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1. Introduction

Bakhtin [1] defined b-metric space, and Czerwik [2] established the fixed point results
using the Banach contraction principle (see, for instance, [3–5] and references therein).
Abdou et al. [6] illustrated a new concept of locally α-ψ-contractive mapping, generalized
α-ψ- rational contraction and established fixed point theorems for such mappings in the
context of extended b-metric spaces. Gholidahneh et al. [7] demonstrated the concept
of modular p-metric space and established some fixed point results for α-v̄-Meir–Keeler
contractions in this space. Furthermore, they established a relationship between the fuzzy
concept of Meir–Keeler and extended p-metrics with modular p-metrics and obtained fixed
point results in triangular p-metric spaces with fuzzy concepts.

In 2014, Ma et al. [8] proved some fixed point theorems for self-maps with contractive
or expansive conditions on C?-algebra-valued metric spaces. Chandok et al. [9] presented
the concept of C?-algebra-valued partial metric space (C?-AVPMS) and some fixed point
results on such spaces using C-class functions in 2019. Mlaiki et al. [10] expanded the
class of C?-AVb MS (C?-algebra-valued b-metric space) and C?-AVPMS by introducing
C?-AVPb MS (C?-algebra-valued partial b-metric space) and used it to prove fixed point
results in 2021.

In this paper, we prove fixed point theorems for generalized contraction in C?-
AVPb MS.

This paper consists of five sections, wherein Section 1 begins with an introduction. In
Section 2 we first recall some definitions, lemma and theorem related to C?-AVPb MS and
discuss their related properties. In Section 3 we prove fixed point results as well as giving
an example to support our main result. In Section 4 we apply our main result to examine
the existence and uniqueness of a solution for the system of the Fredholm integral equation,
and in the last section we present our conclusions.
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2. Preliminaries

This section covers the basic definitions and properties of C?-algebras [11,12] with
the following important consequences Suppose that B is a unital algebra with unit I. An
involution on B is a conjugate-linear map ϑ 7→ ϑ? on B such that ϑ?? = ϑ and (ϑ$)? =
$?ϑ? ∀ ϑ, $ ∈ B. The pair (B, ?) is known as a ?-algebra . A Banach ?-algebra is a ?-algebra
B together with a complete sub-multiplicative norm such that ‖ϑ?‖ = ‖ϑ‖ for all ϑ ∈ B. A
C?-algebra is a Banach ?-algebra with the property that ‖ϑ?ϑ‖ = ‖ϑ‖2 for all ϑ ∈ B. In this
paper, we prove some fixed point theorems on C?-algebra-valued partial b-metric spaces
by using generalized contraction.

Throughout this paper, we denote a C?-algebra with unit I by B. Set Bh = {$ ∈ B :
$ = $?}. Consider a positive element $ ∈ B, i.e., $ ≥ θ if $ ∈ Bh and ς($) ⊂ [0, ∞), where
ς($) is the spectrum of $. We define a partial ordering on Bh as follows: $ � ξ iff ξ − $ � θ.
Now, we denote the set {$ ∈ B : $ � θ} and |$| = ($?$)

1
2 by B+.

Lemma 1 ([11,13]). Let B be a unital C?-algebra with a unit I.

1. For each $ ∈ B+, we have $ � I ⇐⇒ ‖$‖ ≤ 1.
2. If ϑ ∈ B+ with ‖ϑ‖ < 1

2 , then I− ϑ is invertible and ‖ϑ(I− ϑ)−1‖ < 1.
3. Assume that ϑ, $ ∈ Bwith ϑ, $ � θ and ϑ$ = $ϑ, then ϑ$ � θ.
4. Define B′ = {ϑ ∈ B : ϑ$ = $ϑ, ∀$ ∈ B}. Let ϑ ∈ B′. If $, c ∈ B with $ � c � θ, and

I− ϑ ∈ B′+ is an invertible operator, then

(I− ϑ)−1$ ≥ (I− ϑ)−1c.

Ma et al. [14] presented in the sequel definition:

Definition 1. Let f 6= ∅ and ` ∈ B such that ` � I. A mapping Φ : f×f → B satisfies the
following condition:

1. θ � Φ($, ξ) for all Φ($, ξ) = θ ⇐⇒ $ = ξ;
2. Φ($, ξ) = Φ(ξ, $);
3. Φ($, ξ) � `[Φ($, ς) + Φ(ς, ξ)], ∀ $, ξ, ς ∈ f.

Then Φ is called a C?-algebra-valued b-metric space (C?-AVb M) on f and (f,B, Φ) is a
C?-AVb MS.

Now, we remember that the definition of C*-AVPb MS introduced by Mlaiki et al. [10].

Definition 2. Let f be a non-void set and ` ∈ B such that ` ≥ I. A function Φ : f×f → B
satisfies the following property:

1. θ � Φ($, ξ), ∀ $, ξ ∈ f and Φ($, $) = Φ(ξ, ξ) = Φ($, ξ) if $ = ξ;
2. Φ($, $) � Φ($, ξ);
3. Φ($, ξ) = Φ(ξ, $);
4. Φ($, ξ) � `(Φ($, ς) + Φ(ς, ξ))−Φ(ς, ς), ∀ $, ξ, ς ∈ f.

Then Φ is said to be a C?-AVPb M on f and (f,B, Φ) is said to be a C?-AVPb MS.

Definition 3. Let (f,B, Φ) be a C∗-AVPb MS. A sequence {$q} in (f,B, Φ) is said to be
convergent (with respect to B) to a point $ ∈ f if ε > 0, for each α ∈ N satisfying ||Φ($q, $)−
Φ($, $)|| < ε for all q > α.

Definition 4. Let (f,B, Φ) be a C∗-AVPb MS. A sequence {$q} in (f,B, Φ) is said to be Cauchy
(with respect to B) if lim

q→∞
Φ($q, $β) exists and it is finite.
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Definition 5. Let (f,B, Φ) be a C∗-AVPb MS. A triplet (f,B, Φ) is said to be complete C∗-AVPb MS
if every Cauchy sequence is convergent to $ in f such that

lim
q,β→∞

Φ($q, $β) = lim
q→∞

Φ($q, $) = Φ($, $).

Theorem 1 ([10]). Let (f,B, Φ) be a complete C?-AVPb MS and Λ : f→ f is a C∗b -contraction.
Then Λ has a unique fixed point $ ∈ f such that Φ($, $) = 0B.

Inspired by Theorem 1, we prove fixed point theorems for generalized contractions in
C∗-AVPb MS with an application.

3. Main Results

Now, we prove fixed point theorems for generalized contractions in C∗-AVPb MS.

Theorem 2. Let (f,B, Φ) be a complete C?-AVPb MS. Suppose the mapping Λ : f → f
satisfying the condition:

Φ(Λ$, Λξ) ≤ γ(Φ(Λ$, ξ) + Φ(Λξ, $)), ∀$, ξ ∈ f,

where γ ∈ B′+ and ‖γ`‖ < 1
2 . Then Λ a unique fixed point $ ∈ f such that Φ($, $) = θ.

Proof. If we assume γ = θ, then Λ maps f into a single point. Thus, without loss of
generality, we assume that γ 6= θ. Notice that for γ ∈ B′+, γ(Φ(Λ$, ξ) + Φ(Λξ, $)) ≥ θ.
Choose $0 ∈ f and set $q+1 = Λ$q = Λq+1$0, q = 1, 2, ...., and Φ($1, $0) = γ0. Then

Φ($q+1, $q) = Φ(Λ$q, Λ$q−1)

� γ(Φ(Λ$q, $q−1) + Φ(Λ$q−1, $q))

= γ(Φ(Λ$q, Λ$q−2) + Φ(Λ$q−1, Λ$q−1))

� γ`(Φ(Λ$q, Λ$q−1) + Φ(Λ$q−1, Λ$q−2))

− γΦ(Λ$q−1, Λ$q−1) + γΦ(Λ$q−1, Λ$q−1)

= γ`(Φ(Λ$q, Λ$q−1)) + γ`(Φ(Λ$q−1, Λ$q−2))

= γ`(Φ($q+1, $q)) + γ`(Φ($q, $q−1)).

By Lemma 1,

(I− γ`)Φ($q+1, $q) ≤ γ`Φ($q, $q−1).

Since `, γ ∈ B′+ with ‖γ`‖ < 1
2 and ` � I, we have I− γ` � I− γ and furthermore

(I− γ`)−1 ∈ B′+ with ‖(I− γ`)−1γ`‖ < 1 by Lemma 1. Therefore,

Φ($q+1, $q) � (I− γ`)−1γ`Φ($q, $q−1) = χΦ($q, $q−1),

where χ = (I− γ`)−1γ`.
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For any β ≥ 1 and σ ≥ 1, we have

Φ($β+σ, $β) � `[Φ($β+σ, $β+σ−1) + Φ($β+σ−1, $β)]−Φ($β+σ−1, $β+σ−1)

� `Φ($β+σ, $β+σ−1) + `Φ($β+σ−1, $β)

� `Φ($β+σ, $β+σ−1) + `2[Φ($β+σ−1, $β+σ−2) + Φ($β+σ−2, $β)]

− `Φ($β+σ−2, $β+σ−2)

� `Φ($β+σ, $β+σ−1) + `2Φ($β+σ−1, $β+σ−2) + `2Φ($β+σ−2, $β)

� `Φ($β+σ, $β+σ−1) + `2Φ($β+σ−1, $β+σ−2) + · · ·
+ `σ−1Φ($β+2, $β+1) + `σ−1Φ($β+1, $β)

� `(χ)β+σ−1γ0 + `2(χ)β+σ−2γ0 + `3(χ)β+σ−3γ0 + . . .

+ `σ−1(χ)β+1γ0 + `σ−1(χ)βγ0

=
σ−1

∑
α=1

`α(χ)β+σ−αγ0 + `σ−1(χ)βγ0

=
σ−1

∑
α=1
|γ

1
2
0 χ

β+σ−α
2 `

α
2 |2 + |γ

1
2
0 `

σ−1
2 χ

β
2 |2

� ‖γ0|
σ−1

∑
α=1
‖χ‖β+σ−α‖`‖αI+ ‖`‖σ−1‖χ‖β‖γ0‖I

� ‖γ0‖‖`‖σ‖χ‖β+1

‖`‖ − ‖χ‖ I+ ‖`‖σ−1‖χ‖β‖γ0‖I

→ θ (β→ ∞).

This implies that {$q} is a Cauchy sequence in B. By the completeness of (f,B, Φ),
we can find $ ∈ f satisfying limq→∞ $q = $ and

lim
q,β→∞

Φ($q, $β) = lim
q→∞

Φ($q, $q) = lim
q→∞

Φ($q, $) = Φ($, $) = θ.

So,

Φ(T$, $) � `[Φ(Λ$, Λ$q) + Φ(Λ$q, $)]−Φ(Λ$q, $q)

� `[Φ(Λ$, Λ$q) + Φ(Λ$q, $)]

� `[γ(Φ(Λ$, $q) + Φ(Λ$q, $)) + Φ($q+1, $)]

� `γ`(Φ(Λ$, $q) + Φ(Λ$q, $)) + `γΦ($q+1, $) + `Φ($q+1, $).

This is equivalent to

(I− `2γ)Φ(Λ$, $) � `2γΦ($, $q) + (`γ + `)Φ($q+1, $).

Thus,

‖Φ(Λ$, $)‖ ≤ ‖(I− `2γ)−1`2γ‖‖Φ($, $q)‖+ ‖(I− `2γ)−1(`γ + `)‖‖Φ($q+1, $)‖
→ θ (q→ ∞).

Therefore, Λ$ = $.
Now if ξ( 6= $) is another fixed point of Λ, then

θ � Φ($, ξ) = Φ(Λ$, Λξ)

� γ(Φ(Λ$, ξ) + Φ(Λξ, $))

= γ(Φ($, ξ) + Φ(ξ, $)).
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That is,

Φ($, ξ) � (I− γ)−1γΦ(Λ$, Λξ).

Since ‖γ(I− γ)−1‖ < 1,

0 ≤ ‖Φ($, ξ)‖ = ‖Φ(Λ$, Λξ)‖
≤ ‖(I− γ)−1γΦ($, ξ)‖
≤ ‖(I− γ)−1γ‖‖Φ($, ξ)‖
< ‖Φ($, ξ)‖.

This means that

Φ($, ξ) = θ ⇐⇒ $ = ξ.

Theorem 3. Let (f,B, Φ) be a complete C?-AVPb MS. Suppose the mapping Λ : f → f
satisfying the following condition:

Φ(Λ$, Λξ) � γ(Φ(Λ$, $) + Φ(Λξ, ξ)), ∀$, ξ ∈ f,

where γ ∈ B′+ and ‖γ‖ < 1
2 . Then Λ has a unique fixed point in f.

Proof. We assume that γ 6= θ, without loss of generality. Notice that for γ ∈ B′+,
γ(Φ(Λ$, $) + Φ(Λξ, ξ)) ≥ θ. Choose $0 ∈ f and set $q+1 = Λ$q = Λq+1$0, q = 1, 2, ....
and Φ($1, $0) = γ0. Then

Φ($q+1, $q) = Φ(Λ$q, Λ$q−1)

� γ(Φ(Λ$q, $q) + Φ(Λ$q−1, $q−1))

= γ(Φ($q+1, $q) + Φ($q, $q−1)).

Thus,

Φ($q+1, $q) � (I− γ)−1γΦ($q, $q−1) = χΦ($q, $q−1),

where χ = (I− γ)−1γ.
For any β ≥ 1 and σ ≥ 1, we have

Φ($β+σ, $β) � `[Φ($β+σ, $β+σ−1) + Φ($β+σ−1, $β)]−Φ($β+σ−1, $β+σ−1)

� `Φ($β+σ, $β+σ−1) + `Φ($β+σ−1, $β)

� `Φ($β+σ, $β+σ−1) + `2[Φ($β+σ−1, $β+σ−2) + Φ($β+σ−2, $β)]

− `Φ($β+σ−2, $β+σ−2)

� `Φ($β+σ, $β+σ−1) + `2Φ($β+σ−1, $β+σ−2) + `2Φ($β+σ−2, $β)

� `Φ($β+σ, $β+σ−1) + `2Φ($β+σ−1, $β+σ−2) + · · ·
+ `σ−1Φ($β+2, $β+1) + `σ−1Φ($β+1, $β)
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� `(χ)β+σ−1γ0 + `2(χ)β+σ−2γ0 + `3(χ)β+σ−3γ0 + . . .

+ `σ−1(χ)β+1γ0 + `σ−1(χ)βγ0

=
σ−1

∑
α=1

`α(χ)β+σ−αγ0 + `σ−1(χ)βγ0

=
σ−1

∑
α=1
|γ

1
2
0 χ

β+σ−α
2 `

α
2 |2 + |γ

1
2
0 `

σ−1
2 χ

β
2 |2

� ‖γ0‖
σ−1

∑
α=1
‖χ‖β+σ−α‖`‖αI+ ‖`‖σ−1‖χ‖β‖γ0‖I

� ‖γ0‖‖`‖σ‖χ‖β+1

‖`‖ − ‖χ‖ I+ ‖`‖σ−1‖χ‖β‖γ0‖I

→ θ (β→ ∞).

This implies {$q} is a Cauchy sequence in B. By the completeness of (f,B, Φ), we can
find $ ∈ f satisfying limq→∞ $q = $ and

lim
q,β→∞

Φ($q, $β) = lim
q→∞

Φ($q, $q) = lim
q→∞

Φ($q, $) = Φ($, $) = θ.

So,

Φ(T$, $) � `[Φ(Λ$, Λ$q) + Φ(Λ$q, $)]

� `[γ(Φ(Λ$, $) + Φ(Λ$q, $q) + Φ(Λ$q, $)]

= `γ(Φ(Λ$, $) + Φ(Λ$q, $q)) + `Φ(Λ$q, $).

This is equivalent to

Φ(Λ$, $) � (I− `γ)−1`γΦ(Λ$q, Λ$q−1) + (I− `γ)−1`Φ(Λ$q, $).

Thus,

‖Φ(Λ$, $)‖ ≤ ‖(I− `γ)−1`γ‖‖Φ(Λ$q, $q)‖+ ‖(I− `γ)−1`‖‖Φ(Λ$q, $)‖
→ 0 (q→ ∞).

It follows that Λ$ = $. Hence, $ is a fixed point of Λ. Let ξ( 6= $) be a other fixed point
of Λ, then

θ � Φ($, ξ) = Φ(Λ$, Λξ) � γ(Φ(Λ$, $) + Φ(Λξ, ξ)) = θ.

Hence, $ = ξ.

Example 1. Let f = [0, 1] and B =M2(C) and a mapping Φ : f×f→ B is defined by

Φ($, ξ) =

[
|$− ξ|2 0

0 W|$− ξ|2
]
+

[
max{$, ξ}2 0

0 Wmax{$, ξ}2

]
,

where W ≥ 0 is a constant. For any B ∈ B, we denote its norm as, ||B|| = max1≤i≤4{|ai|}. Then,
(f,B, Φ) is a complete C?-AVPb MS. Define a mapping Λ : f→ f by Λ($) = $

2 for all $ ∈ f.
Observe that

Φ(Λ$, Λξ) � γ(Φ(Λ$, $) + Φ(Λξ, ξ)), ∀$, ξ ∈ f,

which satisfies

γ =

[ √
2

2 0
0

√
2

2

]
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and ||γ|| =
√

2
2 = 1√

2
< 1

2 . Therefore, all the postulates of Theorem 3 are fulfilled and Λ has the
unique fixed point $ = 0.

Example 2. Let B = R2 and f = [0, ∞). Let � be the partial order on B given by

(a1, b1) � (a2, b2)⇔ a1 ≤ a2 and b1 ≤ b2

with the norm ||(a1, b1)|| = max{|a1|, |b1|}. Define

Φb : f×f→ B,

is defined by

Φb($, ξ) = (($− ξ)2, 0) + (max{$, ξ}2, 0). (1)

Then (f,B, Φ) is a complete C?-AVPb MS. Define a mapping Λ : f → f by Λ($) =
1− 2−$ for all $ ∈ f. Observe that

Φ(Λ$, Λξ) � γ(Φ(Λ$, $) + Φ(Λξ, ξ)), ∀$, ξ ∈ f,

which satisfies γ = ( 1
3 , 0) and ||γ|| < 1

2 . Therefore, all the postulates of Theorem 3 are fulfilled and
Λ has the unique fixed point $ = 0.

4. Application

We consider the Fredholm integral equation:

$(£) =
∫
B
Q(£, h̄, $(h̄))dh̄ + δ(£), £, h̄ ∈ B, (2)

where B is a measurable,Q : B×B×R→ R and δ ∈ L∞(B). Let f = L∞(B),W = L2(B)
and L(W) = B. Define a mapping ρ : f×f→ B by

ρ(δ,w) = π|δ−w|2 + I,

for all δ,w, I ∈ f with ||λ|| = w < 1, where π[ : W → W is the multiplicative operator,
defined by

π[(ψ) = [ · ψ.

Theorem 4. For all $, ξ ∈ f, suppose that

1. ∃ κ : B × B → R be a continuous function and w ∈ (0, 1) such that

|Q(£, h̄, $(h̄))−Q(£, h̄, ξ(p))| ≤ w|κ(£, h̄)|(|
∫
B
Q(£, h̄, $(h̄))dh̄ + δ(£)− ξ(h̄)|

+ |
∫
B
Q(£, h̄, ξ(h̄))dh̄ + δ(£)− $(h̄)|+ I−w−1I)

for all £, h̄ ∈ B;
2. sup£∈B

∫
B |κ(£, h̄)|dh̄ ≤ 1.

Then the integral Equation (2) has a unique solution in f.

Proof. Define Λ : f→ f by

Λ$(£) =
∫
B
Q(£, h̄, $(h̄))dh̄ + δ(£), ∀£, h̄ ∈ B.
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Set λ = wI. Then λ ∈ B. For any κ ∈ W , we have

||Φ(Λ$, Λξ)|| = sup
||κ||=1

(π|Λ$−Λξ|2+Iκ,κ)

= sup
||κ||=1

∫
B
(|Λ$−Λξ|2 + I)κ(£)κ(£)d£

≤ sup
||z||=1

∫
B

[ ∫
B
|Q(£, h̄, $(h̄))−Q(£, h̄, ξ(h̄))|

]2

dh̄|z(£)|2d£

+ sup
||κ||=1

∫
B

∫
B

dh̄|κ(£)|2d£I

≤ sup
||κ||=1

∫
B

[ ∫
B
w|κ(£, h̄)|(|

∫
B
Q(£, h̄, $(h̄))dh̄ + δ(£)− ξ(h̄)|

+ |
∫
B
Q(£, h̄, ξ(h̄))dh̄ + δ(£)− $(h̄)|+ I−w−1I)dh̄

]2

|z(£)|2d£ + I

≤ w2 sup
||z||=1

∫
B

[ ∫
B
|κ(£, h̄)|dh̄

]2

|z(£)|2d£(||Λ$− ξ||2∞ + ||Λξ − $||2∞)

≤ w sup
£∈B

∫
B
|κ(£, h̄)|dh̄ sup

||z||=1

∫
B
|z(£)|2d£(||Λ$− ξ||2∞ + ||Λξ − $||2∞)

≤ w[||Λ$− ξ||2∞ + ||Λξ − $||2∞]

= ||λ||[||Φ(Λ$, ξ)||+ ||Φ(Λξ, $)||].

Hence all the hypotheses of Theorem 2 are fulfilled, and thus Equation (2) has a unique
solution.

5. Conclusions

In this paper, we presented fixed point theorems for generalized contractions on
C∗-AVPb MS. The examples and applications on C∗-AVPb MS are presented to strengthen
our main results. Samreen et al. [15] proved fixed point theorems on extended b-metric
spaces. It is an interesting open problem to prove fixed theorems on C?-algebra-valued
extended partial b-metric spaces. Arabnia Firozjah et al. [16] proved fixed point results on
cone b-metric spaces over Banach algebras. Furthermore, it is an interesting open problem
to prove fixed theorems on C?-algebra-valued cone b-metric spaces.
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