------- -------- -------- 4.7996 -------- -------- 4.8095 --------

8
0 0.3406 0.3428 0.3428 0.7644 0.7684 0.5284 0.5310 0.5315 0.1274 0.1285

102 0.4945 -------- -------- 0.8424 -------- 0.6377 -------- -------- 0.3825 --------
104 3.6016 -------- -------- 3.6602 -------- 3.6203 -------- -------- 3.6087 --------

10
0 0.2731 0.2742 0.2742 0.6127 0.6167 0.4236 0.4250 0.4252 0.1020 0.1028

102 0.3965 -------- -------- 0.6758 -------- 0.5115 -------- -------- 0.306 --------
104 2.8879 -------- -------- 2.9365 -------- 2.904 -------- -------- 2.8875 --------

16
0 0.1711 0.1714 0.1714 0.3838 0.3842 0.2654 0.2658 0.2658 0.0637 0.0643

102 0.2485 -------- -------- 0.4237 -------- 0.3206 -------- -------- 0.1913 --------
104 1.8094 -------- -------- 1.841 -------- 1.8203 -------- -------- 1.8051 --------

20
0 0.1370 0.1371 0.1371 0.3072 0.3073 0.2124 0.2127 0.2126 0.0510 0.0514

102 0.1989 ----— -------- 0.3392 -------- 0.2567 -------- -------- 0.1531 --------
104 1.4484 ----— -------- 1.4739 -------- 1.4572 -------- -------- 1.4441 --------

30

0 0.0914 0.0914 0.0914 0.2049 0.2049 0.1417 0.1420 0.1417 0.0340 0.0343
102 0.1327 ----— -------- 0.2263 -------- 0.1712 -------- -------- 0.102 --------
104 0.9661 ----— -------- 0.9833 -------- 0.9721 -------- -------- 0.9628 --------

Another verification of the developed methodology is performed to check the accuracy
of the analytical procedure to efficiently investigate the vibration response of the beam
structure. For this comparison, the following nondimensional frequency parameter is

defined:
√

λ1 =

(
ω2

n1L4ρA
Eeq I

) 1
4

where Eeq is the equivalent elasticity modulus, which can

be expressed as Eeq = λ + 2G; where λ is the Lame’s constant, λ = νE
(1+ν)(1−2ν)

and G is

the rigidity modulus, G = E
2(1+ν)

. The nondimensional elastic foundation parameters are

defined as Kw = kw L4

Eeq I and Kp
π2 = kw L2

Eeq Iπ2 . Comparisons of the fundamental nondimensional

frequency parameter
√

λ1 for the simply supported beam (SS) for different values of the
nondimensional elastic foundation parameters, Kw and Kp and for beam aspect ratios,
L/H = 15 and 120, which are depicted in Table 2. It is observed that excellent agreement
with results reported by Chen et al. [50] and De Rosa and Maurizi [51] verifies the proposed
methodology.
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Table 2. Variations in the classical electromechanical fundamental nondimensional frequency param-
eter
√

λ1 for simply supported (SS) beam embedded in two parameters elastic foundation at beam
aspect ratio L/ht = 120 at different values of the elastic foundation parameters.

Foundation
Parameters

√
λ1=

(
ω2

n1L4ρA
EeqI

) 1
4

for L/H = 120
√

λ1=
(

ω2
n1L4ρA
EeqI

) 1
4

for L/H = 15

Kw
Kp

π2 Present Ref [50] Analytical,
Ref [50] Ref [51] % Error Present Ref [50] Analytical,

Ref [50] % Error

0

0 3.141548 3.141434 3.141417 3.1415 0.0042 3.1387282 3.1302472 3.1302475 0.270927
0.5 3.476694 3.476594 3.476589 3.4767 0.0030 3.4735738 3.4667120 3.4667123 0.197925
1.0 3.735951 3.735876 3.735859 3.7360 0.0025 3.732598 3.7265663 3.7265663 0.161857
2.5 4.296954 4.296866 4.296879 4.2970 0.0017 4.2930972 4.2880927 4.2880929 0.116702

102

0 3.748311 3.748233 3.748219 3.7483 0.0025 3.7449466 3.7389476 3.7389477 0.160444
0.5 3.960753 3.960677 3.960669 3.9608 0.0021 3.9571978 3.9516805 3.9516807 0.139614
1.0 4.143643 4.143563 4.143565 4.1437 0.0019 4.1399244 4.1347186 4.1347188 0.12590
2.5 4.582333 4.582266 4.582264 4.5824 0.0015 4.5782205 4.5734720 4.5734720 0.103827

104

0 10.024121 10.02403 10.02404 10.024 0.0008 10.015124 9.9958218 9.9958219 0.193102
0.5 10.036187 10.03610 10.03610 10.036 0.0009 10.0271791 10.007782 10.007782 0.19382
1.0 10.048209 10.04813 10.04813 10.048 0.0008 10.0391909 10.019699 10.019699 0.194536
2.5 10.08402 10.08394 10.08394 10.084 0.0008 10.07497 10.055193 10.055193 0.196684

Comparisons of the frequency parameter for the lowest three vibration modes for
the clamped-clamped (CC) beam at different values of the nondimensional frequency
parameters for L/H = 15 and 120 are illustrated in Table 3. It is noticeable that there is good
agreement with the results obtained by Chen et al. [50] and De Rosa and Maurizi [51].

5.2. Parametric Studies

Within this section, parametric studies are performed to explore the effects of geo-
metrical as well as material characteristics on the nonclassical electromechanical dynamic
behavior of piezoelectrically layered perforated nanobeams embedded in two variables of
an elastic foundation. To conduct this, we considered a composite beam structure composed
of a regularly perforated elastic core and two piezoelectric face sheet layers. Both material
and geometrical properties of the composite beam structures are shown in Table 4, other-
wise stated by Zeng et al. [42]. The nondimensional electromechanical frequency parameter,

λElec
ni = ωElec

ni L2

√
[(ρA)c ]eq+2(ρA)p

[(Eeq I)c]eq
+(Eeq I)p

, and the nondimensional mechanical frequency param-

eter, λMec
ni = ωMec

ni L2

√
(ρA)eq

(Eeq I)eq
, with n refers to the vibration mode. The nondimensional

elastic foundation parameters for the piezoelectric composite beam are defined as follows:

KElect
w = kw L4

(Eeq I)c+(Eeq I)p
and

KElect
p
π2 =

kp L2(
(Eeq I)c+(Eeq I)p

)
π2

. The homogeneous perforated beam

could be expressed as KEMec
w = kw L4

(Eeq I)
and

KElect
p
π2 =

kp L2

(Eeq I)π2 .
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Table 3. Comparison of the estimated classical fundamental nondimensional frequency parameter√
λ1 for clamped-clamped (CC) beam embedded in two parameters elastic foundation at beam aspect

ratio L/h = 120 at different values of the elastic foundation parameters for α = 1.

Foundation
Parameters

√
λn=

(
ω2

nL4ρA
EeqI

) 1
4

for L/H = 120
√

λ1
√

λ2
√

λ3

Kw
Kp

π2 Present Ref [50] Ref [51] Present Ref [50] Ref [51] Present Ref [50] Ref [51]

0

0 4.7299 4.7314 4.73 7.8527 7.8533 7.854 10.9940 10.9908 10.996
0.5 4.8672 4.8683 4.869 7.9674 7.9680 7.968 11.0847 11.0815 11.086
1.0 4.9938 4.9938 4.994 8.0774 8.0777 8.078 11.1732 11.1700 11.174
2.5 5.3250 5.3195 5.32 8.3830 8.3812 8.38 11.4267 11.4233 11.43

102

0 4.9503 4.9515 4.95 7.9038 7.904 7.904 11.0128 11.0096 11.014
0.5 5.0709 5.0718 5.071 8.0164 8.0169 8.017 11.1030 11.0998 11.104
1.0 5.1835 5.1834 5.182 8.1244 8.1247 8.124 11.1910 11.1878 11.192
2.5 5.4834 5.4783 5.477 8.4251 8.4234 8.423 11.4434 11.4400 11.444

104

0 10.1227 10.1227 10.123 10.8385 10.8384 10.839 12.5242 12.5216 12.526
0.5 10.1373 10.1373 10.137 10.8828 10.8827 10.883 12.5858 12.5832 12.588
1.0 10.1518 10.1517 10.152 10.9266 10.9264 10.927 12.6465 12.6439 12.648
2.5 10.1951 10.1942 10.194 11.0550 11.0539 11.055 12.8237 12.8209 12.825

√
λn =

(
ω2

n L4ρA
Eeq I

) 1
4

for L/H = 15

0

0 4.7246271 4.66554 ----- 7.8200665 7.61037 ----- 10.8971419 10.42711 -----
0.5 4.8618011 4.80385 ----- 7.9343451 7.72927 ----- 10.9869929 10.52435 -----
1.0 4.9882582 4.93027 ----- 8.0438889 7.84259 ----- 11.0746921 10.61889 -----
2.5 5.3190604 5.25671 ----- 8.3481637 8.15441 ----- 11.3259972 10.88791 -----

102

0 4.9447357 4.89268 ----- 7.8709675 7.66521 ----- 10.9157313 10.44810 -----
0.5 5.0652311 5.01352 ----- 7.9831048 7.78165 ----- 11.0051315 10.54476 -----
1.0 5.1776934 5.12542 ----- 8.0907063 7.89277 ----- 11.0924046 10.63876 -----
2.5 5.4772355 5.41981 ----- 8.3900963 8.19912 ----- 11.3425599 10.90635 -----

104

0 10.1113553 10.04899 ----- 10.7934756 10.70252 ----- 12.4138087 12.08187 -----
0.5 10.1259392 10.0640 ----- 10.8376283 10.7461 ----- 12.4748902 12.14487 -----
1.0 10.1404604 10.07881 ----- 10.8812478 10.78903 ----- 12.5350874 12.20684 -----
2.5 10.1836536 10.12225 ----- 11.0090521 10.91414 ----- 12.710659 12.38693 -----

Table 4. The geometric and material constants of the piezoelectrically layered composite nanobeam.

Parameters Thickness
(nm)

Length
(nm)

Width
(nm)

Young’s
Modulus

(GPa)

Mass
Density
(Kg/m3)

Poisson’s
Ratio

e311
(C/m2)

µ3111
(C/m)

a33
N/(m2.K) l

Elastic core 3 100 5 0.130 1380 0.24 ---- ---- ----– h

Piezoelectric
Layer 1 100 5 132 7500 0.27 −4.1 5 × 10−8 7.124 × 10−9 h

5.2.1. Effect of the Nondimensional Elastic Foundation Parameters, Kw and Kp

Neglecting the effect of the shear component of the elastic foundation parameter, Kp,
the dependency of the resonant frequency parameters of the first lowest three vibration
modes on the nondimensional elastic foundation parameter, Kw, for both nonclassical and
classical electromechanical and mechanical behaviors at different values of the material
Poisson’s ratio for different composite nanobeam BCS are depicted in Figure 3. It is no-
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ticed that for both electromechanical and mechanical nonclassical and classical behaviors,
the fundamental resonant frequency parameter, λ1, increases with increasing the nondi-
mensional foundation parameter, Kw, due to increasing the overall system stiffness. This
effect becomes insignificant as the vibration modes proceed; almost constant behaviors are
observed at the third vibration mode. Additionally, neglecting the effect of the material
Poisson’s ratio leads to underestimates of the nondimensional frequency parameters for all
behaviors and beam BCs; smaller values are obtained compared with the corresponding
cases obtained by considering Poisson’s ratio effect. Moreover, the incorporation of the
flexoelectric and piezoelectricity effects leads to larger values of the nondimensional fre-
quency parameters compared with the corresponding mechanical behavior, especially at
smaller values of elastic foundation stiffness. Increasing the elastic foundation parameter,
Kw, may produce larger values of the mechanical nondimensional frequency parameters
compared with the corresponding electromechanical behavior, especially at the first vibra-
tion mode. Incorporating the nonclassical effect with (l/h) < (ea/h) leads to smaller values
of the nondimensional frequency parameters compared with the corresponding classical
behaviors due to the associated softening effect. Comparing the corresponding BCs, the CC
configuration produces the largest values of the nondimensional fundamental frequency
parameters, while the CF results in the smallest values.

Figure 3. Cont.
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Figure 3. Dependency of the fundamental resonant frequency parameters of the lowest three vibration
modes on the nondimensional foundation parameter, Kw, at different values of material Poisson’s
ratio, ν, for different nonclassical and classical behaviors of piezoelectric composite nanobeams for
different BCs, at N = 4 and beam aspect ratio, L/h = 20, e0a/h = 4, l/h = 2, α = 0.5, and Kp = 0, νc = 0.24,
νp = 0.27.

To explore the effect of considering the material Poisson’s ratio, Table 5 shows the
variations of the nondimensional frequency parameters for the first lowest three vibration
modes of the nonclassical electromechanical and mechanical behaviors for CC and CF

BCs. The relative percentage difference is defined as %E = 100 ×
(

λν 6=0
i −λν=0

i
λν=0

i

)
. It is

clear that considering the material Poisson’s ratio has significant effects in detecting the
nondimensional frequency parameters. The relative percentage difference reaches 12.5% for
the electromechanical behavior, while for the mechanical behavior, this relative percentage
difference reaches about 8.6%.
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Table 5. Effect of the material Poisson’s ratio on the frequency parameters of the first three vibration
modes for electromechanical and mechanical nonclassical behaviors for CC and CF BCs at different
values of the nondimensional elastic foundation parameter, Kw, for N = 4 and beam aspect ratio,
L/h = 20, e0a/h = 4, l/h = 2, α = 0.5, and Kp = 0, νc = 0.24, νp = 0.27.

CC CF

Kw

NCL_Elect
%E

NCL_Mech
%E

NCL_Elect
%E

NCL_Mech
%E

ν = 0 ν 6= 0 ν = 0 ν 6= 0 ν = 0 ν 6= 0 ν = 0 ν 6= 0

λ1

0 20.0360 22.5228 12.4117 18.7259 20.3300 8.5662 3.5897 4.0356 12.4217 3.3542 3.6415 8.5654

5 20.1661 22.6696 12.4144 18.8963 20.5150 8.5662 4.2587 4.7903 12.4827 4.2045 4.5647 8.5670

25 20.6783 23.2476 12.4251 19.5630 21.2388 8.5662 6.2562 7.0421 12.5619 6.5869 7.1511 8.5655

50 21.3012 23.9504 12.4369 20.3657 22.1102 8.5659 8.0867 9.1048 12.5898 8.6904 9.4348 8.5658

100 22.4953 25.2976 12.4573 21.8829 23.7574 8.5660 10.8583 12.2274 12.6088 11.8235 12.8364 8.5668

λ2

0 45.4108 51.0377 12.3911 42.4857 46.1251 8.5662 19.5591 21.9865 12.4106 18.2806 19.8466 8.5665

5 45.4677 51.1019 12.3917 42.5605 46.2063 8.5662 19.6923 22.1369 12.4140 18.4551 20.0359 8.5657

25 45.6945 51.3579 12.3941 42.8583 46.5296 8.5661 20.2163 22.7282 12.4251 19.137 20.7763 8.5661

50 45.9764 51.6761 12.3970 43.2277 46.9306 8.5660 20.8528 23.4463 12.4372 19.9566 21.6661 8.5661

100 46.5351 52.3067 12.4027 43.9571 47.7225 8.5661 22.0708 24.8204 12.4581 21.5024 23.3443 8.5660

λ3

0 78.0220 87.6756 12.3729 73.1538 79.4202 8.5661 45.4547 51.087 12.3910 42.5265 46.1694 8.5662

5 78.0546 87.7123 12.3730 73.1967 79.4668 8.5661 45.5115 51.1511 12.3916 42.6012 46.2505 8.5662

25 78.1845 87.8591 12.3741 73.3681 79.6529 8.5661 45.7381 51.4069 12.3940 42.8987 46.5735 8.5662

50 78.3467 88.0421 12.3750 73.5819 79.8850 8.5661 46.0198 51.7248 12.3968 43.2678 46.9741 8.5660

100 78.6700 88.4071 12.3771 74.0075 80.3471 8.5662 46.578 52.3549 12.4026 43.9966 47.7654 8.5661

Neglecting the effect of the elastic foundation parameter, Kw, the shear component
of the elastic foundation parameter, Kp, has a significant effect on the vibration behavior
of piezoelectric composite beams. The dependency of the resonant frequency parameters
of the first lowest three vibration modes on the nondimensional foundation parameter,
Kp, at different values of the material Poisson’s ratio for nonclassical and classical elec-
tromechanical and mechanical behaviors are illustrated in Figure 4. It is observed that
the nondimensional fundamental frequency parameter is nonlinearly dependent on the
nondimensional elastic foundation parameter, Kp. Increasing the nondimensional elastic
foundation parameter, Kp, results in increasing the nondimensional frequency parame-
ter. Contrary to the detected trend for the effect of Kw, increasing the nondimensional
foundation parameter, Kp, is significant for higher vibration modes.

Table 6 illustrates the influence of the material Poisson’s ratio on the nondimensional
frequency parameters of the first lowest three vibration modes for electromechanical and
mechanical nonclassical behaviors for CS and SS BCs at different values of the nondi-
mensional elastic foundation parameter, Kp/π2. It is observed that although the rate of
increasing the nondimensional elastic foundation parameter Kp is smaller than that of Kw,
it produces a relative percentage difference of about 12.5% for the nonclassical electrome-
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chanical behavior and about 8.6% for the nonclassical mechanical behavior for both CS and
SS beam BCs.

Figure 4. Cont.
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Figure 4. Dependency of the resonant frequency parameters for the lowest three vibration modes on
the nondimensional foundation parameter, Kp, at different values of Poisson’s ratio, ν for nonclassical
and classical behaviors of piezoelectric composite nanobeams for different beam BCs, at N = 4 and
beam aspect ratio, L/h = 20, N = 4, e0a/h = 4, l/h = 2, Kw = 0., νc = 0.24, and νp = 0.27.

Table 6. Effect of the material Poisson’s ratio on the frequency parameters of the first three vibration
modes for electromechanical and mechanical nonclassical behaviors for CS and SS BCs at different
values of the nondimensional elastic foundation parameter, Kp/π2 for N = 4 and beam aspect ratio,
L/h = 20, e0a/h = 4, l/h = 2, α = 0.5, Kw = 0, νc = 0.24, and νp = 0.27.

CS SS

Kp/π2
NCL_Elect

%E
NCL_Mech

%E
NCL_Elect

%E
NCL_Mech

%E
ν = 0 ν 6= 0 ν = 0 ν 6= 0 ν = 0 ν 6= 0 ν = 0 ν 6= 0

λ1

0 13.9087 15.6351 12.4124 12.999 14.1125 8.5660 9.0454 10.1683 12.4140 8.4535 9.1776 8.5657

0.5 15.9026 17.8847 12.4640 15.5506 16.8827 8.5662 11.5242 12.9644 12.4972 11.5731 12.5644 8.5656

2.5 22.1508 24.9297 12.5454 23.0914 25.0695 8.5664 18.3509 20.6592 12.5787 19.5917 21.27 8.5664

5 28.069 31.5995 12.5779 29.9575 32.5237 8.5661 24.3247 27.39 12.6016 26.3858 28.646 8.5660

10 37.1791 41.8641 12.6012 40.3229 43.777 8.5661 33.1898 37.3769 12.6156 36.345 39.4584 8.5662

λ2

0 37.2447 41.8602 12.3924 34.8416 37.8262 8.5662 29.8496 33.5493 12.3945 27.9204 30.3121 8.5661

0.5 40.0778 45.0576 12.4253 38.5146 41.8138 8.5661 33.0584 37.1703 12.4383 32.0581 34.8042 8.5660

2.5 49.8247 56.0519 12.4982 50.6075 54.9426 8.5661 43.5923 49.0502 12.5203 44.949 48.7994 8.5662

5 59.815 67.3153 12.5392 62.5164 67.8716 8.5661 53.9404 60.7149 12.5592 57.1076 61.9995 8.5661

10 75.9507 85.501 12.5743 81.2568 88.2173 8.5661 70.2007 79.0382 12.5889 75.7826 82.2743 8.5662

λ3

0 67.8433 76.2383 12.3741 63.5966 69.0443 8.5660 58.3649 65.5879 12.3756 54.6992 59.3848 8.5661

0.5 71.2365 80.0685 12.3981 68.0314 73.859 8.5660 62.0726 69.7729 12.4053 59.5318 64.6314 8.5662

2.5 83.4407 93.8387 12.4615 83.4461 90.5942 8.5661 75.0946 84.4642 12.4771 75.843 82.3398 8.5661

5 96.5505 108.6238 12.5046 99.4081 107.9235 8.5661 88.7239 99.833 12.5210 92.2623 100.1655 8.5660

10 118.4959 133.3641 12.5474 125.3771 136.1171 8.5662 111.0738 125.0259 12.5611 118.4595 128.6068 8.5661
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5.2.2. Effect of the Perforation Filling Ratio, α

Keeping the constant value of the number of holes throughout the perforated core
cross-section, a comparison of the dependency of the resonant frequency parameters of
the first lowest three vibration modes on the perforation filling ratio at different values of
the material Poisson’s ratio for different beam configurations for electromechanical and
mechanical nonclassical and classical behaviors is depicted in Figure 5. It is seen that the
nondimensional electromechanical and mechanical frequency parameters are nonlinearly
decreased with increasing the perforation filling ratio due to the reduction in the stiffness to
mass ratio of the perforated core for all beam configurations for nonclassical and classical
behaviors. As indicated before, underestimated nondimensional frequency parameters are
detected when the material Poisson’s effect is neglected compared with the corresponding
cases obtained by considering the material Poisson’s effect.

Figure 5. Cont.



Mathematics 2023, 11, 1180 21 of 31

Figure 5. Comparison of the resonant frequency parameters of the lowest three vibration modes on
the filling ratio, α at different values of Poisson’s ratio for nonclassical and classical behaviors of
piezoelectric composite nanobeams for different beam BCs, at N = 4 and beam aspect ratio, L/h = 20,
e0a/h = 4, l/h = 2, Kp/π2 = 2.5, and Kw = 25.

5.2.3. Effect of the Number of Hole Rows, N

With a constant value of the perforation filling ratio, the dependency of the nondi-
mensional frequency parameter on the number of hole rows, N, for electromechanical and
mechanical nonclassical and classical behaviors for different BCs is depicted in Figure 6. It
is observed that the nondimensional electromechanical frequency parameters are slightly
increased with increasing the number of hole rows for all beam configurations, while
different trends are observed for the mechanical behaviors depending on the beam con-
figuration. It is also noticed that, neglecting the nonlocality effect, the introduction of the
strain gradient effect results in a stiffening effect leading to producing larger values of the
nonclassical nondimensional frequency parameters compared with the corresponding clas-
sical cases. On the other hand, the introduction of the nonlocality parameter in the absence
of the strain gradient parameter results in softening effect leading to smaller values of
the nonclassical nondimensional frequency parameters compared with the corresponding
classical behaviors.
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Figure 6. Cont.
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Figure 6. Dependency of the resonant frequency parameters on the number of holes, N for the
first lowest three vibration modes at different values of Poisson’s ratio for nonclassical and classical
behaviors of piezoelectric composite nanobeams for different BCs, at α = 0.5 and beam aspect ratio,
L/h = 20, Kp/π2 = 2.5, and Kw = 25.

5.2.4. Effect of the Nondimensional Strain Gradient Parameter, (l/h)

The dependency of the nondimensional frequency parameter on the dimensionless
strain gradient parameter, l/h, for different beam configurations at different values of the
material Poisson’s ratio is demonstrated in Figure 7. It is observed that incorporating the
strain gradient effect leads to increasing the overall system stiffness thus larger values of
the resonant nondimensional frequency parameters are produced by increasing the strain
gradient parameter for all vibration modes and BCs. Additionally, at the considered elastic
foundation. the nonlocal parameters and the piezoelectric and flexoelectric effects result in
smaller values of the electromechanical resonant frequency parameters compared with the
corresponding mechanical behaviors. Furthermore, the material Poisson’s effect produces
larger values of the nondimensional resonant frequency parameters.

Figure 7. Cont.
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Figure 7. Dependency of the resonant frequency parameters on the nondimensional strain gradient
parameter, l/h, for the lowest three vibration modes at different values of Poisson’s ratio for nonclas-
sical behaviors of piezoelectric composite nanobeams for different BCs at α = 0.5, N = 4, e0a/h = 1,
beam aspect ratio, L/h = 20, Kp/π2 = 2.5, and Kw = 25.

5.2.5. Effect of the Nondimensional Nonlocal Parameter, (ea/h)

On the other hand, introducing the nonlocal effect results in a softening effect lead-
ing to produce smaller values of the resonant frequency parameters, as demonstrated
in Figure 8. It is demonstrated that the nondimensional frequency parameters are non-
linearly decreased with increasing the nonlocal parameter due to the material softening
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effect. Smaller values of the nondimensional frequency parameters are detected due to
ignoring the material Poisson’s effect. Moreover, the introduction of the piezoelectric and
flexoelectric effects produce smaller values of the resonant frequency parameter compared
with the corresponding mechanical behavior at the first vibration mode. This effect may be
reversed at higher vibration modes depending on the beam boundary condition.

Figure 8. Cont.
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Figure 8. Dependency of the resonant frequency parameters on the nondimensional nonlocal param-
eter, ea/h, for the lowest three vibration modes at different values of Poisson’s ratio for nonclassical
behaviors of piezoelectric composite nanobeams for different BCs at α = 0.5, N = 4, e0a/h = 1, beam
aspect ratio, L/h = 20, Kp/π2 = 2.5, and Kw = 25.

5.2.6. Effect of the Piezoelectric Coefficient, (e311)

The dependency of the electromechanical nondimensional frequency parameters on
the piezoelectric coefficient, e311, for the first lowest three vibration modes for nonclassical
and classical behaviors for different beam configurations at different values of the material
Poisson’s ratio is demonstrated in Table 7. It may be noticed that increasing the absolute
values of the piezoelectric coefficient, e311, produces larger values of the nondimensional
frequency parameters for all beam BCs. This effect becomes more significant at higher
vibration modes.

5.2.7. Effect of Electric Field Strain Gradient Coupling Coefficient, (µ3111)

The electric field strain gradient coupling coefficient, µ3111, significantly affects the
electromechanical vibration behavior of the composite piezoelectric nanobeam. The depen-
dency of the electromechanical nondimensional frequency parameters on the electric field
strain gradient coupling coefficient, µ3111, for the first lowest three vibration modes for
different beam configurations at different values of the material Poisson’s ratio is depicted
in Table 8. It may be observed that increasing the absolute values of the electric field-strain
gradient coupling coefficient results in a slight increase in the nondimensional fundamental
resonant frequency parameter for all considered BCs. Moreover, the electromechanical
behavior is significantly affected by considering the material Poisson’s effect.
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Table 7. Dependency of the resonant frequency parameters of the lowest three vibration modes with e311 for electromechanical behavior of piezoelectric composite
nanobeams at different values of the elastic foundation parameters for different BCs at α = 0.5, N = 4, beam aspect ratio, L/h = 20, N = 4, e0a/h = 1, l/h = 4, Kw = 25,
Kp/π2 = 2.5.

SS CC CF CS

NCL CL NCL CL NCL CL NCL CL

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

e311 λ1

−12 20.8663 23.4133 19.9738 22.4019 34.3647 38.4291 30.8067 34.3799 7.9924 8.9723 7.9665 8.943 26.7242 29.9311 24.7164 27.6506
−8 20.6624 23.2319 19.7555 22.2075 33.7303 37.8628 30.0753 33.726 7.9232 8.9107 7.8969 8.8811 26.3367 29.5856 24.2847 27.2654
−4 20.5392 23.1223 19.6234 22.09 33.3438 37.519 29.6278 33.3276 7.8813 8.8735 7.8549 8.8437 26.1014 29.3764 24.022 27.0317
0 20.4979 23.0857 19.5791 22.0507 33.214 37.4037 29.4771 33.1937 7.8673 8.8611 7.8408 8.8312 26.0225 29.3063 23.9338 26.9533
4 20.5392 23.1223 19.6234 22.09 33.3438 37.519 29.6278 33.3276 7.8813 8.8735 7.8549 8.8437 26.1014 29.3764 24.022 27.0317
8 20.6624 23.2319 19.7555 22.2075 33.7303 37.8628 30.0753 33.726 7.9232 8.9107 7.8969 8.8811 26.3367 29.5856 24.2847 27.2654
12 20.8663 23.4133 19.9738 22.4019 34.3647 38.4291 30.8067 34.3799 7.9924 8.9723 7.9665 8.943 26.7242 29.9311 24.7164 27.6506

λ2

−12 71.1768 79.7641 53.9823 60.215 108.646 121.7285 76.0412 84.6213 34.6209 38.7283 30.9233 34.5215 88.5533 99.2212 64.2624 71.5872
−8 70.2932 78.9766 52.6948 59.0636 107.257 120.4904 73.8096 82.6218 34.012 38.185 30.2171 33.8904 87.4255 98.2161 62.5293 70.0356
−4 69.7576 78.5004 51.907 58.3618 106.415 119.7414 72.4376 81.3984 33.6414 37.8552 29.7853 33.506 86.7418 97.608 61.466 69.0879
0 69.5782 78.341 51.6417 58.126 106.132 119.4907 71.9744 80.9865 33.517 37.7447 29.64 33.3769 86.5127 97.4045 61.1075 68.7691
4 69.7576 78.5004 51.907 58.3618 106.415 119.7414 72.4376 81.3984 33.6414 37.8552 29.7853 33.506 86.7418 97.608 61.466 69.0879
8 70.2932 78.9766 52.6948 59.0636 107.257 120.4904 73.8096 82.6218 34.012 38.185 30.2171 33.8904 87.4255 98.2161 62.5293 70.0356
12 71.1768 79.7641 53.9823 60.215 108.646 121.7285 76.0412 84.6213 34.6209 38.7283 30.9233 34.5215 88.5533 99.2212 64.2624 71.5872

λ3

−12 182.660 204.974 108.2391 120.337 252.201 283.0483 141.4364 157.043 108.590 121.6653 76.0419 84.6215 215.829 242.2106 124.1121 137.886
−8 181.122 203.605 105.0337 117.462 250.187 281.255 136.9017 152.971 107.199 120.425 73.8083 82.6201 214.059 240.6345 120.2659 134.435
−4 180.194 202.779 103.0627 115.703 248.970 280.1736 134.1074 150.476 106.355 119.6747 72.4351 81.3957 212.989 239.6839 117.898 132.321
0 179.883 202.503 102.3972 115.111 248.563 279.8121 133.1629 149.634 106.073 119.4236 71.9716 80.9835 212.632 239.3661 117.098 131.608
4 180.194 202.779 103.0627 115.703 248.970 280.1736 134.1074 150.476 106.355 119.6747 72.4351 81.3957 212.989 239.6839 117.898 132.321
8 181.122 203.605 105.0337 117.462 250.187 281.255 136.9017 152.971 107.199 120.425 73.8083 82.6201 214.059 240.6345 120.2659 134.435
12 182.660 204.974 108.2391 120.337 252.201 283.0483 141.4364 157.043 108.590 121.6653 76.0419 84.6215 215.829 242.2106 124.1121 137.886
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Table 8. Dependency of the resonant frequency parameters of the lowest three vibration modes with µ3111 for electromechanical behavior of piezoelectric composite
nanobeams at different values of the elastic foundation parameters for different BCs at α = 0.5, N = 4, beam aspect ratio, L/h = 20, N = 4, e0a/h = 1, l/h = 4, Kw = 25,
Kp/π2 = 2.5.

µ3111
× 108

SS CC CF CS

NCL CL NCL CL NCL CL NCL CL

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

νc = νp
= 0

νc = 0.24
νp = 0.27

λ1

−5 20.5413 23.1242 19.6256 22.092 33.3504 37.5248 29.6354 33.3344 7.882 8.8741 7.8556 8.8443 26.1054 29.3799 24.0265 27.0356
−2.5 20.5365 23.1199 19.6205 22.0874 33.3317 37.5082 29.6137 33.3151 7.8819 8.874 7.8554 8.8442 26.0948 29.3705 24.0146 27.0251
−1.25 20.5353 23.1189 19.6192 22.0863 33.327 37.5041 29.6083 33.3103 7.8819 8.874 7.8554 8.8442 26.0921 29.3681 24.0116 27.0224

0 20.5349 23.1185 19.6188 22.0859 33.3255 37.5027 29.6065 33.3087 7.8819 8.874 7.8554 8.8442 26.0912 29.3673 24.0106 27.0215
1.25 20.5353 23.1189 19.6192 22.0863 33.327 37.5041 29.6083 33.3103 7.8819 8.874 7.8554 8.8442 26.0921 29.3681 24.0116 27.0224
2.5 20.5365 23.1199 19.6205 22.0874 33.3317 37.5082 29.6137 33.3151 7.8819 8.874 7.8554 8.8442 26.0948 29.3705 24.0146 27.0251
5 20.5413 23.1242 19.6256 22.092 33.3504 37.5248 29.6354 33.3344 7.882 8.8741 7.8556 8.8443 26.1054 29.3799 24.0265 27.0356

λ2

−5 69.7667 78.5084 51.9204 58.3737 106.429 119.754 72.461 81.4192 33.6477 37.8608 29.7926 33.5125 86.7534 97.6183 61.4841 69.104
−2.5 69.6838 78.4347 51.7979 58.2648 106.277 119.619 72.2115 81.1973 33.6284 37.8436 29.7701 33.4925 86.6384 97.516 61.3042 68.944
−1.25 69.663 78.4163 51.7672 58.2375 106.239 119.585 72.149 81.1417 33.6235 37.8393 29.7644 33.4874 86.6096 97.4905 61.2592 68.9039

0 69.6561 78.4101 51.757 58.2284 106.226 119.574 72.1281 81.1231 33.6219 37.8379 29.7625 33.4858 86.6 97.4819 61.2441 68.8906
1.25 69.663 78.4163 51.7672 58.2375 106.239 119.585 72.149 81.1417 33.6235 37.8393 29.7644 33.4874 86.6096 97.4905 61.2592 68.9039
2.5 69.6838 78.4347 51.7979 58.2648 106.277 119.619 72.2115 81.1973 33.6284 37.8436 29.7701 33.4925 86.6384 97.516 61.3042 68.944
5 69.7667 78.5084 51.9204 58.3737 106.429 119.754 72.461 81.4192 33.6477 37.8608 29.7926 33.5125 86.7534 97.6183 61.4841 69.104

λ3

−5 180.209 202.793 103.096 115.733 248.991 280.192 134.155 150.518 106.370 119.687 72.4585 81.4165 213.007 239.70 117.938 132.357
−2.5 179.886 202.506 102.4037 115.117 248.519 279.773 133.06 149.543 106.218 119.552 72.2096 81.1951 212.613 239.350 117.057 131.572
−1.25 179.805 202.434 102.2298 114.962 248.401 279.668 132.785 149.298 106.180 119.519 72.1472 81.1396 212.515 239.262 116.835 131.375

0 179.778 202.410 102.1718 114.911 248.362 279.633 132.693 149.216 106.167 119.507 72.1264 81.1212 212.482 239.233 116.761 131.309
1.25 179.805 202.434 102.2298 114.962 248.401 279.668 132.785 149.298 106.180 119.519 72.1472 81.1396 212.515 239.262 116.835 131.375
2.5 179.886 202.506 102.4037 115.117 248.519 279.773 133.06 149.543 106.218 119.552 72.2096 81.1951 212.613 239.350 117.057 131.572
5 180.209 202.793 103.0962 115.733 248.991 280.192 134.155 150.518 106.370 119.687 72.4585 81.4165 213.007 239.70 117.938 132.357
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6. Conclusions

Within the framework of the modified nonlocal strain gradient elasticity theory, a
nonclassical analytical procedure is developed to investigate the electromechanical size-
dependent free vibration behavior of piezoelectrically layered perforated nanobeam em-
bedded in an elastic foundation considering flexoelectricity effects. The Poisson’s effect
is captured by applying the principles of three-dimensional continuum mechanics. All
kinematics and kinetics relations are presented based on the EBBT. Regular squared perfo-
ration configuration is adopted for the perforated core. Hamilton’s principle is utilized to
develop the coupled electromechanical equation of motion. Closed forms for the resonant
frequencies are derived for different BCs. The efficiency of the proposed procedure is
verified by comparing the obtained results with the available results in the literature, and
an excellent agreement is observed. Numerical experiments are depicted and discussed.
The following concluding remarks are revealed:

â The elastic foundation significantly affects the electromechanical as well as the mechan-
ical dynamic behavior of piezoelectrically layered perforated nanobeams embedded
in an elastic media. The resonant frequencies and, consequently, the dynamic behavior
could be controlled by controlling the elastic foundation parameters.

â The electromechanical resonant frequencies of piezoelectrically layered perforated
nanobeams are increased with increasing the elastic foundation parameters due to
increasing the overall system stiffness.

â The electromechanical vibration behavior is more sensitive to increasing the elastic
foundation parameter, Kp, compared with increasing Kw.

â The electromechanical and mechanical dynamic behaviors of piezoelectric composite
nanobeams are significantly affected by the material Poisson’s ratio. Ignoring the
effect of the material Poisson’s ratio leads to underestimates of the nondimensional
frequency parameters.

â Perforation configuration and parameters have significant effects on the electrome-
chanical and mechanical dynamic behavior of piezoelectrically layered perforated
nanobeams. Both electromechanical and mechanical vibration behaviors could be
controlled by controlling the geometrical parameters of the perforation configuration.

â The nonclassical material parameters significantly affect the electromechanical as well
as mechanical vibration behavior of piezoelectrically layered perforated nanobeam
embedded in an elastic media. Both softening and stiffening effects could be incor-
porated by applying the modified nonlocal strain gradient theory. Incorporation of
the strain gradient effect produces a stiffening effect, while the introduction of the
nonlocality effect results in a softening effect.

â The electromechanical vibration behavior could be controlled by controlling the piezo-
electricity as well as flexoelectricity parameters.
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