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Abstract: In image registration or image matching, the feature extracted by using the traditional
methods does not include the depth information which may lead to a mismatch of keypoints. In
this paper, we prove that when the camera moves, the ratio of the depth difference of a keypoint
and its neighbor pixel before and after the camera movement approximates a constant. That means
the depth difference of a keypoint and its neighbor pixel after normalization is invariant to the
camera movement. Based on this property, all the depth differences of a keypoint and its neighbor
pixels constitute a local depth-based feature, which can be used as a supplement of the traditional
feature. We combine the local depth-based feature with the SIFT feature descriptor to form a new
feature descriptor, and the experimental results show the feasibility and effectiveness of the new
feature descriptor.
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1. Introduction

In the era of global automation and artificial intelligence, image and vision processing
technologies play an important role in many areas, such as autonomous driving, 3D
reconstruction, and positioning and navigation. Image matching, also known as image
registration or correspondence, is a key and fundamental problem in these complex tasks [1].
Image matching refers to establishing a corresponding relationship between the two images
(image pair) before and after the camera moves (or the camera does not move, the object
moves), in which two pixels from the two images corresponding to the same object point
consist of a pair. Image matching roughly includes three steps: image key feature extraction
and positioning, feature description, and feature matching. The key features of the image,
also called keypoints, refer to points with particularly prominent properties in a certain
aspect, such as corner points and points that are invariant to affine transformation. Feature
matching refers to identifying and matching pixels with the same or similar features in two
images [2].

Regarding the extraction of image keypoints, Lowe proposed a method to extract
unique invariant features from images (SIFT, scale-invariant feature transform) [3]. These
features are invariant to the scale and rotation of the image and are shown to provide robust
matching of affine distortions, changes in 3D viewpoint, the addition of noise, and changes
in illumination. Subsequently, Bay et al. proposed a new scale and rotation invariant interest
point detector and descriptor SURF (speeded up robust features) [4], which improved
efficiency while maintaining repeatability, specificity, and robustness. Alahi et al. proposed
a new keypoint descriptor [5], which was inspired by the human visual system, and more
precisely, from the retina, called fast retinal keypoints (FREAK). In terms of key feature
matching, Bellavia designed a general matching framework with a new matching strategy
and a new local spatial filter [6], combining multiple strategies, including pre-screening as
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well as many-to-many and symmetric matching, to find and adjust keypoint neighborhood
consistency, enabling global improvements to each individual strategy. Another approach
for robust feature matching between two images captured from different viewpoints is
view synthesis [7–10]. This method generates multiple affine or projective deformations
of each of the two images, then extracts and matches the features of each deformation.
Toft proposed that CNN-based depth inferred from a single RGB image is very helpful,
which can be used to pre-distort images and correct perspective distortion, significantly
enhancing SIFT and BRISK capabilities [11]. However, the method is mainly for situations
where the camera is looking at the same scene but in the opposite direction.

Most of the current image matching methods work on two images with small changes.
When the image pair parallax is large, there is a possibility that similar objects both far
and nearby are considered to be the same object. The reason is that the existing matching
methods do not consider the depth information of the image, that is, the distance of the
object from the camera. Recently, Chen et al. proposed a new de-mismatching algorithm
that combines depth prediction and feature matching [12], but they simply used the key
depth information as an indicator for threshold judgment and did not use image depth
information as a part of the feature.

In 3D computer graphics and computer vision, the depth map records the distance
from the shooting device to each point in the scene, where each pixel value of the depth map
represents the distance from the object plane to the camera center [13]. Since the depth map
contains the depth information of the scene, it can be combined with the traditional RGB
image to form the RGBD image which extends the image information from two-dimensional
to three-dimensional and can be calculated and used for 3D shape simulation and 3D
reconstruction. There are many methods to obtain image depth information; 3D cameras
(depth cameras) [14–16], for examples, LiDAR or Kinect, can be used to obtain depth
maps. Binocular stereo vision [17,18] uses the principle of parallax to obtain two images
of the measured object from different positions and calculates the positional deviation
between the corresponding points of the images to obtain the depth information of the
object. Monocular depth estimation [19–22] trains a neural network to predict the depth
map of a single RGB image. There are also many commonly used public RGBD datasets,
for examples, SUN RGBD, TUM, SCAN NET, and NYU depth dataset V2. Among them,
the NYU dataset consists of video sequences of various indoor scenes recorded by Microsoft
Kinect’s RGB and depth cameras [23]. It consists of pairs of RGB and depth frames that are
synchronized and densely labeled for each image.

In this paper, we study the property of the depth map and construct a new feature
descriptor with depth information on the basis of SIFT. We prove that, when the camera
moves, the ratio of the depth difference of a keypoint and its neighbor pixel before and
after the camera movement approximates a constant. That means the depth difference of a
keypoint and its neighbor pixel after normalization is invariant to the camera movement.
Based on this property, all the depth differences of a keypoint and its neighbor pixels
constitute a local depth-based feature, which can be used as a supplement of the traditional
feature. We combine the local depth-based feature with the SIFT feature descriptor to form
a new feature descriptor. To validate the effectiveness of the new feature descriptor, 20
images in the NYU dataset are extracted to form 10 pairs for comparative experiments.
The experimental results show that the proposed method can eliminate the wrong matching
pairs and improve the accuracy.

In summary, the contributions of this work are as follows:

• We explore the local property of the depth information of image pairs taken before
and after the camera movements.

• We prove the local property of the depth information: the ratio of the depth differ-
ence of a keypoint and its neighbor pixels before and after the camera movement
approximates to a constant.

• Based on the local property, a local depth-based feature descriptor is proposed, which
can be used as a supplement of the traditional feature.
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The rest of this paper is structured as follows: Related work is discussed in the
second section. The third and fourth sections introduce the key features of SIFT and its
mismatching problem. Then, the local property of depth information is proved and used
for constructing a supplement of the SIFT descriptor. Finally, the experiment results and
analysis are given.

2. Related Work

This section gives a brief introduction of existing methods on image matching and
depth information.

2.1. Image Matching

In 2004, Lowe et al. proposed the famous scale-invariant feature transform (SIFT)
algorithm, with the features extracted being invariant to the scale and rotation of the image.
The details of the SIFT algorithm will be given in the next section. However, SIFT has some
limits. For example, it has a mismatch problem produced by the movements of cameras or
lack of colors, low search efficiency, etc.

To improve the SIFT algorithm, Abdel constructed a colored SIFT (CSIFT) descriptor
in color invariant space [24], extending the SIFT descriptor to the color space. Bay et al.
proposed a new scale and rotation invariant interest point detector and descriptor SURF
(speeded up robust features) [4], which used a blob detector based on a Hessian matrix to
find the interest points and improved efficiency while maintaining repeatability, specificity,
and robustness. However, it relied too much on the gradient direction of the local area pixel
in the stage of finding the host direction, which enlarged the error in the subsequent feature
matching even if the deviation angle was not large. Rublee et al. proposed directional
FAST and Rotating BRIEF algorithms ORB [25], which combined FAST [26] and BRIEF [27]
algorithms to form new feature detectors and feature descriptors. The ORB method used a
fast and accurate corner orientation component with intensity centroid and the efficient
computation of BRIEF characteristics which enabled real-time computation. However, it is
not scale-invariant and is sensitive to brightness. Balammal et al. proposed an image local
feature extraction method based on SIFT and KAZE fusion [28], which preserves the unique
property of an image representation. In this method, the bag of visual word model [29] was
introduced to enhance the scalability and the relevance feedback system was included to
reduce the semantic gap. Tang et al. proposed an improved SIFT algorithm [30] in which a
stability factor was added in scale space for accurate matching, and the feature descriptor
was simplified to shorten the matching time. Feng et al. proposed the concept of inter-
feature relative azimuth and distance (IFRAD) [31] and constructed the corresponding
feature descriptor to improve the scale invariance and matching accuracy. In this method,
the FAST method [26] is used to detect a series of features, and the criteria based on IFRAD is
used to select the stable features. Finally a special feature-similarity evaluator was designed
to match features in two images. Chung et al. proposed a new cooperative RANSAC
(COOSAC) [32] method using a geometry histogram-based (GH-based) constructed to
reduce the correspondence set for remote sensing matching [33].

Besides the SIFT descriptor and its variants, some other descriptors, especially for 3D
images, were proposed. Tombari proposed a local 3D descriptor for surface matching [34],
which was located at the intersection between signatures and histograms so that a better
balance between descriptive and robust was possible. Later, they proposed the SHOT
method aimed at a more favorable balance between descriptive power and robustness [35].
Based on the SHOT descriptor, Prakhya et al. proposed the B-SHOT descriptor, a binary 3D
feature descriptor for keypoint matching on 3D point clouds [36]. In this method, a binary
quantization method converting a real valued vector to a binary vector is proposed which
reduces the memory requirements in keypoint matching. Steder et al. proposed the normal-
aligned radial features (NARF) for feature descriptor calculation in 3D range data [37],
which considered object boundary information and the surface structure and extracted the
keypoints located on the stable areas for normal estimation or descriptor calculation.
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2.2. Depth Information Estimation

Deep neural network is the state-of-the-art technology for obtaining depth information
or a depth map. The current mainstream method of depth information estimation is
monocular depth estimation [38–40], which alleviates the limitation of binocular estimation
due to its high cost, large size, and fixed location.

In 2017, Ummenhofer et al. proposed DeMoN, which is the first depth network that
learns to estimate depth and camera motion from two unconstrained images [20]. Unlike
networks that estimate depth from a single image, DeMoN can take advantage of motion
parallax, a powerful clue that can be generalized to new types of scenes. However, it
does not have the flexibility of the classic approach when it comes to dealing with cameras
with different intrinsic parameters. So, their next challenge was to lift this restriction and
extend this work to more than two images. In 2019, they proposed a new convolution
CAM-Convs [21], which could take camera parameters into account, thus allowing neural
networks to learn to calibrate perceptual patterns, which greatly improved the generaliza-
tion ability of depth prediction networks. In 2020, they proposed DeepTAM, a fully learned
camera tracking and depth mapping estimation system based on dense keyframes [22].
For tracking, the small attitude increment between the current camera image and the
composite viewpoint is estimated.

Reza Mahjourian et al. proposed a method for unsupervised learning of depth and
ego-motion from monocular videos [41]. This method explicitly considered the inferred 3D
geometry of the whole scene and enforced consistency of the estimated 3D point clouds
and ego-motion across consecutive frames. Jun Wang et al. proposed a self-supervised
framework for RGB-guided depth enhancement [42]. In this method, the dependency
between RGB and depth was exploited and a multi-scale edge-guided network model was
designed for the learning of depth information enhancement.

3. The SIFT Key Features

Scale-invariant feature transform (SIFT) [3] is an algorithm used to detect and de-
scribe local features of images, effectively solving the problems of object rotation, scaling,
translation, image affine/projection transformation, lighting effects, object occlusion, frag-
mentation scenes, etc. The Gaussian Laplacian of the image reflects the second-order
variation of the color or brightness of the image, and its maximum and minimum points
can be used as the keypoints of the image [3]. The SIFT algorithm introduces scale variables
σ, approximates the Laplacian operator with the difference of Gaussian (DoG, difference of
Gaussian) in the scale space [43], and finds three-dimensional (space + scale) extreme points
in the Gaussian difference images as keypoints. Finally, the gradient distribution informa-
tion of the surrounding neighborhood of each keypoint is expressed as a 128-dimensional
vector used as the feature descriptor.

• Scale space and Gaussian difference space

The scale space L(x, y, σ) of the image I(x, y) is defined as the convolution of the
variable-scale Gaussian function G(x, y, σ) with the original image I(x, y) [43]:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1)

G(x, y, σ) =
1

2πσ2 e−
(x−m/2)2+(y−n/2)2

2σ2 (2)

where (x, y) represents the pixel location of the image, and m× n are the size of the two-
dimensional template of the Gaussian function. In addition, σ is the scale space factor,
the smaller the σ value, the smaller the local area used for image smoothing. The large scale
reflects the contour characteristics of the image, while the small scale reflects the detailed
characteristics of the image.



Mathematics 2023, 11, 1154 5 of 20

The difference of two nearby scale spaces separated by a constant multiplicative factor
k is defined as the difference of Gaussian (DoG) space:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y) (3)

• Gaussian difference pyramid

For the same physical object in the imaging system, the farther from the center of the
camera, the smaller and blurrier the object in the image is. The details of the objects close
to the camera can be seen clearly, but the contour profile of the farther object may not be
seen completely; on the other hand, the contour profile of the object far from the camera
can be exhibited, but the details may be blurred. The SIFT method uses the scale space and
the pyramid method to describe this phenomenon and reduce the computational cost [44].

Suppose the original image I1(x, y) is of size M× N. With different scales σ1, kσ1, k2σ1,
k3σ1, and k4σ1 where k is a constant, a group of Gaussian difference spaces can be obtained:

D1(x, y, σ1) = (G(x, y, kσ1)− G(x, y, σ1)) ∗ I1(x, y)

D1(x, y, kσ1) = (G(x, y, k2σ1)− G(x, y, kσ1)) ∗ I1(x, y)

D1(x, y, k2σ1) = (G(x, y, k3σ1)− G(x, y, k2σ1)) ∗ I1(x, y)

D1(x, y, k3σ1) = (G(x, y, k4σ1)− G(x, y, k3σ1)) ∗ I1(x, y)

(4)

Denote

P1(I1, σ1) = {D1(x, y, σ1), D1(x, y, kσ1), D1(x, y, k2σ1), D1(x, y, k3σ1)} (5)

Downsample the image I1(x, y) by a factor of two to obtain an image I2(x, y) with size
M
2 ×

N
2 . Taking σ2 = 2σ1 as the initial scale, a new set of Gaussian difference spaces can be

obtained by a calculation similar to Formula (4):

P2(I2, σ2) = {D2(x, y, σ2), D2(x, y, kσ2), D2(x, y, k2σ2), D2(x, y, k3σ2)} (6)

Two-factor continuous downsampling will produce images I3(x, y) and I4(x, y). Let
σ3 = 2σ2, σ4 = 2σ3, respectively. Then, the other two Gaussian difference groups P3(I3, σ3)
and P4(I4, σ4) are obtained similarly. The four groups of Gaussian difference spaces
P1(I1, σ1), P2(I2, σ2), P3(I3, σ3), and P4(I4, σ4) consist of a pyramid.

• Keypoint positioning

The SIFT algorithm selects the three-dimensional (coordinates x, y, and the scale
σ) extreme points in the Gaussian difference pyramid as the keypoints. For each point
(x, y, σ) in the pyramid, it needs to compare its eight neighbors of the same scale σ space,
and nine neighbors of adjacent scales kσ and σ/k. In a group of Gaussian difference spaces
Pi(Ii, σi), i = 1, . . . , 4, since the first scale space and the last scale space each have only one
neighbor in the scale direction, there are no three-dimensional extreme points. Only the
middle two scale spaces of a group of Gaussian difference spaces may exist as extreme
points. All Gaussian difference spaces that may have extreme points are listed following:

D1(x, y, kσ1), D1(x, y, k2σ1), D2(x, y, kσ2), D2(x, y, k2σ2),

D3(x, y, kσ3), D3(x, y, k2σ3), D4(x, y, kσ4), D4(x, y, k2σ4)
(7)

Change scales σi, i = 1, 2, 3, 4 to the initial scale σ1 :

D1(x, y, kσ1), D1(x, y, k2σ1), D2(x, y, 2kσ1), D2(x, y, 2k2σ1),

D3(x, y, 4kσ1), D3(x, y, 4k2σ1), D4(x, y, 8kσ1), D4(x, y, 8k2σ1)
(8)
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In the SIFT algorithm, taking k =
√

2, then the above list is rewritten as :

D1(x, y,
√

2σ1), D1(x, y, 2σ1), D2(x, y, 2
√

2σ1), D2(x, y, 4σ1),

D3(x, y, 4
√

2σ1), D3(x, y, 8σ1), D4(x, y, 8
√

2σ1), D4(x, y, 16σ1)
(9)

Now we can see that the scale factor uniquely determines the scale space where the
extreme point is located.

• Keypoint offset correction

The Gaussian difference pyramid is discrete, and the above calculation of the extreme
points can only determine the approximate position of keypoints [45], which may not be a
pixel point when transformed to the original images. The offset to the precise position can
be calculated by the Taylor expansion.

Let X = (x, y, σ)T be the approximate position of a keypoint and ∆X = (∆x, ∆y, ∆σ)T

be the offset. The Taylor expansion of the DoG function (3) in the precise point is:

D(X + ∆X) ≈ D(X) +
∂DT

∂X
· ∆X +

1
2

∆XT ∂2D
∂X2 ∆X (10)

Since the keypoint is an extreme point, the derivative of this function with respect to ∆X is
zero:

∂D(X + ∆X)

∂∆X
= 0 (11)

and the offset of the extreme point can be obtained:

∆X ≈ −
(

∂2D
∂X2

)−1
∂DT

∂X
(12)

When the offset of ∆X in any dimension (i.e., ∆x, ∆ y , or ∆ σ) is greater than 0.5, the
keypoint has been offset to its adjacent point, and the position of the current keypoint must
be changed.

• Key feature descriptors

The SIFT algorithm uses gradient information of neighboring pixels around keypoints
in the same scale space as key features. The gradient direction is discretized into eight
directions as described in Figure 1: up, down, left, right, and the diagonals [46]:

Figure 1. The discretization of the gradient direction.

For the detected keypoint (x, y, σ) in the DoG pyramid, the 16 × 16 neighborhood of
(x, y, σ) in the scale space image L(x, y, σ) is divided into 16 small blocks of 4 × 4. In every
small block, the gradient magnitudes with the same direction are weighted accumulated
and form an eight-dimensional vector. All the 8-dimensional vectors of 16 small blocks are
collaged to a 128-dimensonal vector, which is the SIFT key feature descriptor.
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In the actual calculation, in order to obtain better scale invariance and rotation invari-
ance, the SIFT algorithm also performs operations, such as edge response removal and
direction normalization. One may find the detailed description in reference [3].

4. False matching Based on SIFT Feature Descriptors

When the parallax of the image pair (I1, I2) is not small, the use of basic SIFT feature
descriptors may lead to false matching results in subsequent feature matching. For example,
Figure 2 shows an image pair taken from different shooting angles in which the SIFT
algorithm gives false matching pairs 1, 2, and 3 marked by green boxes. The reason is that
the keypoints corresponding to the different object points have similar SIFT features.

Figure 2. Mismatching results of the traditional SIFT algorithm (keypoint pairs 1, 2, and 3 marked in
green boxes).

In order to alleviate this problem, in this paper, we introduce the depth information
of the image, that is, the distance between the object plane and the camera, as the supple-
ment of the SIFT feature. We prove that when the camera moves, the ratio of the depth
difference of the keypoint and its neighbor pixels before and after the camera movement
approximates a constant. Based on this property, the depth differences of all pixels in the
keypoint neighborhood with the keypoint constitute a local depth-based feature used as a
supplement of the SIFT feature.

5. Local Property of Depth Information under the Camera Movement

In image registration, an image pair to be matched can be regarded as two image
planes generated by the same natural scene before and after the camera moves. The camera
movement can be decomposed as the movement of the camera center along the optic axis
and the rotation of the optic axis around the camera center.

Figure 3 depicts the relationship among the physical coordinate system
(OW − XWYW ZW), the camera coordinate system (O1 − XCYCZC) ,and the image coor-
dinate system (OI1 − XY). O1 is the initial camera center, and the ray O1ZC is the optical
axis. I1 is the image plane, and f = ( fx, fy) is the focal length. M is an object point,
and the object plane P1 in which M is located is vertical to the optic axis with N1 the
intersection point.
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Figure 3. The relationship among three coordinates.

5.1. The Movement of the Camera Center along the Optic Axis

Figure 4 depicts the relationship among the camera, the image planes, the point in
the scene, and its projections in image planes when the camera moves along the optic
axis. M = (x, y) is the point in the scene with the distance d1 to the camera center O1.
Z1 = (u1, v1) is the projection of M on the image plane I1. The three-dimensional coordinate
of point M relative to the image plane I1 is (u1, v1, d1).

When the camera center moves along the optic axis from point O1 to point O2 with
distance T and the direction of the optic axis does not change, the new image plane I2 is
produced. The projection of M on the image plane I2 is Z2 = (u2, v2), and the depth of M
to the camera center changes to d2. The three-dimensional coordinate of the object point M
relative to the image plane I2 is changed as (u2, v2, d2).

The relationship of Z1 = (u1, v1) and Z2 = (u2, v2) is described in the follow-
ing lemma.

Figure 4. The projection coordinates and related physical quantities corresponding to the object point
M when the camera moves along the optical axis with distance T.
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Lemma 1. When the camera moves along the optical axis with distance T and the direction of the
optic axis does not change, the two projections Z1 = (u1, v1) and Z2 = (u2, v2) of the physical
object point M(x, y) before and after the camera movement satisfy the following relationships:

u2 = u1 ·
d1

d2
= u1 ·

d1

d1 + T

v2 = v1 ·
d1

d2
= v1 ·

d1

d1 + T

(13)

Proof of Lemma 1. According to the principle of pinhole optical imaging,

u1 =
fx

d1
x

u2 =
fx

d2
x

(14)

It is easy to find

u2 = u1 ·
d1

d2
(15)

According to the definition of depth, it is obvious that d2 = d1 + T ; thus

u2 = u1 ·
d1

d2
= u1 ·

d1

d1 + T
. (16)

Similarly, the following relation can be obtained:

v2 = v1 ·
d1

d2
= v1 ·

d1

d1 + T
(17)

5.2. The Rotation of the Camera’s Optical Axis

The relationship of two image planes produced before and after the rotation of the
camera’s optical axis is shown in Figure 5. The camera center position O1 remains un-
changed, and the camera optical axis rotates around O1 with an angle ϕ = (ϕx, ϕy) and
produces a new object plane P2 and new image plane I3. The intersection point of the new
object plane P2, and the new optical axis is N2.The projection of M on the image plane I3 is
Z3 = (u3, v3), and the depth is d3. The three-dimensional coordinate of the object point M
relative to the image plane I3 is (u3, v3, d3).

Figure 5. Projection coordinates and related physical quantities corresponding to the object point M
when the optical axis rotates with angle ϕ.
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Lemma 2 gives the relationships among the distance d1, d3, and the rotation angle ϕ.

Lemma 2. If the camera optical axis rotates around the camera center with angle ϕ while the position
of the camera center keeps unchanged, then the two projections Z1 = (u1, v1) and Z3 = (u3, v3) of
the physical object point M(x, y) before and after the rotation satisfy the following relationships:

d3 = d1 ·
cos
(

arctan u1
fx
− ϕx

)
· cos ϕx

cos
(

arctan u1
fx

)
· cos ϕ

= d1 ·
cos
(

arctan v1
fy
− ϕy

)
· cos ϕy

cos
(

arctan v1
fy

)
· cos ϕ

(18)

Proof of Lemma 2. Figure 6 depicts the spatial relationships among the object plane P1,
image plane I1, and the optical axis O1N1. In the object plane P1, the points Mx and My are
the projections of M to the x-axis and y-axis, respectively. Suppose the angle between the
initial optical axis O1N1 and the line connecting the object point M and the camera center
P1 is θ = (θx, θ

y
), where θx = ∠N1O1Mx, θy = ∠N1O1My.

Figure 6. The spatial relationships among the object plane P1, image plane I1, and the optical axis
O1N1.

It is easy to find that,

tan θx =
|N1Mx|
|O1N1|

=
x
d1

,

tan θy =
|N1My|
|O1N1|

=
y
d1

(19)

Combine with Formula (14), and we have

θx = arctan
x
d1

= arctan
u1

fx

θy = arctan
y
d1

= arctan
v1

fy

(20)

When the optical axis rotates around the camera center O1 with angle ϕ = ϕx, ϕy),
a new object plane P2 and new image plane I3 are produced. Figure 7 depicts the spatial
relationships among them. The intersection point of the new object plane P2 and the new
optical axis is N2. So, we call the new optical axis O1N2 which passes through the first
object plane P1 in the point N3. Figure 8 gives some details of Figure 7. Three points, M,
N1, and N3, all locate in the object plane P1, which is depicted in Figure 8a. Nx

3 and Ny
3 are
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the projections of N3 to the x- and y-axis in the plane P1; ϕx = ∠N1O1Nx
3 , ϕy = ∠N1O1Ny

3 .
η = ∠MO1N3 = θ − ϕ.

At the same time, let Ny
2 be the projection of N2 to the plane O1N1My. So, the points

O1, N1, My, Ny
2 , and Ny

3 , all fall in the same plane which is depicted in Figure 8b.

Figure 7. The spatial relationships before and after the optical axis rotation with angle ϕ = (ϕx, ϕy).

Figure 8. Some details of Figure 7: (a) the object plane P1 contains points, M, N1, and N3 ; (b) the
plane contains points O1, N1, My, Ny

2 , and Ny
3 ; (c) the plane O1N3Ny

3 of (a).

Considering θy = ∠N1O1My, ϕy = ∠N1O1Ny
3 and ηy = ∠Ny

2 O1My in Figure 8b,
respectively, we have

cos θy =
|O1N1|
|O1My| =

d1

|O1My| , cos ϕy =
|O1N1|
|O1Ny

3 |
=

d1

|O1Ny
3 |

, cos ηy =
|O1Ny

2 |
|O1My|

⇒ |O1Ny
2 | = d1 ·

cos ηy

cos θy , |O1Ny
3 | = d1 ·

1
cos ϕy

(21)

On the other hand, the triangle O1N1N3 in Figure 8a gives the following:

cos ϕ =
|O1N1|
|O1N3|

=
d1

|O1N3|
⇒ |O1N3| = d1 · cos ϕ (22)
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Figure 8c details the plane O1N3Ny
3 of Figure 8a, in which we may find that

∆O1N2Ny
2 ∼ ∆O1N3Ny

3 , giving the following:

|O1Ny
2 |

|O1N2|
=
|O1Ny

3 |
|O1N3|

⇒
|O1Ny

2 |
d3

=
|O1Ny

3 |
|O1N3|

⇒ d3 =
|O1N3| · |O1Ny

2 |
|O1Ny

3 |

(23)

Combining with Equations (21) and (22), we have

d3 = d1 ·
cos ηy · cos ϕy

cos θy · cos ϕ
(24)

Similarly, we have

d3 = d1 ·
cos ηx · cos ϕx

cos θx · cos ϕ
(25)

Combining with Equation (20), we have the following results:

⇒



d3 = d1 ·
cos ηx · cos ϕx

cos θx · cos ϕ
= d1 ·

cos(θx − ϕx) · cos ϕx

cos θx · cos ϕ
= d1 ·

cos
(

arctan u1
fx
− ϕx

)
· cos ϕx

cos
(

arctan u1
fx

)
· cos ϕ

d3 = d1 ·
cos ηy · cos ϕy

cos θy · cos ϕ
= d1 ·

cos(θy − ϕy) · cos ϕy

cos θy · cos ϕ
= d1 ·

cos
(

arctan v1
fy
− ϕy

)
· cos ϕy

cos
(

arctan v1
fy

)
· cos ϕ

(26)

5.3. The Local Property of Depth Information Irrelevant to Camera Movements

Theorem 1. Assume that the image planes before and after the camera movement are I and Ī,
respectively, and the corresponding depth functions are d and bard, respectively. Z = (u, v) is a
keypoint on the image plane I, and Z′ = (u′, v′) is a neighbor pixel of Z in I. The corresponding
pixels of Z and Z′on the image plane Ī are Z̄ = (ū, v̄) and Z̄′ = (ū′, v̄′), respectively. Then, the
ratio of the depth difference between Z̄′ and Z̄ to the depth difference between Z′ and Z approximates
a constant which is irrelevant to Z′. That is:

d̄(Z̄′)− d̄(Z̄)
d(Z′)− d(Z)

≈ α (27)

Proof of Theorem 1. As mentioned before, the camera movement can be decomposed as
the movement of the camera center along the optic axis and the rotation of the optic axis
around the camera center.

(1) In the first case, Let I = I1, Ī = I2 according to Lemma .1 We have

d̄
(
Z̄′
)
− d̄(Z̄) = d2

(
Z̄′
)
− d2(Z̄)

=
[
d1
(
Z′
)
+ T

]
− [d1(Z) + T]

= d1
(
Z′
)
− d1(Z) = d

(
Z′
)
− d(Z)

(28)

(2) In the second case, Let I = I1, Ī = I3, and according to Lemma 2,

d̄
(
Z̄′
)
− d̄(Z̄) = d3

(
Z̄′
)
− d3(Z̄)

= d1
(
Z′
)
·

cos
(

arctan u′
fx
− ϕx

)
· cos ϕx

cos
(

arctan u′
fx

)
· cos ϕ

− d1(Z) ·
cos
(

arctan u
fx
− ϕx

)
· cos ϕx

cos
(

arctan u
fx

)
· cos ϕ

(29)



Mathematics 2023, 11, 1154 13 of 20

Define

β1 ,
cos
(

arctan u
fx
− ϕx

)
· cos ϕx

cos
(

arctan u
fx

)
· cos ϕ

β2 ,
cos
(

arctan u′
fx
− ϕx

)
· cos ϕx

cos
(

arctan u′
fx

)
· cos ϕ

(30)

then

β2

β1
=

cos
(

arctan u′
fx
−ϕx

)
·cos ϕx

cos
(

arctan u′
fx

)
·cos ϕ

cos
(

arctan u
fx
−ϕx

)
·cos ϕx

cos
(

arctan u
fx

)
·cos ϕ

=
cos
(

arctan u′
fx
− ϕx

)
cos
(

arctan u′
fx

) ·
cos
(

arctan u
fx

)
cos
(

arctan u
fx
− ϕx

) (31)

By using the Taylor expansion, it can be seen that:

β2

β1
=

2−
(

u′
fx
− ϕx

)2

2−
(

u′
fx

)2 ·
2−

(
u
fx

)2

2−
(

u
fx
− ϕx

)2 =
2−

(
u′
fx
− ϕx

)2

2−
(

u
fx
− ϕx

)2 ·
2−

(
u
fx

)2

2−
(

u′
fx

)2

=
2−

(
u
fx
− ϕx + u′−u

fx

)2

2−
(

u
fx
− ϕx

)2 ·
2−

(
u
fx

)2

2−
(

u
fx
+ u′−u

fx

)2

(32)

Because Z′ = (u′, v′) is a neighbor pixel of Z = (u, v), the difference u′ − u is a small value
compared to the optical focal length, that is, u′−u

fx
� 1. So,

2−
(

u
fx
− ϕx + u′−u

fx

)2

2−
(

u
fx
− ϕx

)2 → 1 and
2−

(
u
fx

)2

2−
(

u
fx
+ u′−u

fx

)2 → 1 (33)

thus,
β2

β1
→ 1 (34)

Then, we have

d3(Z̄′)− d3(Z̄)
d1(Z′)− d1(Z)

≈
cos
(

arctan u
fx
− ϕx

)
· cos ϕx

cos
(

arctan u
fx

)
· cos ϕ

(35)

It can be seen that the right-hand-side term is relevant to the rotation angle ϕ and the
position of the keypoint Z but irrelevant to the position of the neighbor pixel Z′.

6. Depth-Based Supplemental Vector of the SIFT Feature Descriptor

The image pair I and Ī that needs to be matched can be regarded as the image plane
before and after the camera movement. From Theorem 1, the ratio of the depth difference
of the keypoint and its neighbor pixels before and after the camera movement is almost a
constant. By normalization with the constant, the depth difference is an invariant and can
be used as a local feature of the key points.

Select the n× n neighborhood of the keypoint Z on the image I, and the neighboring
pixels are listed as Z

′
i , i = 1, . . . , n2 − 1. Define

∆di = |d
(

Z
′
i

)
− d(Z)|, i = 1, 2, . . . , n2 − 1 (36)

d∗ = min
i
{∆di|∆di 6= 0} (37)



Mathematics 2023, 11, 1154 14 of 20

∆D =


0, i f d∗ = 0

(
∆d1

d∗
,

∆d2

d∗
, . . . ,

∆dn2−1
d∗

), else
(38)

The vector ∆D is the depth-based local feature information, which can be used as a
supplement to the SIFT feature descriptor. The properties of the theorem can be applied
not only to SIFT, but also to other methods, such as SURF.

7. Experiments
7.1. Experimental Data

The experimental images are taken from the NYU dataset [47] which has a total of
1449 indoor scene RGB images and corresponding depth images with size of 640 × 480.
In this paper, 20 images were selected to form 10 pairs for experimental comparison. We
show the results of the second pair (numbered 25 and 26 in the database) and the sixth pair
(numbered 191 and 192 in the database).

The experiments were performed under a Windows 10 operating system, using the
Python-Open CV computer vision library for image processing

Figures 9 and 10 show the original RGB image pairs and the corresponding depth
images. Figure 9a and 9b correspond to the RGB images numbered 25 and 26 in the database,
respectively. Figure 9c and 9d are depth images of 9a and 9b, respectively. Figure 10a and
10b correspond to the RGB images of numbered 191 and 192 in the database, respectively.
Figure 10c and 10d are depth images of 10a and 10b, respectively.

(a) (b)

(c) (d)

Figure 9. The RGB image of the second pair and their depth images: (a) original RGB image numbered
25; (b) original RGB image numbered 26; (c) depth image of (a); (d) depth image of (b).
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(a) (b)

(c) (d)

Figure 10. The RGB image of the sixth pair and their depth images: (a) original RGB image numbered
191; (b) original RGB image numbered 192; (c) depth image of (a); (d) depth image of (b).

7.2. Pixel Pre-Classification

Figure 11 presents the depth information histograms of Figures 9c,d and 10c,d. It
is observed that each histogram can be roughly considered to have three peaks, that is,
the objects in the image roughly are classified as falling in the foreground, middle ground,
or background. Accordingly, the pixels of the RGB image are divided into three categories
corresponding to the depth information. This paper simply uses 30% and 70% of the
cumulative frequency as the threshold.

(a) (b)

(c) (d)

Figure 11. Image pair depth information histogram: (a) depth information histogram of image No.
25; (b) depth information histogram of image No. 26; (c) depth information histogram of image No.
191; (d) depth information histogram of image No. 192.
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7.3. Experimental Results

We use the SIFT algorithm to extract image keypoint features and use the Kd-tree
algorithm [24] to perform keypoint feature matching. The results are shown in Figure 12.
Figure 12a is the matching result of the SIFT algorithm in Figure 9a,b, and Figure 12b is the
matching result of the SIFT algorithm in Figure 10a,b.

(a)

(b)

Figure 12. SIFT algorithm matching results: (a) Figure 9a,b matching result of SIFT algorithm;
(b) Figure 10a,b matching result of SIFT algorithm.

It can be seen from Figure 12 that there are many false matching pairs in the results
of SIFT matching. For example, in Figure 12a, the keypoint pair 1 marked by the green
box is located at the coordinates (46, 54) in the left image which is on the ceiling; however,
in the right image, the corresponding coordinates (212, 297) are located at the bottom of the
screen. Obviously, this is not the same object point. Similarly, the other green box matching
point pairs are false matches.

In this paper, the SIFT algorithm is used to obtain the keypoints first, the SIFT descrip-
tor combining with a depth-information supplemental vector is constructed as the new
descriptor for matching, and the Kd-tree algorithm is used to match the similar keypoints
in the image pair.

Figure 13 presents the improved matching results for the second and sixth image
pairs. It can be seen that the keypoint pairs that were originally incorrectly matched have
been removed.
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(a)

(b)

Figure 13. Matching results of the improved algorithm: (a) Figure 8a,b matching results of the
improved algorithm; (b) Figure 9a,b matching results of the improved algorithm.

Table 1 gives the comparison of the matching results of all ten pairs of images.

Table 1. Comparison of image pair matching before and after improvement.

Image Pair
Total

Number of
Keypoints

Number of
SIFT

Matching
Pairs

Accuracy
Rate

Number of
Matching
Pairs after

Improvement

Accuracy
Rate

1(18,19) 629 28 67.86% 14 78.57%
2(25,26) 2756 41 36.59% 9 88.89%
3(69,70) 2038 28 96.43% 13 100.00%

4(124,125) 2800 514 77.43% 375 90.13%
5(131,132) 2424 378 89.15% 280 96.43%
6(191,192) 1101 66 80.30% 22 100.00%
7(411,412) 1282 46 89.13% 19 94.74%
8(510,511) 1065 39 84.62% 16 93.75%
9(568,569) 2238 84 83.33% 43 93.02%
10(975,976) 1681 52 82.69% 24 91.67%

From Table 1, we can see that the method proposed in this paper can effectively
filter out the wrong matching point pairs, and the accuracy rate of image pair matching
has been significantly improved. The accuracy rate has been increased by an average of
13.967 percentage points. Since the relative depth information is used, there is no specific
requirement about the accuracy of the depth information. In practice, an estimated depth
without a scale factor or an approximate dense depth map can be used.

8. Conclusions

In this paper, we analyzed the local property of the depth information of image pairs
taken before and after camera movements and proved that the ratio of the depth difference
of a keypoint and its neighbor pixels before and after the camera movement approximates
a constant. Based on this property, a depth-based feature vector was constructed as a
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supplement of SIFT feature descriptor. All the keypoints were classified as foreground,
middle ground, and background and the feature matching was performed within the
same class.

Experiments were performed to validate the effectiveness of the proposed method.
The experimental images were taken from the NYU dataset. total of 20 images were
selected to form 10 pairs for experimental comparison. The experimental results show that
the accuracy rate of image pair matching increased by an average of 13.967 percentage
points, which means the method proposed in this paper can effectively filter out mismatch
point pairs.

The local property described in the theorem proposed in this paper is a common
feature which may be used for other situations, not only for a supplement of the SIFT
feature descriptor and can be widely used in all aspects of image matching. The relative
depth differences used for the local property do not require accurate depth information.
In addition, we intend to further optimize the related model of image stitching according
to the proposed method.
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