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1. Introduction

In many branches of mathematical analysis, having a metric structure is essential for
the study of several problems. For instance, the concept of distance between elements of an
abstract set allows us to define many topological properties, such as convergence, Cauchy
sequences, continuity and others [1–4]. One of the important properties of a (standard)
distance function D on an abstract set M is the triangle inequality, i.e.,

D(u, v) ≤ D(u, w) + D(w, v) for all u, v.w ∈ M.

Many generalizations of the concept of a distance function achieved by relaxing the triangle
inequality have been introduced in the literature, and examples can be found in [5–10]. For
instance, in [5], the triangle inequality was relaxed as

D(u, v) ≤ k(D(u, w) + D(w, v)) for all u, v.w ∈ M,

where k ≥ 1 is a constant.
On the other hand, inequalities involving distance functions are very useful in various

areas of mathematics, for instance, in analysis, fixed point theory, operator theory, topology
and geometry. Due to this fact, great attention has been paid to the study of inequalities on
metric spaces, and examples can be found in [11–18].

Let M be a nonempty set and D : M×M→ [0,+∞). We say that D is a distance (or
metric) on M, if for all u, v.w ∈ M,

• D(u, v) = 0⇐⇒ u = v,
• D(u, v) = D(v, u),
• D(u, v) ≤ D(u, w) + D(w, v).

In this case, we say that (M, D) is a metric space.
In [11], Dragomir and Gosa established a polygonal inequality in the setting of metric

spaces and provided some applications in normed linear spaces and inner product spaces.
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Namely, it was proven that if (M, D) is a metric space, n ≥ 2 is an integer, {ui}n
i=1 ⊂ M

and ιi ≥ 0, with ι1 + ι2 + · · ·+ ιn = 1, then

∑
1≤i<j≤n

ιiιjD(ui, uj) ≤ inf
u∈M

n

∑
i=1

ιiD(ui, u). (1)

Later, in [15], the above inequality was extended to natural powers of the distance. Namely,
it was shown that under the above assumptions, we have

∑
1≤i<j≤n

ιiιjDm(ui, uj)

≤ 1
2

inf
u∈M

[
2

n

∑
i=1

ιiDm(ui, u) +
m−1

∑
k=1

(
m
k

)( n

∑
i=1

ιiDk(ui, u)

)(
n

∑
i=1

ιiDm−k(ui, u)

)]

for all integers m ≥ 2. In [19], Dragomir studied sums of the form

∑
1≤i<j≤n

ιiιjDs(ui, uj),

where s > 0. He proved the following:

• If 0 < s ≤ 1, then

∑
1≤i<j≤n

ιiιjDs(ui, uj) ≤ inf
u∈M

n

∑
i=1

ιiDs(ui, u),

• If s > 1, then

∑
1≤i<j≤n

ιiιjDs(ui, uj) ≤ 2s−1 inf
u∈M

n

∑
i=1

, ιiDs(ui, u),

 2

1−
n

∑
i=1

ι2i


s−1(

∑
1≤i<j≤n

ιiιjD(ui, uj)

)s

≤ ∑
1≤i<j≤n

ιiιjDs(ui, uj).

Some other inequalities of the same type can be found in [12,13]. We also refer to [20],
where a continuous version of (1) was obtained.

In this paper, we first introduce the notion of a generalized distance with respect to a
pair of mappings and provide some examples of such distance functions (Section 2). Let us
provide some motivations for introducing such a notion. Let us observe that some of the
above-mentioned inequalities involve the power of a (standard) distance function. Now, if
d is a distance function on M, and if we define mapping D : M×M→ [0,+∞) as

D(u, v) = d2(u, v), u, v ∈ M,

we obtain, by the triangle inequality, that

D(u, v) = d2(u, v) ≤ d2(u, w) + d2(w, v) + d(u, w)d(w, v) + d(w, v)d(u, w)

for all u, v, w ∈ M, that is,

D(u, v) ≤ D(u, w) + D(w, v) + f (u, w)g(w, v) + f (w, v)g(u, w), (2)

where f = g = d. Hence, a natural question is whether inequalities of Dragomir type can
be extended to mappings D : M×M→ [0,+∞) satisfying (2) for arbitrary f , g : M×M→
[0,+∞). A positive answer is obtained in Section 3, where we establish several inequalities
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of type (1) involving generalized distance functions (Section 3). Finally, in Section 4, some
generalized distance inequalities for self-crossing polygons are proved.

2. Generalized Distance Function

Definition 1. Let M be a nonempty set, and let f , g : M×M→ [0,+∞). A mapping

D : M×M→ [0,+∞)

is said to be a distance with respect to ( f , g), if:

(i) D(u, v) = D(v, u) for all u, v ∈ M.
(ii) D(u, u) = 0 for all u ∈ M.
(iii) There exists k > 0 such that

D(u, v) ≤ k(D(u, w) + D(w, v) + f (u, w)g(w, v) + f (w, v)g(u, w))

for all u, v, w ∈ M.

Remark 1. Let us remark that

D is a distance with respect to ( f , g)⇐⇒ D is a distance with respect to (g, f ).

We provide below some examples of generalized distance functions in the sense of
Definition 1.

Example 1. Let D be a distance on M. Then, for all f , g : M×M → [0,+∞), D is a distance
with respect to ( f , g). Indeed, for all u, v, w ∈ M, we have

D(u, v) ≤ D(u, w) + D(w, v) ≤ D(u, w) + D(w, v) + f (u, w)g(w, v) + f (w, v)g(u, w),

which shows that (iii) holds with k = 1.

Example 2. Let M = C([0, 1];R). We consider mapping D : M×M→ [0,+∞) defined as

D(u, v) = max
0≤s≤1

|u(s)− v(s)|
∫ 1

0
|u(t)− v(t)| dt, u, v ∈ M.

Clearly, mapping D satisfies properties (i)-(ii) in Definition 1. Moreover, for all u, v, w ∈ M,
we have

max
0≤s≤1

|u(s)− v(s)| ≤ max
0≤s≤1

|u(s)− w(s)|+ max
0≤s≤1

|w(s)− v(s)| (3)

and ∫ 1

0
|u(t)− v(t)| dt ≤

∫ 1

0
|u(t)− w(t)| dt +

∫ 1

0
|w(t)− v(t)| dt. (4)

By multiplying (3) by (4), we obtain

D(u, v)

≤ max
0≤s≤1

|u(s)− w(s)|
∫ 1

0
|u(t)− w(t)| dt + max

0≤s≤1
|u(s)− w(s)|

∫ 1

0
|w(t)− v(t)| dt

+ max
0≤s≤1

|w(s)− v(s)|
∫ 1

0
|u(t)− w(t)| dt + max

0≤s≤1
|w(s)− v(s)|

∫ 1

0
|w(t)− v(t)| dt

= D(u, w) + D(w, v) + f (u, w)g(w, v) + f (w, v)g(u, w),

where
f (u1, u2) = max

0≤s≤1
|u1(s)− u2(s)|, u1, u2 ∈ M
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and

g(u1, u2) =
∫ 1

0
|u1(t)− u2(t)| dt, u1, u2 ∈ M.

Therefore, (iii) holds with k = 1, and D is a distance with respect to ( f , g).

Example 3. Let d1, d2 be two distances on M, and let α1, α2 ≥ 0, with (α1, α2) 6= (0, 0). We
consider mapping D : M×M→ [0,+∞) defined as

D(u, v) = dα1
1 (u, v)dα2

2 (u, v), u, v ∈ M.

Clearly, mapping D satisfies properties (i)-(ii) in Definition 1. We first consider the following:

• The case when αi > 1, i = 1, 2.

Due to the convexity of function [0,+∞) 3 t 7→ ts, s > 1, for all u, v, w ∈ M and i ∈ {1, 2},
we have

dαi
i (u, v) ≤ (di(u, w) + di(w, v))αi

=

(
2

di(u, w) + di(w, v)
2

)αi

= 2αi

(
di(u, w) + di(w, v)

2

)αi

≤ 2αi−1(dαi
i (u, w) + dαi

i (w, v)
)
,

which yields

1
2α1+α2−2 D(u, v) =

1
2α1+α2−2

2

∏
i=1

dαi
i (u, v)

≤ dα1
1 (u, w)dα2

2 (u, w) + dα1
1 (u, w)dα2

2 (w, v)

+dα1
1 (w, v)dα2

2 (u, w) + dα1
1 (w, v)dα2

2 (w, v)

= D(u, w) + D(w, v) + f (u, w)g(w, v) + f (w, v)g(u, w),

where
f (u1, u2) = dα1

1 (u1, u2), u1, u2 ∈ M (5)

and
g(u1, u2) = dα2

2 (u1, u2), u1, u2 ∈ M. (6)

Therefore, (iii) holds with k = 2α1+α2−2, and D is a distance with respect to ( f , g). Next, we
consider the following:

• The case when 0 < α2 ≤ 1 < α1.

In this case, for all u, v, w ∈ M, we have

dα1
1 (u, v) ≤ 2α1−1(dα1

1 (u, w) + dα1
1 (w, v)

)
(7)

and

dα2
2 (u, v) ≤ (d2(u, w) + d2(w, v))α2

≤ dα2
2 (u, w) + dα2

2 (w, v). (8)

By multiplying (7) by (8), we obtain

D(u, v) ≤ 2α1−1(D(u, w) + D(w, v) + f (u, w)g(w, v) + f (w, v)g(u, w)),

where f and g are defined by (5) and (6). This shows that (iii) holds with k = 2α1−1, and D is a
distance with respect to ( f , g). Now, we consider the following:
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• The case when α2 = 0 < 1 < α1.

In this case, by (7), we deduce that (iii) holds with k = 2α1−1 and f = g = 0. Hence, D is a
distance with respect to (0, 0).

• The case when 0 < αi ≤ 1, i = 1, 2.

In this case, for all u, v, w ∈ M, we have

D(u, v) ≤ D(u, w) + D(w, v) + f (u, w)g(w, v) + f (w, v)g(u, w),

where f and g are defined in (5) and (6). Then, (iii) holds with k = 1, and D is a distance with
respect to ( f , g). Finally, we consider the following:

• The case when α1 = 0 < α2 ≤ 1.

In this case, by (8), we deduce that (iii) holds with k = 1 and f = g = 0. Hence, D is a
distance with respect to (0, 0).

3. Inequalities Involving Generalized Distance Functions

The below inequality involving generalized distance functions holds.

Theorem 1. Let D be a distance function on M with respect to ( f , g), in the sense of Definition 1,
where f , g : M × M → [0,+∞). Let n ≥ 2 be an integer, {ui}n

i=1 ⊂ M and ιi ≥ 0, with
ι1 + ι2 + · · ·+ ιn = 1. Then,

inf
u∈M

[
2

n

∑
i=1

ιiD(ui, u) +

(
n

∑
i=1

ιi f (ui, u)

)(
n

∑
i=1

ιig(u, ui)

)
+

(
n

∑
i=1

ιig(ui, u)

)(
n

∑
i=1

ιi f (u, ui)

)]

≥ 2
k ∑

1≤i<j≤n
ιiιjD(ui, uj).

(9)

Proof. Let u ∈ M. By property (iii) in Definition 1, we have

D(ui, uj) ≤ k
(

D(ui, u) + D(u, uj) + f (ui, u)g(u, uj) + f (u, uj)g(ui, u)
)
, i, j ∈ In,

where In = {1, 2, · · · , n}. By multiplying the above inequality by ιiιj and summing over i
and j, we obtain

1
k ∑

i,j∈In

ιiιjD(ui, uj) ≤ ∑
i,j∈In

ιiιjD(ui, u) + ∑
i,j∈In

ιiιjD(u, uj) (10)

+ ∑
i,j∈In

ιiιj f (ui, u)g(u, uj) + ∑
i,j∈In

ιiιj f (u, uj)g(ui, u).

On the other hand, by properties (i)-(ii) in Definition 1, we have

∑
i,j∈In

ιiιjD(ui, uj) = 2 ∑
1≤i<j≤n

ιiιjD(ui, uj). (11)

Moreover, we have

∑
i,j∈In

ιiιjD(ui, u) =
n

∑
j=1

ιj

n

∑
i=1

ιiD(ui, u)

=
n

∑
i=1

ιiD(ui, u), (12)

∑
i,j∈In

ιiιjD(u, uj) = ∑
i,j∈In

ιiιjD(ui, u), (13)



Mathematics 2023, 11, 1157 6 of 13

∑
i,j∈In

ιiιj f (ui, u)g(u, uj) =

(
n

∑
i=1

ιi f (ui, u)

)(
n

∑
i=1

ιig(u, ui)

)
(14)

and

∑
i,j∈In

ιiιj f (u, uj)g(ui, u) =

(
n

∑
i=1

ιig(ui, u)

)(
n

∑
i=1

ιi f (u, ui)

)
(15)

Hence, it follows from (10)–(15) that

2
k ∑

1≤i<j≤n
ιiιjD(ui, uj)

≤ 2
n

∑
i=1

ιiD(ui, u) +

(
n

∑
i=1

ιi f (ui, u)

)(
n

∑
i=1

ιig(u, ui)

)
+

(
n

∑
i=1

ιig(ui, u)

)(
n

∑
i=1

ιi f (u, ui)

)
.

(16)

Finally, by taking the infimum over u in (16), we obtain (9).

Now, let us study some special cases of Theorem 1. We first consider the case when f
and g are symmetric, that is,

f (u, v) = f (v, u), g(u, v) = g(v, u), u, v ∈ M.

In this case, from Theorem 1, we deduce the below result.

Corollary 1. Let D be a distance function on M with respect to ( f , g), in the sense of Definition 1,
where f , g : M×M→ [0,+∞) are symmetric. Let n ≥ 2 be an integer, {ui}n

i=1 ⊂ M and ιi ≥ 0,
with ι1 + ι2 + · · ·+ ιn = 1. Then,

∑
1≤i<j≤n

ιiιjD(ui, uj) ≤ k inf
u∈M

[
n

∑
i=1

ιiD(ui, u) +

(
n

∑
i=1

ιi f (ui, u)

)(
n

∑
i=1

ιig(ui, u)

)]
.

By taking f = g in Corollary 1, we deduce the below result.

Corollary 2. Let D be a distance function on M with respect to ( f , f ), in the sense of Definition 1,
where f : M×M → [0,+∞) is symmetric. Let n ≥ 2 be an integer, {ui}n

i=1 ⊂ M and ιi ≥ 0,
with ι1 + ι2 + · · ·+ ιn = 1. Then,

∑
1≤i<j≤n

ιiιjD(ui, uj) ≤ k inf
u∈M

 n

∑
i=1

ιiD(ui, u) +

(
n

∑
i=1

ιi f (ui, u)

)2
.

By taking

ι1 = ι2 = · · · = ιn =
1
n

in Theorem 1, we obtain the below result.

Corollary 3. Let D be a distance function on M with respect to ( f , g), in the sense of Definition 1,
where f , g : M×M→ [0,+∞). Let n ≥ 2 be an integer and {ui}n

i=1 ⊂ M. Then,

inf
u∈M

[
2n

n

∑
i=1

D(ui, u) +

(
n

∑
i=1

f (ui, u)

)(
n

∑
i=1

g(u, ui)

)
+

(
n

∑
i=1

g(ui, u)

)(
n

∑
i=1

f (u, ui)

)]

≥ 2
k ∑

1≤i<j≤n
D(ui, uj).

If f and g are symmetric, we deduce, by Corollary 3, the below result.
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Corollary 4. Let D be a distance function on M with respect to ( f , g), in the sense of Definition 1,
where f , g : M×M→ [0,+∞) are symmetric. Let n ≥ 2 be an integer and {ui}n

i=1 ⊂ M. Then,

∑
1≤i<j≤n

D(ui, uj) ≤ k inf
u∈M

[
n

n

∑
i=1

D(ui, u) +

(
n

∑
i=1

f (ui, u)

)(
n

∑
i=1

g(ui, u)

)]
.

If f = g in Corollary 4, then we deduce the below result.

Corollary 5. Let D be a distance function on M with respect to ( f , f ), in the sense of Definition 1,
where f : M×M→ [0,+∞) is symmetric. Let n ≥ 2 be an integer and {ui}n

i=1 ⊂ M. Then,

∑
1≤i<j≤n

D(ui, uj) ≤ k inf
u∈M

n
n

∑
i=1

D(ui, u) +

(
n

∑
i=1

f (ui, u)

)2
.

Next, using the above results, we provide below some upper bounds for the following
sum:

∑
1≤i<j≤n

ιiιjd
α1
1 (ui, uj)d

α2
2 (ui, uj),

where α1, α2 ≥ 0 and d1, d2 are two distances on M.
We first consider the case when αi > 1, i = 1, 2.

Corollary 6. For all j ∈ {1, 2}, let dj be a distance on M and αj > 1. Let n ≥ 2 be an integer,
{ui}n

i=1 ⊂ M and ιi ≥ 0, with ι1 + ι2 + · · ·+ ιn = 1. Then,

∑
1≤i<j≤n

ιiιjd
α1
1 (ui, uj)d

α2
2 (ui, uj)

≤ 2α1+α2−2 inf
u∈M

[
n

∑
i=1

ιid
α1
1 (ui, u)dα2

2 (ui, u) +

(
n

∑
i=1

ιid
α1
1 (ui, u)

)(
n

∑
i=1

ιid
α2
2 (ui, u)

)]
.

(17)

Proof. By Example 3, since αi > 1, i = 1, 2, we know that mapping D : M×M→ [0,+∞)
defined as

D(u, v) = dα1
1 (u, v)dα2

2 (u, v), u, v ∈ M

is a distance with respect to (dα1
1 , dα2

2 ), in the sense of Definition 1, where (iii) holds with
constant k = 2α1+α2−2. Since dαi

i , i = 1, 2, are symmetric, (17) follows from Corollary 1 by
taking f = dα1

1 , g = dα2
2 and k = 2α1+α2−2.

Next, we consider the case when 0 < α2 ≤ 1 < α1.

Corollary 7. For all j ∈ {1, 2}, let dj be a distance on M and 0 < α2 ≤ 1 < α1. Let n ≥ 2 be an
integer, {ui}n

i=1 ⊂ M and ιi ≥ 0, with ι1 + ι2 + · · ·+ ιn = 1. Then,

∑
1≤i<j≤n

ιiιjd
α1
1 (ui, uj)d

α2
2 (ui, uj)

≤ 2α1−1 inf
u∈M

[
n

∑
i=1

ιid
α1
1 (ui, u)dα2

2 (ui, u) +

(
n

∑
i=1

ιid
α1
1 (ui, u)

)(
n

∑
i=1

ιid
α2
2 (ui, u)

)]
.

(18)

Proof. By Example 3, since 0 < α2 ≤ 1 < α1, we know that mapping D = dα1
1 dα2

2 is
a distance with respect to (dα1

1 , dα2
2 ), in the sense of Definition 1, where (iii) holds with

constant k = 2α1−1. Since dαi
i , i = 1, 2, are symmetric, (18) follows from Corollary 1 by

taking f = dα1
1 , g = dα2

2 and k = 2α1−1.

We now consider the case when α2 = 0 < 1 < α1. In this case, we deduce the below
result obtained in [19].



Mathematics 2023, 11, 1157 8 of 13

Corollary 8. Let d be a metric on M and α1 > 1. Let n ≥ 2 be an integer, {ui}n
i=1 ⊂ M and

ιi ≥ 0, with ι1 + ι2 + · · ·+ ιn = 1. Then,

∑
1≤i<j≤n

ιiιjdα1(ui, uj) ≤ 2α1−1 inf
u∈M

n

∑
i=1

ιidα1(ui, u). (19)

Proof. By Example 3, since α2 = 0 < 1 < α1, we know that D = dα1
1 dα2

2 = dα1 is a distance
with respect to (0, 0), in the sense of Definition 1, where (iii) holds with constant k = 2α1−1.
Then, (19) follows from Corollary 1 by taking f = g = 0 and k = 2α1−1.

Next, we consider the case when 0 < αi ≤ 1, i = 1, 2.

Corollary 9. For all j ∈ {1, 2}, let dj be a distance on M and 0 < αi ≤ 1. Let n ≥ 2 be an integer,
{ui}n

i=1 ⊂ M and ιi ≥ 0, with ι1 + ι2 + · · ·+ ιn = 1. Then,

∑
1≤i<j≤n

ιiιjd
α1
1 (ui, uj)d

α2
2 (ui, uj)

≤ inf
u∈M

[
n

∑
i=1

ιid
α1
1 (ui, u)dα2

2 (ui, u) +

(
n

∑
i=1

ιid
α1
1 (ui, u)

)(
n

∑
i=1

ιid
α2
2 (ui, u)

)]
.

(20)

Proof. By Example 3, since 0 < αi ≤ 1, i = 1, 2, we know that mapping D = dα1
1 dα2

2 is
a distance with respect to (dα1

1 , dα2
2 ), in the sense of Definition 1, where (iii) holds with

constant k = 1. Since dαi
i , i = 1, 2, are symmetric, (20) follows from Corollary 1 by taking

f = dα1
1 , g = dα2

2 and k = 1.

Finally, we consider the case when α1 = 0 < α2 ≤ 1. In this case, we deduce the below
result obtained in [19].

Corollary 10. Let d be a distance on M and α1 = 0 < α2 ≤ 1. Let n ≥ 2 be an integer,
{ui}n

i=1 ⊂ M and ιi ≥ 0, with ι1 + ι2 + · · ·+ ιn = 1. Then,

∑
1≤i<j≤n

ιiιjdα2(ui, uj) ≤ inf
u∈M

n

∑
i=1

ιidα2(ui, u). (21)

Proof. By Example 3, since α1 = 0 < α2 ≤ 1, we know that D = dα1
1 dα2

2 = dα2 is a distance
with respect to (0, 0), in the sense of Definition 1, where (iii) holds with constant k = 1.
Then, (21) follows from Corollary 1 by taking f = g = 0 and k = 1.

4. Generalized Distance Inequalities for Self-Crossing Polygons

Let D be a distance on M with respect to ( f , g), in the sense of Definition 1, where
f , g : M × M → [0,+∞). Let B1, B2, · · · , Bn ∈ M, n ≥ 3, be the vertices of a possibly
self-crossing polygon with unit perimeter with respect to D. The perimeter with respect to
D is defined as

P(B1, B2, · · · , Bn) =
n

∑
i=1

D(Bi, Bi+1), Bn+1 = B1.

Let
ρn = inf

P(B1,B2,··· ,Bn)=1
∑

1≤i<j≤n
D(Bi, Bj), (22)

under the assumption of

{{Bi}n
i=1 ⊂ M : P(B1, B2, · · · , Bn) = 1} 6= ∅.

The below result holds.
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Theorem 2. Let n ≥ 3. Let D be a distance on M with respect to ( f , g), in the sense of Definition 1,
where f , g : M×M→ [0,+∞). We have

ρn ≥
1
4

[
n
k
− ∑

1≤i,j≤n

(
f (Bi, Bj)g(Bj, Bi+1) + f (Bj, Bi+1)g(Bi, Bj)

)]
, (23)

where ρn is defined in (22).

Proof. Let B1, B2, · · · , Bn ∈ M be such that

P(B1, B2, · · · , Bn) = 1.

Let S be the sum of pair-wise distances, that is,

S = ∑
1≤i<j≤n

D(Bi, Bj).

Then,
2S = ∑

1≤i,j≤n
D(Bi, Bj). (24)

On the other hand, by property (iii) in Definition 1, we have

D(Bi, Bi+1) ≤ k
(

D(Bi, Bj) + D(Bj, Bi+1) + f (Bi, Bj)g(Bj, Bi+1) + f (Bj, Bi+1)g(Bi, Bj)
)
.

By summing over i, we obtain

1 = P(B1, B2, · · · , Bn)

≤ k

(
n

∑
i=1

D(Bi, Bj) +
n

∑
i=1

D(Bj, Bi+1) +
n

∑
i=1

(
f (Bi, Bj)g(Bj, Bi+1) + f (Bj, Bi+1)g(Bi, Bj)

))
.

On the other hand, we have

n

∑
i=1

D(Bi, Bj) =
n

∑
i=1

D(Bj, Bi+1).

Hence, the following holds:

1 ≤ k

(
2

n

∑
i=1

D(Bi, Bj) +
n

∑
i=1

(
f (Bi, Bj)g(Bj, Bi+1) + f (Bj, Bi+1)g(Bi, Bj)

))
.

Next, by summing over j and using (24), we obtain

n ≤ k

(
4S + ∑

1≤i,j≤n

(
f (Bi, Bj)g(Bj, Bi+1) + f (Bj, Bi+1)g(Bi, Bj)

))
,

which yields (23).

Let us consider the special case of Theorem 2 when

D(u, v) = dα(u, v), u, v ∈ M, (25)

where α > 0 and d is a distance on M. Notice that by Example 3, we know that D is a
distance with respect to (0, 0), in the sense of Definition 1, where (iii) holds with

k =

{
1 if 0 < α ≤ 1,
2α−1 if α > 1.
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Hence, by Theorem 2, we deduce the below result.

Corollary 11. Let D be the generalized distance defined in (25). Then, for all n ≥ 3, the following
holds:

ρn ≥


n
4

if 0 < α ≤ 1,
n

2α+1 if α > 1.
(26)

In the case when α > 1, we have the below additional result.

Theorem 3. Let D be the generalized distance defined in (25) with α > 1. Then, for all 3 ≤ n <
2α+1 and {Bi}n

i=1 ⊂ M, with P(B1, B2, · · · , Bn) = 1, we have

∑
1≤i<j≤n

D(Bi, Bj) >
n

2α+1 . (27)

Proof. Let 3 ≤ n < 2α+1 be fixed. Then, by (26), for all {Bi}n
i=1 ⊂ M, with

P(B1, B2, · · · , Bn) = 1,

we have
∑

1≤i<j≤n
D(Bi, Bj) ≥

n
2α+1 .

Let us suppose that (27) is not true. Then, there exist {Bi}n
i=1 ⊂ M with

P(B1, B2, · · · , Bn) = 1,

such that
∑

1≤i<j≤n
D(Bi, Bj) =

n
2α+1 . (28)

On the other hand, we have

∑
1≤i<j≤n

D(Bi, Bj) =
n−1

∑
i=1

n

∑
j=i+1

D(Bi, Bj)

= D(Bn−1, Bn) +
n−2

∑
i=1

(
D(Bi, Bi+1) +

n

∑
j=i+2

D(Bi, Bj)

)

=
n−1

∑
i=1

D(Bi, Bi+1) + D(Bn, B1) +

(
n−2

∑
i=1

n

∑
j=i+2

D(Bi, Bj)− D(Bn, B1)

)

= P(B1, B2, · · · , Bn) +

(
n−2

∑
i=1

n

∑
j=i+2

D(Bi, Bj)− D(Bn, B1)

)

= 1 +

(
n−2

∑
i=1

n

∑
j=i+2

D(Bi, Bj)− D(Bn, B1)

)
.

Hence, by (28) and due to the assumption on n, we obtain

n−2

∑
i=1

n

∑
j=i+2

D(Bi, Bj)− D(Bn, B1) =
n− 2α+1

2α+1 < 0.

On the other hand,
n−2

∑
i=1

n

∑
j=i+2

D(Bi, Bj)− D(Bn, B1) ≥ 0.
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Thus, we reach a contradiction.

We next consider the case when M = R2 and

D(u, v) = ‖u− v‖α
R2 , u, v ∈ R2, (29)

where α > 0 and ‖ · ‖R2 is the Euclidean norm on R2. In this case, we obtain the below
result.

Theorem 4. Let D be the generalized distance defined in (29). Then, for all n ≥ 3:

(i) (26) holds,
(ii) If n is even and 0 < α ≤ 1, then

ρn =
n
4

,

(iii) If n is odd and 0 < α ≤ 1, then

ρn ≤
n + 1

4
,

where ρn is defined in (22).

Proof. (i) It immediately follows from Corollary 11 that by taking

M = R2, d(u, v) = ‖u− v‖R2 .

(ii) Let n be even and 0 < α ≤ 1. Let us consider the self-crossing polygon, where the
vertices are defined as follows:

Bi =

{
(0, 0) if i is odd(

n
−1
α , 0

)
if i is even

, i ∈ {1, 2, · · · , n}.

Then,

P(B1, B2, · · · , Bn) = ‖B1 − B2‖α
R2 + · · ·+ ‖Bn−1 − Bn‖α

R2 + ‖Bn − B1‖α
R2

= n
(

n
−1
α

)α
= 1.

Furthermore, by (24), we have

2S = ∑
1≤i,j≤n

D(Bi, Bj)

=
n

∑
i=1

n

∑
j=1

D(Bi, Bj)

=

n
2

∑
i=1

n

∑
j=1

D(B2i, Bj) +

n−2
2

∑
i=0

n

∑
j=1

D(B2i+1, Bj)

=

n
2

∑
i=1

n−2
2

∑
j=0

D(B2i, B2j+1) +

n−2
2

∑
i=0

n
2

∑
j=1

D(B2i+1, B2j)

= 2
n
4

,

which yields S = n
4 . Then, by (26), we deduce that ρn = n

4 .
(iii) Let n be even and 0 < α ≤ 1. Let us consider the self-crossing polygon, where the
vertices are defined as follows:

Bi =

{
(0, 0) if i is odd(
(n− 1)

−1
α , 0

)
if i is even

, i ∈ {1, 2, · · · , n}.
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Then,

P(B1, B2, · · · , Bn) = ‖B1 − B2‖α
R2 + · · ·+ ‖Bn−1 − Bn‖α

R2

= (n− 1)
(
(n− 1)

−1
α

)α
= 1.

Furthermore, by (24), we have

2S =
n−1

∑
i=2

D(Bi, Bn) +
n−1

∑
i=1

n−1

∑
j=1

D(Bi, Bj) +
n−1

∑
j=2

D(Bn, Bj)

= 2
n−1

∑
i=2

D(Bi, Bn) +
n−1

∑
i=1

n−1

∑
j=1

D(Bi, Bj)

= 2

n−1
2

∑
i=1

D(B2i, Bn) +

n−1
2

∑
i=1

n−1

∑
j=1

D(B2i, Bj) +

n−3
2

∑
i=0

n−1

∑
j=1

D(B2i+1, Bj)

= 2

n−1
2

∑
i=1

D(B2i, Bn) +

n−1
2

∑
i=1

n−3
2

∑
j=0

D(B2i, B2j+1) +

n−3
2

∑
i=0

n−1
2

∑
j=1

D(B2i+1, B2j)

= 2

 n−1
2

∑
i=1

D(B2i, Bn) +

n−1
2

∑
i=1

n−3
2

∑
j=0

D(B2i, B2j+1)


= 2

((
(n− 1)

−1
α

)α n− 1
2

+
(
(n− 1)

−1
α

)α
(

n− 1
2

)2
)

= 2
n + 1

4
.

This shows that S = n+1
4 . Since ρn ≤ S, we obtain ρn ≤ n+1

4 .

5. Conclusions

In this paper, we first introduce the notion of a generalized distance function with
respect to a pair of mappings. Namely, given a nonempty set M, we say that

D : M×M→ [0,+∞)

is a distance with respect to ( f , g), where f , g : M×M→ [0,+∞), if:

(i) D(u, v) = D(v, u) for all u, v ∈ M.
(ii) D(u, u) = 0 for all u ∈ M.
(iii) There exists k > 0 such that

D(u, v) ≤ k(D(u, w) + D(w, v) + f (u, w)g(w, v) + f (w, v)g(u, w))

for all u, v, w ∈ M.

In Section 2, we provide several examples of generalized distance functions with
respect to a pair of mappings. Moreover, motivated by the recent obtained results obtained
by Dragomir [19], several inequalities involving sums of the form

∑
1≤i<j≤n

ιiιjD(ui, uj),

where {ui}n
i=1 ⊂ M and ιi ≥ 0, with ι1 + ι2 + · · ·+ ιn = 1, are established in Section 3. In

Section 4, we provide new distance inequalities for self-crossing polygons.
It would be interesting to study the topological properties of distance functions with

respect to a pair of mappings, for instance, convergence, Cauchy criterion and completeness.



Mathematics 2023, 11, 1157 13 of 13

An interesting problem in this direction is to extend the Banach contraction principle [21]
to a set M equipped with a distance function with respect to a pair of mappings.
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