

MDPI

Article

New Versions of Some Results on Fixed Points in *b*-Metric Spaces

Zoran D. Mitrović 10, Abasalt Bodaghi 20, Ahmad Aloqaily 3,40, Nabil Mlaiki 30 and Reny George 5,*0

- Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina
- Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran
- ³ Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Sydney 2150, Australia
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- * Correspondence: r.kunnelchacko@psau.edu.sa

Abstract: The main and the most important objective of this paper is to nominate some new versions of several well-known results about fixed-point theorems such as Caristi's theorem, Pant et al.'s theorem and Karapınar et al.'s theorem in the case of *b*-metric spaces. We use a new technique provided by Miculescu and Mihail in order to prove our theorems. Some illustrative applications and examples are given to strengthen our new findings and the main results.

Keywords: iterative methods; fixed point; *b*-metric; Caristi theorem; orbitally continuous; *k*-continuous

MSC: 47H10; 54H25

1. Introduction and Preliminaries

Banach's theorem for fixed point theory is known to be a very useful tool in nonlinear analysis. The Banach result has been generalized in various ways and many applications have been presented. In the past thirty years, a lot of results have been obtained on fixed points of different classes of mappings defined on generalized metric spaces, for example, see [1-27] and references therein. Note that iterative methods and contraction mapping plays a key role in metric fixed-point theory. In addition, fractals can be generated via contraction mappings (Hutchinson's iterated function system) [28]. Some of the topics include b-metric space and the corresponding results about fixed point. Bakhtin [3] and Czerwik [6] introduced the notion about b-metric space and proved the number of fixed-point theorems in both single-valued and multi-valued mappings upon b-metric spaces.

Throughout this manuscript, we use the terms fixed point (FP), metric space (MS), b-metric space (bMS), and complete b-metric space (CbMS).

First, we look back on some background definitions, notations, and results in the bMS setting.

Definition 1. Suppose $s \ge 1$ and Y is a nonempty set. A function $\mathcal{D}: Y \times Y \longrightarrow [0, +\infty)$ denotes a b-metric if $x, y, z \in Y$ are valid:

- (1) $\mathcal{D}(x, y) = 0$ if and only if x = y;
- (2) $\mathcal{D}(x, y) = \mathcal{D}(y, x)$;
- (3) $\mathcal{D}(x,z) \leq s[\mathcal{D}(x,\mathfrak{y}) + \mathcal{D}(\mathfrak{y},z)].$

A triplet (Y, \mathcal{D}, s) is a bMS.

For bMS, the examples are the spaces $l^p(\mathbb{R})$ and $L^p[0,1]$, $p \in (0,1)$. Recall that the convergence in bMS is defined as in metric spaces as follows.

Citation: Mitrović, Z.D.; Bodaghi, A.; Aloqaily, A.; Mlaiki, N.; George, R. New Versions of Some Results on Fixed Points in *b*-Metric Spaces. *Mathematics* **2023**, *11*, 1118. https://doi.org/10.3390/math11051118

Academic Editor: Timilehin Opeyemi Alakoya

Received: 29 January 2023 Revised: 11 February 2023 Accepted: 15 February 2023 Published: 23 February 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Mathematics 2023, 11, 1118 2 of 9

Definition 2. Suppose (Y, \mathcal{D}, s) is a bMS, $x \in Y$ and $\{x_n\}$ is a sequence in Y.

(a) $\{x_n\}$ is convergent in (Y, \mathcal{D}, s) and converges to x, if for each $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ where $\mathcal{D}(x_n, x) < \varepsilon$ for all $n > n_{\varepsilon}$, we denote this as $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ where $n \to \infty$.

(b) $\{x_n\}$ is the Cauchy sequence in (Y, \mathcal{D}, s) , if for each $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that $\mathcal{D}(x_n, x_m) < \varepsilon$ for all $n, m > n_{\varepsilon}$.

(c) (Y, \mathcal{D}, s) is a CbMS if every Cauchy sequence in Y converges to some $x \in Y$.

Next, the lemma for Miculescu and Mihail is a crucial result for achieving our aims.

Lemma 1 (([19], Lemma 2.6)). Suppose (Y, \mathcal{D}, s) is a bMS and $\{x_n\}$ is a sequence in Y. If there exists $\alpha > \log_2 s$ where the series $\sum_{n=1}^{+\infty} n^{\alpha} \mathcal{D}(x_n, x_{n+1})$ converges, then the sequence $\{x_n\}$ is Cauchy.

Remark 1. If $\alpha \ge \log_2 s$, then Lemma 1 is not valid. Let $Y = \mathbb{R}$, $\mathcal{D}(x, \mathfrak{y}) = (x - \mathfrak{y})^2$, $x_n = \sum_{k=2}^n \frac{1}{k \ln k}$, $n = 2, 3, \cdots$. Then, s = 2 and

$$\sum_{n=2}^{+\infty} n \mathcal{D}(x_n, x_{n+1}) = \sum_{n=2}^{+\infty} \frac{n}{(n+1)^2 \ln^2(n+1)}$$

$$\leq \sum_{n=2}^{+\infty} \frac{1}{(n+1) \ln^2(n+1)}.$$

Therefore, $\sum_{n=2}^{+\infty} n\mathcal{D}(x_n, x_{n+1})$ converges but this sequence $\{x_n\}$ is not Cauchy (using the integral criterion for series convergence, we see that $\sum_{k=2}^{+\infty} \frac{1}{k \ln^p k}$ converges for p > 1 and diverges for $p \leq 1$).

The next two results are the consequences of Lemma 1.

Lemma 2 (([18], Lemma 2.2)). *Suppose* (Y, \mathcal{D}, s) *is a bMS and* $\{x_n\}$ *is a sequence in* Y. *If there exists* $k \in (0,1)$ *such that*

$$\mathcal{D}(\mathbf{x}_{n+1}, \mathbf{x}_{n+2}) \le k \mathcal{D}(\mathbf{x}_n, \mathbf{x}_{n+1}),\tag{1}$$

for all $n \in \mathbb{N}$, this leads to the sequence $\{x_n\}$ being Cauchy.

Lemma 3 (([19], Corollary 2.8)). *Suppose* (Y, \mathcal{D}, s) *is a bMS and* $\{x_n\}$ *is a sequence in* Y. *If there exists* h > 1 *where the series*

$$\sum_{n=1}^{+\infty} h^n \mathcal{D}(\mathbf{x}_n, \mathbf{x}_{n+1}) \tag{2}$$

converges, then the sequence $\{x_n\}$ is Cauchy.

Remark 2. *Note that if condition* (2) *is replaced by*

$$\sum_{n=1}^{+\infty} h^{(s-1)n} \mathcal{D}(\mathbf{x}_n, \mathbf{x}_{n+1}), \tag{3}$$

then in this case, we get the appropriate condition for MS as well.

In [4], Caristi presented the next theorem.

Mathematics 2023. 11, 1118 3 of 9

Theorem 1 ([4]). *Suppose* (Y, \mathcal{D}) *is a CMS,* $\mathcal{T} : Y \longrightarrow Y$ *is a mapping such that*

$$\mathcal{D}(x, \mathcal{T}x) \le \varphi(x) - \varphi(\mathcal{T}x),\tag{4}$$

for all $x \in Y$, where $\varphi : Y \longrightarrow [0, +\infty)$ is a lower semicontinuous mapping. This leads to \mathcal{T} having FP.

Dung and Hang [8] showed that Caristi's theorem does not fully extend to bMS. It is a negative answer to the latter Kirk-Shahzad's question ([17], Remark 12.6). One year later, Miculescu and Mihail [19] obtained the version of Caristi's theorem in bMS. One of the aims of the current work is to improve the mentioned result ([19], Theorem 3.1). Khojasteh et al. [16] gave a light version of Caristi's theorem as follows.

Theorem 2. ([16], Corollary 2.1) Let (Y, \mathcal{D}) be a CMS. Assume that $\mathcal{T}: Y \longrightarrow Y$ and $\psi: Y \times Y \to [0, +\infty)$ are mappings such that $x \mapsto \psi(x, \mathfrak{y})$ is lower semicontinuous for each $\mathfrak{y} \in Y$. If

$$\mathcal{D}(\mathbf{x}, \mathbf{y}) \le \psi(\mathbf{x}, \mathbf{y}) - \psi(\mathcal{T}\mathbf{x}, \mathcal{T}\mathbf{y}),\tag{5}$$

for all $x, y \in Y$, then T has a unique FP.

The second objective of this paper is to present an alternative of the above theorem in bMS (Theorem 5).

Remark 3. Note that in [16], The partial answers were given by Khojasteh et al. to Reich, Mizoguchi and Takahashi's and Amini-Harandi's conjectures by using a light version of Caristi's FP theorem. In addition, they have shown that some known FP theorems can be obtained from the previously mentioned theorem.

Definition 3. Let (Y, \mathcal{D}) be an MS and $\mathcal{T}: Y \longrightarrow Y$ be a mapping.

- (i) (See [7]) The set $O(x, T) = \{T^n x : n = 0, 1, 2, ...\}$ is called the orbit of T at x. A map T is said to be orbitally continuous if $u \in Y$ and such that $u = \lim_{i \to +\infty} T^{n_i} x$ for some $x \in Y$, then $Tu = \lim_{i \to +\infty} TT^{n_i} x$, where $\{n_i\}$ is a subsequence of the sequence $\{n\}$;
- (ii) (See [27]) A mapping \mathcal{T} is called weakly orbitally continuous if the set $\{\mathfrak{y} \in Y : \lim_{i \to +\infty} \mathcal{T}^{n_i}\mathfrak{y} = u \text{ implies } \lim_{i \to +\infty} \mathcal{T}\mathcal{T}^{n_i}\mathfrak{y} = \mathcal{T}u\}$ is nonempty, whenever the set $\{x \in Y : \lim_{i \to +\infty} \mathcal{T}^{n_i}x = u\}$ is nonempty;
- (iii) (See [26]) A mapping \mathcal{T} is called k-continuous, $k = 1, 2, 3, \ldots$ if $\lim_{n \to +\infty} \mathcal{T}^k x = \mathcal{T}u$ whenever $\{x_n\}$ is a sequence in Y such that $\lim_{n \to +\infty} \mathcal{T}^{k-1} x_n = u$.

Here, we recall the next theorem of Pant et al. [25].

Theorem 3. ([25], Theorem 2.1) *Let* (Y, D) *be the CMS and the mappings* $T : Y \longrightarrow Y$, $\varphi : Y \to [0, +\infty)$. *If*

$$\mathcal{D}(\mathcal{T}x, \mathcal{T}\mathfrak{y}) \le \varphi(x) - \varphi(\mathcal{T}x) + \varphi(\mathfrak{y}) - \varphi(\mathcal{T}\mathfrak{y}). \tag{6}$$

for all $x, y \in Y$, then T has a unique fixed point, under one of the following conditions:

- (i) T is weakly orbitally continuous;
- (ii) \mathcal{T} is orbitally continuous;
- (iii) T is k-continuous.

Remark 4. *Note that from condition* (6), we obtain

$$\varphi(\mathcal{T}\mathbf{x}) \le \varphi(\mathbf{x}). \tag{7}$$

Mathematics 2023, 11, 1118 4 of 9

for all $x \in Y$.

The third goal of this paper is to bring a new version of Theorem 3 in *bMS*.

Remark 5. Pant et al. [25] have shown that Theorem 3 contains results of Banach, Kannan, Chatterjea, Ćirić and Suzuki on fixed points as particular cases. In addition, Theorem 3 is independent of the result of Caristi on fixed point. Note that, Theorem 3 is a new solution to the Rhoades problem about discontinuity at the FP.

The main and the most important objective of this paper is to nominate some new versions of several well-known results about FP such as Caristi's theorem, Pant et al.'s theorem and Karapınar et al.'s theorem in the case of bMS. We use a new technique given by Miculescu and Mihail in [19] in order to prove our theorems. Some illustrative applications and examples are given to strengthen our new findings and the main results.

2. Main Results

In this part, we indicate the various known fixed-point theorems in b-metric space settings.

2.1. A New Version of the Theorem by Caristi

In this subsection, we afford a new version of Caristi's theorem in bMS. The terms orbit, orbitally continuous, weakly orbitally continuous and k-continuous in bMS are introduced analogously to metric space, see Definition 3.

Lemma 4. Let (Y, \mathcal{D}, s) be a bCMS and $\mathcal{T}: Y \longrightarrow Y$ be weakly orbitally continuous mapping. If there exist $u \in Y$ and $x_0 \in Y$ such that $u = \lim_{n \to +\infty} \mathcal{T}^n x_0$, then $u = \mathcal{T}u$.

Proof. Let $u = \lim_{n \to +\infty} \mathcal{T}^n x_0$. Then, $u = \lim_{n \to +\infty} \mathcal{T} \mathcal{T}^n x_0$. The weak orbital continuity of \mathcal{T} leads to $\lim_{n \to +\infty} \mathcal{T}^n x_0 = u = \lim_{n \to +\infty} \mathcal{T} \mathcal{T}^n x_0 = Tu$. So, $u = \mathcal{T}u$. \square

Theorem 4. Let (Y, \mathcal{D}, s) be a bCMS and $\mathcal{T}: Y \longrightarrow Y$ be weakly orbitally continuous mapping such that

$$\mathcal{D}(\mathbf{x}, \mathcal{T}\mathbf{x}) \le \varphi(\mathbf{x}) - h^{s-1}\varphi(\mathcal{T}^r\mathbf{x}),\tag{8}$$

for all $x \in Y$, where $r \in \mathbb{N}$ and h > 1 and $\varphi : Y \to [0, +\infty)$. Then, \mathcal{T} has at least an FP.

Proof. Let $x_0 \in \text{and } x_n = \mathcal{T}^n x_0, n \in \mathbb{N}$. Put $\lambda = h^{\frac{s-1}{r}}$. From (8), we have

$$\begin{array}{rcl} \mathcal{D}(\mathsf{x}_0,\mathsf{x}_1) & \leq & \varphi(\mathsf{x}_0) - \lambda^r \varphi(\mathsf{x}_r) \\ \lambda \mathcal{D}(\mathsf{x}_1,\mathsf{x}_2) & \leq & \lambda \varphi(\mathsf{x}_1) - \lambda^{r+1} \varphi(\mathsf{x}_{r+1}) \\ & \vdots \\ \lambda^r \mathcal{D}(\mathsf{x}_r,\mathsf{x}_{r+1}) & \leq & \lambda^r \varphi(\mathsf{x}_r) - \lambda^{2r} \varphi(\mathsf{x}_{2r}) \\ & \vdots \\ \lambda^n \mathcal{D}(\mathsf{x}_n,\mathsf{x}_{n+1}) & \leq & \lambda^n \varphi(\mathsf{x}_n) - \lambda^{n+r} \varphi(\mathsf{x}_{n+r}). \end{array}$$

The previous inequalities necessitate that

$$\sum_{k=0}^{n} \lambda^{k} \mathcal{D}(\mathbf{x}_{k}, \mathbf{x}_{k+1}) \leq \varphi(\mathbf{x}_{0}) + \lambda \varphi(\mathbf{x}_{1}) + \dots + \lambda^{r-1} \varphi(\mathbf{x}_{r-1})
- (\lambda^{r+1} \varphi(\mathbf{x}_{r+1}) + \lambda^{r+2} \varphi(\mathbf{x}_{r+2}) + \dots + \lambda^{r+n} \varphi(\mathbf{x}_{r+n})
\leq \varphi(\mathbf{x}_{0}) + \lambda \varphi(\mathbf{x}_{1}) + \dots + \lambda^{r-1} \varphi(\mathbf{x}_{r-1}).$$

Mathematics 2023. 11, 1118 5 of 9

We now conclude from Lemma 3 that $\{\mathcal{T}^n x_0\}$ is Cauchy. Since Y is complete, this means there is $u \in Y$ where $u = \lim_{n \to +\infty} \mathcal{T}^n x_0$. Therefore, we find that u is an FP of the mapping \mathcal{T} by Lemma 4. \square

Remark 6. One should remember that by putting r = 1 in Theorem 4, we obtain Theorem 3.1. from [19]. Moreover, by setting r = 1 and s = 1, we reach the classical Caristi theorem in MS (refer also to [27], Theorem 2.10).

Example 1. Let Y=[0,1] and the functions $\mathcal{T}:Y\longrightarrow Y,\ \varphi:Y\longrightarrow [0,+\infty)$ and $\mathcal{D}:Y\times Y\longrightarrow [0,+\infty)$ defined by $\mathcal{T}x=x^2,\ \varphi(x)=\sqrt{x},\ \mathcal{D}(x,\mathfrak{y})=|x-\mathfrak{y}|.$ Then, (Y,\mathcal{D}) is a metric space and we have

$$\mathcal{D}(x,\mathcal{T}x) = |x-x^2| = (\sqrt{x}-x)(\sqrt{x}+x) \geq 2x(\sqrt{x}-x) > \sqrt{x}-x = \varphi(x)-\varphi(\mathcal{T}x),$$

for all $x \in (\frac{1}{2}, 1]$. Therefore, condition (4) is not fulfilled and we cannot apply Theorem 1. On the other hand, by putting r = 2, s = 1 in Theorem 4, we arrive at

$$\phi(x) - \phi(\mathcal{T}^2 x) = \sqrt{x} - x^2 \ge x - x^2 = \mathcal{D}(x, \mathcal{T} x).$$

2.2. Light Version of Caristi's Theorem

Another version from Caristi's theorem in *bMS*, namely, the *light version of Caristi's theorem*, is the goal of this subsection.

Theorem 5. Let (Y, \mathcal{D}, s) be a CbMS and $\mathcal{T}: Y \longrightarrow Y, \psi: Y \times Y \to [0, +\infty)$ be mappings and \mathcal{T} weakly orbitally continuous mapping. If

$$\mathcal{D}(\mathbf{x}, \mathbf{y}) \le \psi(\mathbf{x}, \mathbf{y}) - h^{s-1} \psi(\mathcal{T}^r \mathbf{x}, \mathcal{T}^r \mathbf{y}), \tag{9}$$

for every $x, y \in Y$, where $r \in \mathbb{N}$ and h > 1, then T has a unique FP.

Proof. Suppose $\mathfrak{y} = Tx$ and $\varphi(x) = \psi(x, \mathcal{T}x)$, for all $x \in Y$. It follows from Theorem 4 that \mathcal{T} has a $FP \ u \in Y$. If $\mathcal{T}v = v$ where $v \in Y$, then from (9), we attain

$$\mathcal{D}(u,v) < \psi(u,v) - h^{s-1}\psi(u,v) < 0,$$

which shows that u = v. \square

Example 2. Let $Y = \mathbb{R}$, $\mathcal{D}: Y \times Y \longrightarrow [0, +\infty)$ be a b-metric on Y, defined by $\mathcal{D}(x, \mathfrak{y}) = |x - \mathfrak{y}|^2$. $\mathcal{T}: Y \longrightarrow Y$ is a weakly orbitally continuous contraction defined by $\mathcal{T}x = \frac{x}{2}$ and $\psi: Y \times Y \longrightarrow [0, +\infty)$ defined by $\psi(x, \mathfrak{y}) = 2|x - \mathfrak{y}|^2$. Then (Y, \mathcal{D}) is a CbMS when s = 2. Next, let us consider h = 2 and $r \in \mathbb{N}$. Then, we have

$$\psi(x,\mathfrak{y})-h^{s-1}\psi(\mathcal{T}^rx,\mathcal{T}^r\mathfrak{y})=|x-\mathfrak{y}|^2(2-\frac{1}{2^{2(r-1)}})\geq \mathcal{D}(x,\mathfrak{y}).$$

Therefore, the conditions of Theorem 5 are fulfilled.

Remark 7. Note that for the case s = 1 and r = 1 from Theorem 5, we obtain the results from Khojasteh et al. [16].

2.3. On the Result of Pant et al. [25]

In this part, we will introduce the next theorem, as a version of Theorem 3 from [25]. We will not state the proof because it has the same proof as Theorem 4.

Mathematics 2023. 11, 1118 6 of 9

Theorem 6. Let (Y, \mathcal{D}, s) be a CbMS. Let $\mathcal{T}: Y \longrightarrow Y$ and $\psi: Y \times Y \longrightarrow [0, +\infty)$ be mappings. If

$$\mathcal{D}(\mathcal{T}x, \mathcal{T}\mathfrak{y}) \le \psi(x, \mathfrak{y}) - h^{s-1}\psi(\mathcal{T}x, \mathcal{T}\mathfrak{y}). \tag{10}$$

for all $x, y \in Y$, where h > 1, this implies T has a unique FP, under one of the following conditions:

- (i) T is weakly orbitally continuous;
- (ii) T is orbitally continuous;
- (iii) T is k-continuous.

Here, we present a concrete example for the above Theorem, and we show that the conditions for Theorem 6 are satisfied.

Example 3. Let Y = [0,1] and $\mathcal{D} : Y \times Y \longrightarrow [0,+\infty)$ be a b-metric on Y, defined by $\mathcal{D}(x,\mathfrak{y}) = |x-\mathfrak{y}|^2$, $\mathcal{T} : Y \longrightarrow Y$ is a contraction, defined by $\mathcal{T}x = \frac{x}{3}$, $\psi : Y \times Y \longrightarrow [0,+\infty)$ is a function defined by $\psi(x,\mathfrak{y}) = \frac{(x+\mathfrak{y})^2}{2}$. Obviously, $(\mathcal{X},\mathcal{D},2)$ is a complete b-metric space. Let h = 2. We obtain

$$(\mathcal{T}x, \mathcal{T}y) = |\mathcal{T}x - \mathcal{T}y|^2 = \frac{|x - y|^2}{9}.$$

On the other side,

$$\psi(x, \mathfrak{y}) - h^{s-1}\psi(\mathcal{T}x, \mathcal{T}\mathfrak{y}) = \frac{7(x+\mathfrak{y})^2}{18}.$$

When

$$\frac{|x-\mathfrak{y}|^2}{9} \le \frac{7(x+\mathfrak{y})^2}{18},$$

for all $x, y \in [0, 1]$, we deduce that the conditions for Theorem 6 are met.

From Theorem 6, we realize following corollary.

Corollary 1. Let (Y, \mathcal{D}, s) be a complete b-metric space and $\mathcal{T}: Y \longrightarrow Y$, and let $\varphi_i: Y \to [0, +\infty)$, i = 1, 2 be mappings such that \mathcal{T} is weakly orbitally continuous. If

$$\mathcal{D}(\mathcal{T}\mathbf{x}, \mathcal{T}\mathfrak{y}) \le \varphi_1(\mathbf{x}) - h^{s-1}\varphi_1(\mathcal{T}\mathbf{x}) + \varphi_2(\mathfrak{y}) - h^{s-1}\varphi_2(\mathcal{T}\mathfrak{y}). \tag{11}$$

for each $x, y \in Y$, such that h > 1, then T has a unique FP.

Proof. Putting $\psi(x, y) = \varphi_1(x) + \varphi_2(y), x, y \in Y$ in Theorem 6, we obtain the proof. \Box

Remark 8. If $\varphi_1 = \varphi_2$ and s = 1 from Corollary 1, we obtain Theorem 3.

2.4. On the Result of Karapınar et al. [15]

We first modify Theorem 1 given by Karapınar et al. [15] in the *bMS* setting as follows.

Theorem 7. Let (Y, \mathcal{D}, s) be a complete bMS, $\mathcal{T}, \mathcal{I}: Y \longrightarrow Y$, and let $\psi: Y \times Y \longrightarrow \mathbb{R}$ be mappings such that:

- (a) $\inf_{x,y\in X}\psi(x,y)>-\infty;$
- (b) $\mathcal{T}(\mathcal{I}x) = \mathcal{I}(\mathcal{T}x)$, for all $x \in Y$;
- (c) the range of \mathcal{I} contains the range of \mathcal{T} ;
- (d) \mathcal{I} is continuous;
- (e)

$$\mathcal{D}(\mathcal{I}x, \mathcal{T}x) > 0 \text{ implies } d(\mathcal{T}x, \mathcal{T}\mathfrak{y}) \le (\psi(\mathcal{I}x, \mathcal{I}\mathfrak{y}) - \psi(\mathcal{T}x, \mathcal{T}\mathfrak{y}))\mathcal{D}(\mathcal{I}x, \mathcal{I}\mathfrak{y}), \tag{12}$$

for all $x, y \in Y$.

Mathematics 2023. 11, 1118 7 of 9

Then, \mathcal{T} and \mathcal{I} have a coincidence point, which means there exists $u \in Y$ where $\mathcal{T}u = \mathcal{I}u$.

Proof. Let $x_0 \in Y$. Since $\mathcal{T}x_0 \in \mathcal{I}(Y)$, there is an $x_1 \in Y$ such that $\mathcal{I}x_1 = \mathcal{T}x_0$. Similarly, for any given $x_n \in Y$, there is $x_{n+1} \in Y$ such that $\mathcal{I}x_{n+1} = \mathcal{T}x_n$. If $\mathcal{D}(\mathcal{I}x_n, \mathcal{T}x_n) = 0$ for some $n \in \mathbb{N}$, then x_n is a coincidence point. Suppose that

$$\mathcal{D}(\mathcal{I}x_n, \mathcal{T}x_n) > 0, \tag{13}$$

for each $n \in \mathbb{N}$. From (12), we obtain

$$\mathcal{D}(\mathcal{T}x_{n+1}, \mathcal{T}x_n) \leq (\psi(\mathcal{I}x_{n+1}, \mathcal{I}x_n) - \psi(\mathcal{T}x_{n+1}, \mathcal{T}x_n))\mathcal{D}(\mathcal{I}x_{n+1}, \mathcal{I}x_n)$$

= $(\psi(\mathcal{I}x_{n+1}, \mathcal{I}x_n) - \psi(\mathcal{I}x_{n+2}, \mathcal{I}x_{n+1}))\mathcal{D}(\mathcal{I}x_{n+1}, \mathcal{I}x_n).$

Hence,

$$\mathcal{D}(\mathcal{I}x_{n+2}, \mathcal{I}x_{n+1}) \le (\psi(\mathcal{I}x_{n+1}, \mathcal{I}x_n) - \psi(\mathcal{I}x_{n+2}, \mathcal{I}x_{n+1}))\mathcal{D}(\mathcal{I}x_{n+1}, \mathcal{I}x_n), \tag{14}$$

for all $n \in \mathbb{N}$. Recalling condition (13), from (14) we have

$$\frac{\mathcal{D}(\mathcal{I}x_{n+2}, \mathcal{I}x_{n+1})}{\mathcal{D}(\mathcal{I}x_{n+1}, \mathcal{I}x_n)} \le \psi(\mathcal{I}x_{n+1}, \mathcal{I}x_n) - \psi(\mathcal{I}x_{n+2}, \mathcal{I}x_{n+1}), \tag{15}$$

for each $n \in \mathbb{N}$. From inequality (15) and condition (a), we obtain

$$\sum_{j=1}^{n} \frac{\mathcal{D}(\mathcal{I}x_{j+2}, \mathcal{I}x_{j+1})}{\mathcal{D}(\mathcal{I}x_{j+1}, \mathcal{I}x_{j})} < +\infty.$$
(16)

Therefore, the series $\sum\limits_{j=1}^{+\infty} \frac{\mathcal{D}(\mathcal{I}x_{j+2},\mathcal{I}x_{j+1})}{\mathcal{D}(\mathcal{I}x_{j+1},\mathcal{I}x_{j})}$ converges and

$$\lim_{j \to +\infty} \frac{\mathcal{D}(\mathcal{I}x_{j+2}, \mathcal{I}x_{j+1})}{\mathcal{D}(\mathcal{I}x_{j+1}, \mathcal{I}x_j)} = 0.$$
(17)

From (17), we conclude that for $k \in (0,1)$, there exists $n_0 \in \mathbb{N}$ where

$$\mathcal{D}(\mathcal{I}\mathbf{x}_{i+2}, \mathcal{I}\mathbf{x}_{i+1}) \le k\mathcal{D}(\mathcal{I}\mathbf{x}_{i+1}, \mathcal{I}\mathbf{x}_i),\tag{18}$$

for all $j \ge n_0$. Now, by applying Lemma 2, the sequence $\mathcal{I}x_n$ is Cauchy. Let

$$u = \lim_{n \to +\infty} \mathcal{I} x_n = \lim_{n \to +\infty} \mathcal{T} x_{n-1}.$$
 (19)

While $\mathcal I$ is continuous, (12) leads to both $\mathcal I$ and $\mathcal T$ being continuous. On the other hand, $\mathcal T$ and $\mathcal I$ commute and thus

$$\mathcal{I}u = \mathcal{I}(\lim_{n \to +\infty} \mathcal{T}x_n) = \lim_{n \to +\infty} \mathcal{I}\mathcal{T}x_n = \lim_{n \to +\infty} \mathcal{T}\mathcal{I}x_n = T(\lim_{n \to +\infty} \mathcal{I}x_n) = \mathcal{T}u.$$
 (20)

As a result, u is a coincidence point for \mathcal{T} and \mathcal{I} . \square

Corollary 2. Suppose (Y, \mathcal{D}, s) is a CbMS. Let $\mathcal{T}: Y \longrightarrow Y$ and $\varphi: Y \times Y \longrightarrow \mathbb{R}$ be mappings where $\inf_{x \in Y} \varphi(x) > -\infty$. If

$$d(x,Tx) > 0 \text{ reveals } d(Tx,Ty) \le (\varphi(x) - \varphi(Tx))d(x,y), \tag{21}$$

this means that T has an FP.

Proof. Put Ix = x and $\psi(x, y) = \varphi(x)$ by Theorem 7. \square

Mathematics 2023, 11, 1118 8 of 9

Remark 9. *Note that Corollary 2 improves Theorem 1 from* [15] *to the class of bMS.*

3. Conclusions

The importance of the results obtained here is reflected in the fact that we have improved some known results in the fixed-point theory and demonstrated this validated by the examples presented. On the other hand, the results obtained in metric spaces were obtained in the broad class of spaces in b-metric spaces. A natural question is whether these results can be obtained for some wider classes of spaces such as rectangular b-metric spaces [10], $b_v(s)$ -metric spaces [20], orthogonal b-metric-like spaces [29] and modular spaces [30].

Author Contributions: Conceptualization, Z.D.M., A.B., A.A., N.M. and R.G.; formal analysis, Z.D.M., A.B. and A.A.; writing—original draft preparation, Z.D.M., A.B., A.A., N.M. and R.G.; writing—review and editing, Z.D.M., A.B., A.A., N.M. and R.G.; funding acquisition, R.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444). The authors would like to thank the reviewers for their valuable remarks and recommendations.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Aleksić, S.; Mitrović, Z.D.; Radenović, S. A fixed point theorem of Jungck in $b_v(s)$ -metric spaces. *Period. Math. Hung.* **2018**, 77, 224–231. [CrossRef]
- 2. Aleksić, S.; Mitrović, Z.D.; Radenović, S. Picard sequences in b-metric spaces. Fixed Point Theory 2020, 21, 35–46. [CrossRef]
- 3. Bakhtin, I.A. The contraction mapping principle in almost metric space. (Russ.) Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26–37.
- 4. Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. *Trans. Am. Math. Soc.* **1976**, 215, 241–251. [CrossRef]
- 5. Carić, B.; Došenović, T.; George, R.; Mitrović, Z.D.; Radenović, S. On Jungck-Branciari-Wardowski type fixed point results. *Mathematics* **2021**, *9*, 161. [CrossRef]
- 6. Czerwik, S. Contraction mappings in *b*-metric spaces. *Acta Math. Inform. Univ. Ostrav.* **1993**, *1*, 5–11.
- 7. Ćirić, Lj, B. Generalised contractions and fixed point theorems. *Publ. Inst. Math.* **1971**, 12, 19–26.
- 8. Dung, N.V.; Hang, V.T.L. On relaxations of contraction constants and Caristi's theorem in *b*-metric spaces. *J. Fixed Point Theory Appl.* **2016**, *18*, 267–284. [CrossRef]
- 9. Fisher, B. Four mappings with a common fixed point. *Kuwait J. Sci.* **1981**, *8*, 131–139.
- 10. George, R.; Radenović, S.; Reshma, K.P.; Shukla, S. Rectangular *b*-metric space and contraction principles. *J. Nonlinear Sci. Appl.* **2015**, *8*, 1005–1013. [CrossRef]
- 11. Hussain, N.; Mitrović, Z.D.; Radenović, S. A common fixed point theorem of Fisher in *b*-metric spaces. *Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM* **2019**, *113*, 949–956. [CrossRef]
- 12. Jovanović, M.; Kadelburg, Z.; Radenović, S. Common Fixed Point Results in Metric-Type Spaces. *Fixed Point Theory Appl.* **2010**, 2010, 978121. [CrossRef]
- 13. Jungck, G. Commuting mappings and fixed points. Am. Math. Mon. 1976, 83, 261–263. [CrossRef]
- 14. Jungck, G. Compatible mappings and common fixed points. Int. J. Math. Math. Sci. 1986, 9, 771–779. [CrossRef]
- 15. Karapınar, E.; Khojasteh, F.; Mitrović, Z.D. A proposal for revisiting Banach and Caristi type theorems in *b*-metric spaces. *Mathematics* **2019**, *7*, 308. [CrossRef]
- 16. Khojasteh, F.; Karapınar, E.; Khandani, H. Some applications of Caristi's fixed point theorem in metric spaces. *Fixed Point Theory Appl.* **2016**, 2016, 16. [CrossRef]
- 17. Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerland, 2014. [CrossRef]
- 18. Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in *b*-metric spaces. *J. Fixed Point Theory Appl.* **2017**, 19, 2153–2163. [CrossRef]

Mathematics 2023, 11, 1118 9 of 9

19. Miculescu, R.; Mihail, A. Caristi-Kirk type and Boyd-Wong-Browder-Matkowski-Rus type fixed point results in *b*-metric spaces. *Filomat* **2017**, *31*, 4331–4340. [CrossRef]

- Mitrović, Z.D.; Radenović, S.; Reich, S.; Zaslavski, A. Iterating nonlinear contractive mappings in Banach spaces. Carpathian J. Math. 2020, 36, 286–293. [CrossRef]
- 21. Mitrović, Z.D.; Radenović, S. The Banach and Reich contractions in $b_v(s)$ -metric spaces. *J. Fixed Point Theory Appl.* **2017**, 19, 3087–3095. [CrossRef]
- 22. Mitrović, Z.D.; Radenović, S. A common fixed point theorem of Jungck in rectangular *b*-metric spaces. *Acta Math. Hungar.* **2017**, 153, 401–407. [CrossRef]
- 23. Mitrović, Z.D. A note on a Banach's fixed point theorem in *b*-rectangular metric space and *b*-metric space. *Math. Slovaca* **2018**, *68*, 1113–1116. [CrossRef]
- 24. Mitrović, Z.D.; Hussain, N. On results of Hardy-Rogers and Reich in cone *b*-metric space over Banach algebra and applications. *U.P.B. Sci. Bull. Ser. A* **2019**, *81*, 147–154.
- 25. Pant, R.P.; Rakočević, V.; Gopal, D.; Pant, A.; Ram, M. A General Fixed Point Theorem. Filomat 2021, 35, 4061–4072. [CrossRef]
- 26. Pant, A.; Pant, R.P. Fixed points and continuity of contractive maps. Filomat 2017, 31, 3501–3506. [CrossRef]
- 27. Pant, A.; Pant, R.P.; Joshi, M.C. Caristi type and Meir-Keeler type fixed point theorems. Filomat 2019, 33, 3711–3721. [CrossRef]
- 28. Hutchinson, J. Fractals and Self-Similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [CrossRef]
- 29. Gardašević-Filipović, M.; Kukić, K.; Gardašević, D.; Mitrović, Z.D. Some best proximity point results in the orthogonal 0-complete *b*-metric like spaces. *J. Contemp. Math. Anal. Armen. Acad.* **2023**, *58*, 1–14. *in press*.
- 30. Nakano, H. Modular semi-ordered spaces. Tokyo Math. Book Series; Maruzen. I: Tokyo, Japan, 1950; Volume 1, p. 288.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.