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Abstract: This paper investigates the observer-based non-fragile output feedback tracking control
problem for nonlinear networked systems with randomly occurring gain variations. The considered
nonlinear networked systems are represented by a Takagi–Sugeno (T–S) fuzzy model. The dynamical
quantization methodology is employed to achieve the reasonable and efficacious utilization of the
limited communication resources. The objective is to design the observer-based non-fragile output
feedback tracking controller, such that the resulting system is mean-square asymptotically stable
with the givenH∞ tracking performance. Based on the descriptor representation strategy combined
with the S-procedure, sufficient conditions for the existence of the desired dynamic quantizers and
observer-based non-fragile tracking controller are proposed in the form of linear matrix inequalities.
Finally, simulation results are provided to show the effectiveness of the proposed design method.

Keywords: nonlinear networked systems; T–S fuzzy model; dynamic quantization; non-fragile
tracking control
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1. Introduction

In the last two decades, increasing attention has been paid to analysis and design prob-
lems for networked systems. The main reason for this trend is that the networked systems
have been successfully applied in a great variety of modern industrial processes, such as
intelligent manufacturing, industrial automation, and unmanned vehicles [1]. However, in
networked systems, bandwidth-limited communication networks are utilized to realize the
exchange of information between each component. Therefore, an interesting problem in
networked systems is how to achieve the reasonable and efficacious utilization of limited
communication resources. In the existing research results, the quantization methodology
was regarded as an effective way to deal with the above problem. Two quite different
methodologies for the analysis and synthesis of networked systems with quantization can
be found in the literature, i.e., static quantization methodology and dynamical quantiza-
tion methodology. Using the static quantization methodology, many important advances
have been achieved using different techniques in recent decades, e.g., [2–4] and references
therein. However, in the static quantization methodology, the quantizer is memoryless,
which means that only the practical stability of the resulting system can be ensured with
a finite number of quantization levels. In the dynamical quantization methodology, the
quantizer is dynamic and time-varying, which means that the asymptotical stability of the
resulting system can be ensured with a finite number of quantization levels. Therefore, the
dynamic quantization methodology is more general. A number of significant results have
been reported for the dynamic quantization methodology. These include the stabilization
problem, which was addressed in [5], the state feedbackH∞ control problem, which was
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studied in [6], the event-triggered sliding-mode control problem, which was considered
in [7], a novelH∞ control strategy with an online adjusting strategy, which was proposed
in [8], and the output feedback stabilization andH∞ problems, which were investigated
in [9].

The Takagi–Sugeno (T–S) fuzzy model strategy was considered a laconic and efficient
approach to deal with the analysis and design problems for nonlinear systems. In the
T–S fuzzy model strategy, the nonlinear systems can be approximated as local linear time-
invariant models connected by IF-THEN rules. In this way, the approach to classical linear
systems can be utilized to deal with the analysis and design problems of the concerned
nonlinear control systems [10]. The study of nonlinear systems based on the T–S fuzzy
model strategy can be traced back to the publication of the pioneering work developed by
Takagi and Sugeno in 1985 [11]. Subsequently, more researchers have shown their great
research interest in investigating nonlinear systems based on the T–S fuzzy model strategy,
and many noticeable results have been published, see, e.g., [12–16] and references therein.
Based on the T–S fuzzy model strategy, a number of interesting results on nonlinear
networked systems have been reported, see, e.g., [17–19] and references therein. For
nonlinear networked systems with static quantization, some interesting results have been
reported based on the T–S fuzzy model strategy in [20–22]. Based on T–S fuzzy model
strategy, various control strategies were developed for nonlinear networked systems with
dynamic quantization in [23–26] and the filter design problem was addressed for nonlinear
networked systems with dynamic quantization in [27,28].

In addition, as one of the most significant problems in control theory and control
engineering, tracking control has been extensively investigated by scientists and engineers
because of its successful applications in a number of different areas, e.g., high-precision
machine tools, the aerospace industry, and sophisticated weaponry. The most important fea-
ture of tracking control is that the designed tracking controller not only ensures the stability
of the resulting system but also achieves the prescribed tracking performance. In recent
decades, tracking control problems have received growing attention and numerous mean-
ingful results have been reported. In [29–31], the tracking control problem was addressed
for linear networked systems. By utilizing the T–S fuzzy model strategy, the tracking
control problem was addressed for nonlinear systems and nonlinear networked systems
in [32–34] and [35–37], respectively. Based on the T–S fuzzy model strategy, the dissipative
tracking control and the event-triggered tracking control problems were addressed for non-
linear networked systems with static quantization in [38] and [39], respectively. Recently,
in the presence of dynamic quantization, the event-triggered tracking control problem was
investigated for nonlinear networked systems via the T–S fuzzy model strategy in [40].

Regarding the aforementioned results on tracking control, the tracking controllers
are assumed to be implemented exactly and do not involve parametric gain variations.
However, as pointed out in [41], the parametric gain variations in the tracking controller
are unavoidable in engineering. This is mainly because the word length of the digital
processors is finite [42]. As a result, a challenging and significant problem in the study
of tracking control problems is to design a non-fragile tracking controller, i.e., a tracking
controller with parametric gain variations. Recently, the study of non-fragile tracking
control problems for T–S fuzzy systems has also received some attention. The non-fragile
output feedback tracking control problem was considered for uncertain Markov jump
fuzzy systems in [43]. In [44], the non-fragile tracking control strategy was proposed for a
spacecraft with external disturbances based on the T–S fuzzy model approach. The non-
fragile tracking control problem was addressed for bilinear Takagi–Sugeno fuzzy systems
with uncertainties and disturbances in [45]. However, to date, few attempts have been
made to study observer-based non-fragile H∞ output feedback tracking control designs
for T–S fuzzy systems with dynamic quantization and randomly occurring gain variations,
which motivated this study.

In this paper, based on the T–S fuzzy model strategy, the observer-based non-fragile
H∞ output feedback tracking control problem was addressed for nonlinear networked sys-
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tems with dynamic quantization. The main contributions of this paper can be summarized
as follows.

(1). Based on the T–S fuzzy model strategy, the observer-based non-fragile H∞ out-
put feedback tracking control problem is studied for nonlinear networked systems with
dynamic quantization and randomly occurring gain variations.

(2). In order to achieve the reasonable and efficacious utilization of the limited commu-
nication resources, the dynamical quantization methodology with online adjusting strategy
is employed.

(3). By utilizing the descriptor representation approach, a co-design strategy for
the desired non-fragile observer-based output feedback tracking controller and dynamic
quantizers was proposed in terms of linear matrix inequalities.

Notations: The notations utilized in this paper are standard. The nation ∗ denotes a
term that is induced by symmetry. The nation diag{· · · } represents a block-diagonal matrix.
The superscripts “T” and “−1” denote the matrix transposition and its inverse. I and 0
represent the identity matrix and zero matrix with appropriate dimensions, respectively.
Pr{·} denotes the occurrence probability of the event “·”. He{W} refers to W + WT .
E{α(t)} denotes for the expectation of the stochastic variable α(t). |·| represents the
standard Euclidean norm. Rm×n indicates the set of all real matrices of dimension m× n.
L2[ 0, ∞) is the space of square-integrable vector functions over [ 0, ∞).

2. Problem Formulation

The block diagram of the non-fragileH∞ output feedback tracking control problem
addressed in this paper is depicted in Figure 1. In the following, we shall introduce the
T–S fuzzy model, reference model, observer-based output feedback tracking controller,
dynamic quantizers, and resulting system, respectively.

Quantizer

Observer

-

( )e
y t

( )y th

( )y t

Quantizer

Quantizer

Controller

Reference Model

Nonlinear Plant
( )y t

( )x̂ t

( )x̂ th( )e
x t

( )u t

( )u t

( )u th

( )ŷ t - ( )y te

( )tn

( )tx

Figure 1. The block diagram of nonlinear networked systems.

2.1. T–S Fuzzy Model

The following continuous-time T–S fuzzy model will be utilized to model the consid-
ered nonlinear networked systems, and the lth rule is presented as follows:

Plant Rule l : IF ς1(t) is S1l , and ς2(t) is S2l and, . . . ,
and ςτ(t) is Slτ

THEN ẋ(t) = Al x(t) + Bluη(t) + Dlν(t)
y(t) = Cl x(t)

(1)

where x(t) ∈ Rnx stands for the state variable, uη(t) ∈ Rnu indicates the control input,
y(t) ∈ Rny means the measured output, and ν(t) ∈ Rnν is the noise input that is assumed
to be the arbitrary signal in L2[ 0, ∞). Slλ (l = 1, 2, . . . , m, λ = 1, 2, . . . , τ) is utilized
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to indicate the fuzzy sets, ς(t) = [ ς1(t), ς2(t), . . . , ςτ(t) ] is used to denote the premise
variable, m stands for the number of the fuzzy rules. The matrices Al , Bl , Cl , and Dl stand
for given system parameters.

The basis functions for the fuzzy system (1) can be formulated as

κl(ς(t)) =
∏τ

λ=1 Slλ(ςλ(t))
∑m

l=1 ∏τ
λ=1 Slλ(ςλ(t))

(2)

where Sλl(ςλ(t)) is the grade of membership function of ςλ(t) in Sλl .
According to the basis functions given in (2),

κl(ς(t)) ≥ 0,
m

∑
l=1

κl(ς(t)) = 1, l = 1, 2, . . . , m (3)

The T–S fuzzy model (1) can be inferred as follows:

ẋ(t) = A(κ)x(t) + B(κ)uη(t) + D(κ)ν(t)
y(t) = C(κ)x(t)

(4)

where
A(κ) =

m
∑

l=1
κl(ς(t))Al , B(κ) =

m
∑

l=1
κl(ς(t))Bl ,

C(κ) =
m
∑

l=1
κl(ς(t))Cl , D(κ) =

m
∑

l=1
κl(ς(t))Dl .

2.2. Reference Model

For the non-fragile output feedback tracking control problem investigated in this
paper, we proposed the following reference model

˙̂x(t) = Aξ x̂(t) + Bξ ξ(t)
ŷ(t) = Cξ x̂(t)

(5)

where x̂(t) ∈ Rnx̂ represents the state variable of the reference model, ξ(t) ∈ Rnξ denotes
the bounded reference input, and ŷ(t) ∈ Rny stands for the output of the reference model.
Aξ , Bξ , and Cξ are given matrices and Aξ is a Hurwitz matrix.

2.3. Observer-Based Output Feedback Tracking Controller

As in [10,12,15], the parallel distributed compensation strategy will be employed
in this paper. In this case, the non-fragile observer for the fuzzy system in (4) can be
constructed as

ẋe(t) = A(κ)xe(t) + B(κ)u(t)
+ (L(κ) + βL(t)ΞL(κ))(yη(t)− ye(t))

ye(t) = C(κ)xe(t)
(6)

where xe(t) ∈ Rnx denotes the state of the observer; yη(t) ∈ Rny and ye(t) ∈ Rny represent
the quantized measured output of the plant and the output of the observer, respectively.

L(κ) =
m
∑

q=1
κq(ς(t))Lq, Lq ∈ Rnx×ny , q = 1, 2, . . . , m stand for the observer gains. ΞL(κ) =

XL(κ)∆L(t)YL stands for the gain perturbation matrix, XL(κ) =
m
∑

q=1
κq(ς(t))XLq and YL

are given matrices; ∆L(t) is an uncertain matrix and satisfies ∆T
L(t)∆L(t) ≤ I. βL(t) is a

Bernoulli stochastic variable that satisfies

Pr{βL(t) = 1} = β̄L, Pr{βL(t) = 0} = 1− β̄L

where β̄L = E{βL(t)} is a given constant.
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The non-fragile observer-based tracking controller considered in this paper is given as
follows:

u(t) = (G(κ) + βG(t)ΞG(κ))xe(t)
+ (S(κ) + βS(t)ΞS(κ))x̂η(t)

(7)

where G(κ) =
m
∑

q=1
κq(ς(t))Gq, Gq ∈ Rnu×nx , q = 1, 2, . . . , m, and S(κ) =

m
∑

q=1
κq(ς(t))Sq,

Sq ∈ Rnu×nx̂ , q = 1, 2, . . . , m are the controller gains. ΞG(κ) = XG(κ)∆G(t)YG and

ΞS(κ) = XS(κ)∆S(t)YS stand for the gain perturbation matrices, XG(κ) =
m
∑

q=1
κq(ς(t))XGq ,

XS(κ) =
m
∑

q=1
κq(ς(t))XSq , YG, and YS are given matrices, ∆G(t) and ∆S(t) are uncertain

matrices and satisfy ∆T
G(t)∆G(t) ≤ I and ∆T

S (t)∆S(t) ≤ I, respectively. βG(t) and βS(t) are
two independent Bernoulli stochastic variables that satisfy

Pr{βG(t) = 1} = β̄G, Pr{βG(t) = 0} = β̄G
Pr{βS(t) = 1} = β̄S, Pr{βS(t) = 0} = β̄S

where β̄G = E{βG(t)} and β̄S = E{βS(t)} are two given constants.

Remark 1. It should be noted that the observer-based tracking control scheme employed in this
paper is more general than the one used in [32,33,35]. One of the main reasons for this is that
the adopted observer in (6) and controller in (7) are non-fragile with randomly occurring gain
variations. Furthermore, in order to simplify the analysis process, the control inputs of the observer
and the system are often assumed to be the same in the study of observer-based output feedback
tracking control for networked systems (see, e.g., [35]). However, the above assumption may not
suit networked systems regarding the existence of the communication networks. In this paper, we
consider that the control input of the observer in (6) and the control input of the system in (4) are
different (see, Figure 1), which is a more general assumption in networked systems.

2.4. Dynamic Quantizers

In this paper, uη(t), yη(t), and x̂η(t) represent the quantized signals of u(t), y(t), and
x̂(t), i.e., the outputs of the following three dynamic quantizers, which are defined as

zη(t) = jz(t)ηz

(
z(t)
jz(t)

)
, z = u, y, x̂ (8)

As in [5–9], jz(t) > 0 denotes a dynamic parameter and ηz(z(t)/jz(t)) stands for a
static quantizer that satisfies

IF
∣∣∣∣ z(t)

jz(t)

∣∣∣∣ ≤ Mz, THEN
∣∣∣∣ηz

(
z(t)
jz(t)

)
− z(t)

jz(t)

∣∣∣∣ ≤ ∆z (9)

IF
∣∣∣∣ z(t)

jz(t)

∣∣∣∣ > Mz, THEN
∣∣∣∣ηz

(
z(t)
jz(t)

)∣∣∣∣ > Mz − ∆z (10)

Here, ∆z represents the quantization error bound and Mz represents the quantization
range of the quantizer ηz(z(t)/jz(t)).

Moreover, the quantized signals uη(t), yη(t), and x̂η(t) can be expressed as

zη(t) = ψz(t) + z(t), z = u, y, x̂ (11)

where ψz(t) = jz(t)
(

ηz

(
z(t)
jz(t)

)
− z(t)

jz(t)

)
.

Remark 2. In this paper, the dynamical quantization methodology developed in [5] is employed to
reduce the data transmission burden of the communication network from the plant and the reference
model to the controller and from the controller to the plant. Moreover, as pointed out in [9,23,40],
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an infinite number of quantization levels is necessary to guarantee the asymptotical stability of the
resulting system in the static quantization methodology due to the inherent time-invariant quality
of the static quantizer. In the dynamical quantization methodology considered in this paper, the
quantization levels can be dynamically scaled to increase the region of attraction and reduce the
steady-state limit cycle, which means that the asymptotical stability can be guaranteed under a finite
number of quantization levels. As a result, in contrast with the static quantization methodology
employed in [3,38,39] and references therein, the dynamical quantization methodology utilized in
this paper is more general.

2.5. Resulting System

By substituting (11) into (4) and defining xφ(t) = x(t)− xe(t),

ẋφ(t) = (A(κ)− L(κ)C(κ)− βL(t)ΞL(κ)C(κ))xφ(t)
− (L(κ) + βL(t)ΞL(κ))ψy(t)
+ B(κ)ψu(t) + D(κ)ν(t)

(12)

In order to utilize the descriptor representation strategy, we can rewrite the control
input u(t) as

0 · u̇(t) = (G(κ) + βG(t)ΞG(κ))x(t)− (G(κ)
+βG(t)ΞG(κ))xφ(t) + (S(κ)
+βS(t)ΞS(κ))x̂η(t)− u(t)

(13)

By defining εT(t) = [xT(t) xT
φ (t) x̂T(t) uT(t)], νT

ε (t) = [νT(t) ξT(t)], and yε(t) =

y(t)− ŷ(t), the resulting system in the descriptor form can be represented as follows:

Eε̇(t) =
(

Âa + β̂L(t)Âb + β̂G(t)Âc + β̂S(t)Âd

)
× ε(t) +

(
Qy + β̂L(t)Q̂y

)
ψy(t) +

(
Qx̂

+β̂S(t)Q̂x̂

)
ψx̂(t) + Quψu(t) + B̂νε(t)

yε(t) = Ĉε(t)

(14)

where β̂L(t) = βL(t)− β̄L, β̂G(t) = βG(t)− β̄G, β̂S(t) = βS(t)− β̄S, Ĉ = [C(κ) 0 −Cξ 0 ],
and

E =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

, Qy =


0

−L(κ)− β̄LΞL(κ)
0
0

, Qu =


B(κ)
B(κ)

0
0

,

Âa =


A(κ) 0 0 B(κ)

0 θ22 0 0
0 0 Aξ 0

θ41 −θ41 θ43 −I

, Q̂x̂ =


0
0
0

ΞS(κ)

,

Âb =


0 0 0 0
0 −ΞL(κ)C(κ) 0 0
0 0 0 0
0 0 0 0

, Q̂y =


0

−ΞL(κ)
0
0

,

Âc =


0 0 0 0
0 0 0 0
0 0 0 0

ΞG(κ) −ΞG(κ) 0 0

, B̂ =


D(κ) 0
D(κ) 0

0 Bξ

0 0

,

Âd =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 ΞS(κ) 0

, Qx̂ =


0
0
0

S(κ) + β̄SΞS(κ)

,

θ22 = A(κ)− L(κ)C(κ)− β̄LΞL(κ)C(κ), θ41 = G(κ) + β̄GΞG(κ), θ43 = S(κ) + β̄SΞS(κ).
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Before we present the objective of this paper, the following definition will be given.

Definition 1 ([16]). It can be concluded that the resulting system (14) is asymptotically stable in
the mean-square sense, if

lim
t→∞

E
{
|ε(t)|2

}
= 0

is satisfied for any initial conditions with νε(t) = 0.

The purpose of this paper is to design the non-fragile observer in (6), the non-fragile
tracking controller in (7), and the dynamic quantizers in (8) such that the resulting system
in (14) satisfies the following two tracking requirements.

(1) The resulting system in (14) is mean-square asymptotically stable with νε(t) = 0.
(2) The givenH∞ tracking performance σ > 0 can be guaranteed for all νε(t) 6= 0 with

the zero-initial conditions, i.e., the tracking error yε(t) satisfies∫ tr

0
yT

ε (t)yε(t)dt < σ2
∫ tr

0
νT

ε (t)νε(t)dt

where tr > 0 is the final time.
The following lemma plays a critical role in deriving the central results of this paper.

Lemma 1 ([17,20]). For real matrices X0 = XT
0 , X1, X2, and X3 with appropriate dimensions,

then, we can obtain that X0 + X1X2X3 + XT
3 XT

2 XT
1 < 0 is true for all XT

2 X2 ≤ I, if and only if
X0 + d−1X1XT

1 + dXT
3 X3 < 0 is satisfied for a positive scalar d > 0.

3. Main Results
3.1. Tracking Performance Analysis

In this subsection, the problem ofH∞ tracking performance analysis will be addressed.
More specifically, we assume that the gains in the non-fragile observer in (6) and the
non-fragile tracking controller in (7) are known; then, the sufficient conditions will be
established in the following theorem to ensure the mean-square asymptotical stability and
the givenH∞ tracking performance for the resulting system in (14).

Theorem 1. Consider the fuzzy system in (4), the reference model in (5), the observer-based non-
fragile tracking controller in (7), and the dynamic quantizers in (8). For given scalars β̄L, β̄G, β̄S,
∆z, and Mz, z = u, y, x̂, the resulting system in (14) is asymptotically stable in the mean-square
sense and the prescribed H∞ performance σ > 0 can be guaranteed with the online adjusting
strategies for the dynamic parameters jz(t) as

fz|z(t)| ≤ jz(t) ≤ 2 fz|z(t)|, z = u, y, x̂. (15)

If there exist matrix P > 0 and scalars bz > 0, fz > 0 satisfying

Mz − 1/ fz > 0, z = u, y, x̂ (16)

PE = ET PT ≥ 0 (17)[
Z11 ∗
Z21 Z22

]
< 0 (18)

where Z11 = PÂa + ÂT
a PT + ĈTĈ,

Z21 = [ PQy PQx̂ PQu PB̂ byΣT
y bx̂ΣT

x̂ buΣT
u ]T ,

Z22 = −daig
{

by I, bx̂ I, bu I, σ2 I, by I, bx̂ I, bu I
}

,

Σu = [ 0 0 0 2 fu∆u I ], Σy = [ 2 fy∆yC(κ) 0 0 0 ], and Σx̂ = [ 0 0 2 f x̂∆x̂ I 0 ].
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Proof. Firstly, for νε(t) = 0, we will show that the resulting system in (14) is mean-square
asymptotically stable with the online adjusting strategies in (15) if the conditions in (16)–(18)
are satisfied.

Based on the results proposed in [23,28], the following inequalities can be obtained
from (9), (15), and (16):

4 f 2
z ∆2

zzT(t)z(t)− ψT
z (t)ψz(t) ≥ 0, z = u, y, x̂ (19)

which can be expressed as

ε̃T(t)Ĥz ε̃(t) ≥ 0, z = u, y, x̂ (20)

where ε̃(t) = [εT(t) ψT
y (t) ψT

x̂ (t) ψT
u (t)]T ,

Ĥu = [Σu 0 0 0]T [Σu 0 0 0]− daig{ 0, 0, 0, I },
Ĥy = [Σy 0 0 0]T [Σy 0 0 0]− daig{ 0, I, 0, 0 },
Ĥx̂ = [Σx̂ 0 0 0]T [Σx̂ 0 0 0]− daig{ 0, 0, I, 0 }.

For the resulting system (14), the Lyapunov function can be formulated as

V
(
ε(t)

)
= εT(t)PEε(t), PE = ET PT ≥ 0 (21)

then, we have

E
{

V̇(ε(t))
}

= E
{

εT(t)PEε̇(t) + ε̇T(t)ET PTε(t)
}

= E
{

εT(t)P
((

Âa + β̂L(t)Âb + β̂G(t)Âc + β̂S(t)Âd

)
× ε(t) +

(
Qy + β̂L(t)Q̂y

)
ψy(t) +

(
Qx̂ + β̂S(t)Q̂x̂

)
× ψx̂(t) + Quψu(t)

)
+
((

Âa + β̂L(t)Âb + β̂G(t)Âc

+β̂S(t)Âd

)
ε(t) +

(
Qy + β̂L(t)Q̂y

)
ψy(t) +

(
Qx̂

+β̂S(t)Q̂x̂

)
ψx̂(t) + Quψu(t)

)T
PTε(t)

}
= εT(t)P

(
Âaε(t) + Qyψy(t) + Qx̂ψx̂(t) + Quψu(t)

)
+
(

Âaε(t) + Qyψy(t) + Qx̂ψx̂(t) + Quψu(t)
)T

PTε(t)

= ε̃T(t)Ĥc ε̃(t)

(22)

where Ĥc = He
{
[ Âa Qy Qx̂ Qu ]T [ PT 0 0 0 ]

}
.

For νε(t) = 0, the following inequality can be obtained according to (18), which is
given as [

Ẑ11 ∗
Ẑ21 Ẑ22

]
< 0 (23)

where Ẑ11 = PÂa + ÂT
a PT ,

Ẑ21 = [ PQy PQx̂ PQu byΣT
y bx̂ΣT

x̂ buΣT
u ]T ,

Ẑ22 = −daig
{

by I, bx̂ I, bu I, by I, bx̂ I, bu I
}

.

Performing congruence transformation to (23) by daig
{

I, X̂
}

with X̂ = daig{ I, I, I,

b−1
y I, b−1

x̂ I, b−1
u I

}
and utilizing the Schur complement, we can obtain that

Ĥc + byĤy + bx̂Ĥx̂ + buĤu < 0 (24)
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Then, based on the S-procedure in [9,27], one can conclude that

E
{

V̇(ε(t))
}
= ε̃T(t)Ĥc ε̃(t) < 0 (25)

Moreover, according to Definition 1 and the results developed in [16], we can deduce
that the resulting system in (14) is asymptotically stable in the mean square for νε(t) = 0.

Next, for all νε(t) 6= 0, theH∞ tracking performance of the resulting system (14) will
be established with zero initial conditions.

For νε(t) 6= 0, the inequalities given in (20) can be indicated as

ε̂T(t)Hz ε̂ ≥ 0, z = u, y, x̂ (26)

where ε̂(t) = [εT(t) ψT
y (t) ψT

x̂ (t) ψT
u (t) νT

ε (t)]T ,

Ĥu = [Σu 0 0 0 0]T [Σu 0 0 0 0]− daig{ 0, 0, 0, I, 0 },
Ĥy = [Σy 0 0 0 0]T [Σy 0 0 0 0]− daig{ 0, I, 0, 0, 0 },
Ĥx̂ = [Σx̂ 0 0 0 0]T [Σx̂ 0 0 0 0]− daig{ 0, 0, I, 0, 0 }.

Then, we have

E
{

V̇(ε(t))
}
+ yT

ε (t)yε(t)− σ2νT
ε (t)νε(t)

= E
{

εT(t)P
((

Âa + β̂L(t)Âb + β̂G(t)Âc + β̂S(t)Âd

)
× ε(t) +

(
Qy + β̂L(t)Q̂y

)
ψy(t) +

(
Qx̂ + β̂S(t)Q̂x̂

)
× ψx̂(t) + Quψu(t) + B̂νε(t)

)
+
((

Âa + β̂L(t)Âb

+β̂G(t)Âc + β̂S(t)Âd

)
ε(t) +

(
Qy + β̂L(t)Q̂y

)
ψy(t)

+
(

Qx̂ + β̂S(t)Q̂x̂

)
ψx̂(t) + Quψu(t) + B̂νε(t)

)T

× PTε(t)
}
+ εT(t)ĈTĈε(t)− σ2νT

ε (t)νε(t)

= εT(t)P
(

Âaε(t) + Qyψy(t) + Qx̂ψx̂(t) + Quψu(t)

+ B̂νε(t)
)
+
(

Âaε(t) + Qyψy(t) + Qx̂ψx̂(t) + Qu

×ψu(t) + B̂νε(t)
)T

PTε(t) + εT(t)ĈTĈε(t)
− σ2νT

ε (t)νε(t)
= ε̂T(t)Hc ε̂(t)

(27)

whereHc = He
{
[ Âa Qy Qx̂ Qu B̂ ]T [ PT 0 0 0 0 ]

}
+ diag

{
ĈTĈ, 0, 0, 0 − σ2 I

}
.

Let us perform congruence transformation to (18) by daig{ I, X }withX = daig{I, I, I,
I, b−1

y I, b−1
x̂ I, b−1

u I
}

and utilize the Schur complement; this shows that

Hc + byHy + bx̂Hx̂ + buHu < 0 (28)

Then, based on the S-procedure in [9,27], we have that ε̂T(t)Hc ε̂(t) < 0, i.e.,

E
{

V̇(ε(t))
}
+ yT

ε (t)yε(t)− σ2νT
ε (t)νε(t) < 0 (29)

By integrating (29) from 0 to tr, we obtain that∫ tr
0 E

{
V̇(ε(t))

}
dt +

∫ tr
0 yT

ε (t)yε(t)dt
− σ2

∫ tr
0 νT

ε (t)νε(t)dt
= E

{
V̇(ε(tr))

}
−E

{
V̇(ε(0))

}
+
∫ tr

0 yT
ε (t)yε(t)dt− σ2

∫ tr
0 νT

ε (t)νε(t)dt < 0

(30)
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Consider the zero initial conditions and E
{

V̇(ε(tr))
}
≥ 0, we can obtain that

∫ tr

0
yT

ε (t)yε(t)dt < σ2
∫ tr

0
νT

ε (t)νε(t)dt.

It is shown that the H∞ tracking performance of the resulting system (14) can be
guaranteed.

The proof is completed.

3.2. Non-Fragile Tracking Controller Design

In the following theorem, based on the H∞ tracking performance analysis criterion
developed in Theorem 1, a co-design strategy for the desired non-fragile observer in (6),
the tracking controller in (7), and dynamic quantizers in (8) will be proposed in terms of
linear matrix inequalities.

Theorem 2. Consider the fuzzy system in (4), the reference model in (5), the observer-based non-
fragile tracking controller in (7), and the dynamic quantizers in (8). For given scalars β̄L, β̄G, β̄S,
∆z, and Mz, z = u, y, x̂, the resulting system in (14) is asymptotically stable in the mean-square
sense and the prescribed H∞ performance σ > 0 can be guaranteed with the online adjusting
strategies for the dynamic parameters jz(t) defined in (15) subject to fz = gz/bz. If there exist
scalars bz > 0, gz > 0, dL > 0, dG > 0, dS > 0 and matrices P11 > 0, P22 > 0, P33 > 0, P44, L̂q,
Ĝq, Ŝq for q = 1, 2, . . . , m satisfying

gz Mz − bz > 0, z = u, y, x̂ (31) P11 ∗ ∗
P22 P22 ∗
0 0 P33

 > 0 (32)

Tll < 0, l = 1, 2, · · · , m (33)

Tlq + Tql < 0, l, q = 1, 2, · · · , m, l < q (34)

where

Tlq =



T lq
11 ∗ ∗ ∗ ∗ ∗ ∗
T lq

21 T22 ∗ ∗ ∗ ∗ ∗
T l

31 0 −σ2 I ∗ ∗ ∗ ∗
T l

41 0 0 T22 ∗ ∗ ∗
T lq

51 T52 0 0 −dL I ∗ ∗
T q

61 0 0 0 0 −dG I ∗
T q

71 T72 0 0 0 0 −dS I


,

T lq
11 =


Θ1l ∗ ∗ ∗
Θ2lq Θ3lq ∗ ∗
−CT

ξ Cl 0 Θ4 ∗
Θ5lq Θ6lq Ŝq −He{P44}

,
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T lq
21 =

 −L̂T
q −L̂T

q 0 0
0 0 0 ŜT

q
Θ7l 2BT

l PT
22 0 0

,

T22 = −daig
{

by I, bx̂ I, bu I
}

,

T l
31 =

[
Θ8l 2DT

l PT
22 0 0

0 0 BT
ξ PT

33 0

]
,

T l
41 =

 2gy∆yCl 0 0 0
0 0 2gx̂∆x̂ I 0
0 0 0 2gu∆u I

,

T lq
51 =

[
−β̄LXT

Lq
PT

22 −β̄LXT
Lq

PT
22 0 0

0 dLYLCl 0 0

]
,

T52 =

[
0 0 0

dLYL 0 0

]
,

T q
61 =

[
0 0 0 β̄GXT

Gq
PT

44

dGYG −dGYG 0 0

]
,

T q
71 =

[
0 0 0 β̄SXT

Sq
PT

44

0 0 dSYS 0

]
,

T72 =

[
0 0 0
0 dSYS 0

]
,

Θ1l = He{P11 Al} + CT
l Cl , Θ2lq = He{P22 Al} − CT

l L̂T
q , Θ3lq = He{P22 Al − L̂qCl}, Θ4 =

He{P33 Aξ}+ CT
ξ Cξ , Θ5lq = BT

l PT
11 + Ĝq, Θ6lq = BT

l PT
22 − Ĝq, Θ7l = BT

l PT
11 + BT

l PT
22, Θ8l =

DT
l PT

11 + DT
l PT

22.
Furthermore, the desired gains for the non-fragile observer in (6) and the non-fragile tracking

controller in (7) can be obtained as

Lq = P−1
22 L̂q, Gq = P−1

44 Ĝq, Sq = P−1
44 Ŝq. (35)

Proof. The condition of (18) developed in Theorem 1 can be expressed as

Π1 + He{Ψ1∆L(t)Ψ2 + Ψ3∆G(t)Ψ4 + Ψ5∆S(t)Ψ6} < 0 (36)

where

Π1 =


S11 ∗ ∗ ∗
S21 T22 ∗ ∗
S31 0 −σ2 I ∗
S41 0 0 T22

,

Ψ1 = [ RT
1 PT 0 0 0 ]T , Ψ2 = [ R2 R3 0 0 ], Ψ3 = [ RT

4 PT 0 0 0 ]T , Ψ4 = [ R5 0 0 0 ],

Ψ5 = [ RT
6 PT 0 0 0 ]T , Ψ6 = [ R7 R8 0 0 ], S11 = PAa + AT

a PT + ĈTĈ, S21 =

[ PQy PQx̂ PQu ]T , S31 = B̂T PT , S41 = [ byΣT
y bx̂ΣT

x̂ buΣT
u ]T , RT

1 = [ 0 − β̄LXT
L (κ) 0 0 ],

R2 = [ 0 YLC(κ) 0 0 ], R3 = [YL 0 0 ], RT
4 = [ 0 0 0 β̄GXT

G(κ) ], R5 = [YG − YG 0 0 ],
RT

6 = [ 0 0 0 β̄SXT
S (κ) ], R7 = [ 0 0 YS 0 ], R8 = [ 0 YS 0 ], Qy = [ 0 − LT(κ) 0 0 ]T ,

Qx̂ = [ 0 0 0 ST(κ) ]T ,

Aa =


A(κ) 0 0 B(κ)

0 A(κ)− L(κ)C(κ) 0 0
0 0 Aξ 0

G(κ) −G(κ) S(κ) −I

.
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Then, according to Lemma 1 and the Schur complement, it can be obtained that the
inequality in (36) holds if, for positive scalars dL, dG, and dS,

S11 ∗ ∗ ∗ ∗ ∗ ∗
S21 T22 ∗ ∗ ∗ ∗ ∗
S31 0 −σ2 I ∗ ∗ ∗ ∗
S41 0 0 T22 ∗ ∗ ∗
S51 T52 0 0 −dL I ∗ ∗
S61 0 0 0 0 −dG I ∗
S71 T72 0 0 0 0 −dS I


< 0 (37)

where

S51 =

[
RT

1 PT

dLR2

]
, S61 =

[
RT

4 PT

dGR5

]
, S71 =

[
RT

6 PT

dSR7

]
.

In order to acquire the design conditions in terms of linear matrix inequalities, we
assume that the variable P is able to decompose as

P =


P11 P22 0 0
P22 P22 0 0
0 0 P33 0
0 0 0 P44

.

Then, the condition in (32) is necessary to ensure that PE = ET PT ≥ 0.
Moreover, by defining P22L(κ) = L̂(κ), P44G(κ) = Ĝ(κ), P44S(κ) = Ŝ(κ), gz = bz fz,

z = u, y, x̂, the condition in (37) can be expressed as

m
∑

l=1
κl(ς(t))

m
∑

q=1
κq(ς(t))Tlq < 0 (38)

By considering the property of the membership functions proposed in (3), it is shown
that if the conditions in (33) and (34) are satisfied, the condition in (38) holds.

Remark 3. In [40], we considered the output feedback tracking control problem for nonlinear
networked systems with dynamic quantization. However, the transmission problem regarding the
use of dynamic parameters for the dynamic quantizers through bandwidth-limited communication
networks has not been addressed. In this paper, based on the results developed in [23], we provide
the following online adjusting strategy:

jz(t) =


floor(2 fz|z(t)| × 10ε)× 10−ε, fz|z(t)| ∈ [0, 1

2 )

1, fz|z(t)| ∈ [ 1
2 , 1)

floor(2 fz|z(t)|), fz|z(t)| ∈ [1, ∞)

where z = u, y, x̂. Moreover, fz = gz/bz can be obtained according to the linear matrix
inequalities in (31)–(34), ε = min

{
ε ∈ N+

∣∣(2 fz|z(t)| × 10ε) > 1
}

, and floor(φ) stands for the
maximum integer smaller than φ.

Remark 4. In this paper, the descriptor representation approach is utilized to deal with the problem
of the observer-based output tracking control problem for nonlinear networked systems with dynamic
quantization, and the design conditions for the desired tracking controller and dynamic quantizers
are proposed in the form of linear matrix inequalities, which can effectively avoid an iterative solution
in the two-step strategy utilized in [33]. In contrast to the singular value decomposition of the
output-matrix-based strategy utilized in [35], the output matrices of the fuzzy system in the design
strategy developed in this paper are allowed to be non-common, i.e, the constraints on the output
matrices in [35] are removed.
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4. Illustrative Example

In this section, the mass-spring mechanical system borrowed from [32] will be utilized
to show the effectiveness of the developed co-design strategy. According to the results
developed in [32], the equation of motion can be formulated as

mχ̈ + F f + Fs = uη(t) (39)

where m stands for the mass, χ represents the displacement from the reference position,
uη(t) is the control input. Moreover, F f = ωχ̇(t) with positive scalar ω refers to the friction
force and Fs = δ(1 + α2χ2) with scalars α and δ denotes the restoring force of the spring.

Let us define x1(t) = χ, x2(t) = χ̇ and select κ1(x2
1(t)) =

x2
1(t)−χ

χ−χ , κ2(x2
1(t)) = 1−

κ1(x2
1(t)) with x2

1(t) ∈
[
χ χ

]
. Then, the T–S fuzzy model for the nonlinear system in (39)

can be represented as:

Plant Rule 1 : IF x2
1(t) is χ, THEN

ẋ(t) = A1x(t) + B1uη(t)
Plant Rule 2 : IF x2

1(t) is χ, THEN
ẋ(t) = A2x(t) + B2uη(t)

(40)

with

A1 =

[
0 1

−δ(1+α2χ)
m

ω
m

]
, B1 =

[
0
1
m

]
,

A2 =

[
0 1

−δ(1+α2χ)
m

ω
m

]
, B2 =

[
0
1
m

]
.

As in [35,39], we assume m = 1 kg, ω = 2 N.m/s, δ = 5, α = 0.3 m−1. The
corresponding system parameter matrices D1, D2, C1, and C2 are assumed to be

D1 = D2 =

[
0.1
0.5

]
, C1 = C2 = [ 1 0 ].

In addition, the parameters for the reference model in (5) are assumed to be

Aξ = −1, Bξ = 0.5, Cξ = 1,

and the given parameters for the non-fragile observer in (6) and the non-fragile tracking
controller in (7) are selected as

XL1 =

[
0.15
0.5

]
, XL2 =

[
0.10
0.7

]
, YL = 0.2,

XG1 = 0.3, XG2 = 0.2, YG = [ 0.3 0.1 ],
XS1 = −0.5, XS2 = 0.2, YS = 0.1.

By applying Theorem 2 with Mu = 50, My = 100, Mx̂ = 30, ∆u = 0.02, ∆y = 0.01,
∆x̂ = 0.05, βL = βG = βS = 0.5, it can be obtained that σmin = 0.5471, fy = 0.0107,
fu = 0.0203, f x̂ = 0.0335, and

L1 =

[
25.4302

143.5209

]
, L2 =

[
18.1018

103.3758

]
,

G1 = [−0.0747 − 0.0527 ], S1 = −0.1199,
G2 = [−0.0059 − 0.0479 ], S2 = 0.1267.

To demonstrate the effectiveness of the proposed co-design strategy, we assume that
the initial conditions are x(0) = xe(0) = [0 0]T , x̂(0) = 0, the noise input is ν(t) =
9 cos(t − 0.5) exp(−0.2t), the uncertain matrices ∆L = 0.1 sin(0.5t), ∆G = 0.2 sin(0.5t),
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∆S = 0.3 sin(0.5t), and the bounded reference input is ξ(t) = 4 cos(t) exp(−0.2t). The
responses of x(t) and xe(t) are shown in Figures 2 and 3. Figure 4 displays the trajectory of
u(t). The trajectories of y(t) and ŷ(t) are given in Figure 5. Figure 6 shows the trajectory of

yε(t). The ratio of
√∫ tr

0 yT
ε (t)yε(t)dt

/ ∫ tr
0 νT

ε (t)νε(t)dt is shown in Figure 7. The variations

in ju(t), jy(t), and jx̂(t) are displayed in Figure 8, Figure 9, and Figure 10, respectively.

0 5 10 15 20 25 30

Time (sec)

-1

-0.5

0

0.5

1

1.5

Figure 2. The trajectories of x1(t) and xe1(t).

0 5 10 15 20 25 30

Time (sec)

-1.5

-1

-0.5

0

0.5

1

Figure 3. The trajectories of x2(t) and xe2(t).

0 5 10 15 20 25 30

Time (sec)

-0.1

-0.05

0

0.05

0.1

0.15

Figure 4. The trajectory of the control input u(t).
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0

0.5

1

1.5

Figure 5. The trajectories of y(t) and ŷ(t).

0 5 10 15 20 25 30

Time (sec)
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Figure 6. The trajectory yε(t).

0 5 10 15 20 25 30

Time (sec)

0

0.01

0.02

0.03

Figure 7. The ratio of
√∫ tr

0 yT
ε (t)yε(t)dt

/ ∫ tr
0 νT

ε (t)νε(t)dt.
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Figure 8. The trajectory of ju(t).

Figure 9. The trajectory of jy(t).

Figure 10. The trajectory of jx̂(t).

From Figures 2 and 3, it can be seen that the designed non-fragile observer can estimate
the unmeasurable state variable of the fuzzy system in (40) effectively. With the observer-
based non-fragile tracking controllers shown in Figures 4–6 demonstrate that the output
y(k) tracks the reference output yε(k) with an acceptable tracking error, as expected. It

can be observed from Figure 7 that the ratio of
√∫ tr

0 yT
ε (t)yε(t)dt

/ ∫ tr
0 νT

ε (t)νε(t)dt tends

toward a constant value of 0.0269 below 0.5471, i.e., the prescribed tracking performance
can be guaranteed. Moreover, the simulation results in Figures 8–10 illustrate that the online
adjusting strategies developed in this paper are feasible. Based on the above discussions,
it can be concluded that the proposed co-design strategy is effective for the mass-spring
mechanical system considered in this paper.
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Next, a step-tracking response will be given to further show the effectiveness of the
proposed co-design strategy. We assume that x(0) = [0.5 0]T , xe(0) = [0 0]T , x̂(0) = −0.5,

v(t) =

{
3 sin(0.5t), 6 ≤ t ≤ 18
0, otherwise

,

r(k) =


−0.85, 7 ≤ t ≤ 12
0.85, 12 < t ≤ 17
0, otherwise

.

The response of y(t) and ŷ(t) in this case is plotted in Figure 11. From Figure 11, it can
be seen that the proposed co-design strategy is also effective.

0 5 10 15 20 25 30

Time (sec)

-0.5

0

0.5

Figure 11. The trajectories of y(t) and ŷ(t).

Comparative Explanations: This example shows that the developed co-design strategy
can effectively solve the observer-based non-fragileH∞ output feedback tracking control
problem for the mass-spring mechanical system in (39) with dynamic quantization and
randomly occurring gain variations based on the T–S fuzzy model strategy. In contrast
with the existing results, the main advantages of the proposed co-design strategy are
summarized as follows:

(1) Compared with the quantized stabilization or H∞ control problem addressed
in [2–9,20–23], the quantized tracking control problem presented here is more difficult and
more general. In contrast with the quantized tracking control problem considered in [38,39],
the dynamical quantization methodology employed herein is more general. This is mainly
because the asymptotical stability of the resulting system can be guaranteed with a finite
number of quantization levels. Moreover, the transmission problem of dynamic parameters
jz(t) (z = u, y, x̂) was considered in this paper, and Figures 8–10 show that the adjustment
of the dynamic parameters jz(t) can be realized based on the online adjusting strategies
developed in (15) combined with Remark 3. This implies that we no longer need to assume
that the same dynamic parameters jz(t) are obtained on both sides of the communication
network according to the quantized signal zη(t) (z = u, y, x̂), as in [9,27,40].

(2) The observer and the tracking controller employed are non-fragile, with randomly
occurring gain variations rather than the fragile ones considered in [32,33,35]. The devel-
oped observer-based tracking control strategy allows for the control inputs of the observer
and the plant to be different, which implies that the restrictive assumption in [35], i.e., the
control inputs of the observer and the plant are the same, has been avoided. In contrast
with the singular value decomposition approach used in [35], the descriptor representation
approach developed in this paper is more general because it can effectively avoid the con-
straint on the system output matrix C. Moreover, this example illustrates that the desired
non-fragile observer and non-fragile tracking controller can be obtained simultaneously by
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solving the linear matrix inequalities in (31)–(34) rather than the two-step design strategy
developed in [32,33].

5. Conclusions

In this paper, based on the T–S fuzzy model strategy, the observer-based non-fragile
H∞ output feedback tracking control problem was studied for nonlinear networked sys-
tems with dynamic quantization and randomly occurring gain variations. The dynamical
quantization methodology was employed to enhance the efficiency in the utilization of
the limited communication resources. By utilizing the descriptor representation strategy
combined with the S-procedure, a co-design strategy for the desired dynamic quantizers
and observer-based non-fragile output feedback tracking controller was formulated in
terms of linear matrix inequalities. Moreover, a simulation example was proposed to
demonstrate the effectiveness of the proposed co-design method. Next, the non-fragile
output feedback tracking control problem will be investigated for the switched nonlinear
systems considered in [46] or uncertain planar nonlinear systems addressed in [47].

Author Contributions: Conceptualization, Z.L. and H.W.; formal analysis, Z.L. and H.W.; methodol-
ogy, Z.L.; funding acquisition, Z.L.; investigation, software, and writing—original draft preparation
and editing, Z.L. and C.L.; review and editing, Z.L. and H.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under grant 62003006 and in part by the Science and Technology Project of the Hebei Education
Department under grant BJK2022053.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, L.; Gao, H.; Kaynak, O. Network-induced constraints in networked control systems—A survey. IEEE Trans. Ind. Inf. 2013,

9, 142–149. [CrossRef]
2. Su, L.; Chesi, G. Robust stability of uncertain linear systems with input and output quantization and packet loss. Automatica 2018,

87, 267–273. [CrossRef]
3. Gao, H.; Chen, T. A new approach to quantized feedback control systems. Automatica 2008, 44, 534–542. [CrossRef]
4. Coutinho, D.F.; Fu, M.; de Souza, C.E. Input and output quantized feedback linear systems. IEEE Trans. Autom. Control 2010, 55,

761–766. [CrossRef]
5. Liberzon, D. Hybrid feedback stabilization of systems with quantized signals. Automatica 2003, 39, 1543–1554. [CrossRef]
6. Che, W.W.; Yang, G.H. State feedbackH∞ control for quantized discrete-time systems. Asian J. Contr. 2008, 10, 718–723. [CrossRef]
7. Zheng, B.C.; Yu, X.; Xue, Y. Quantized feedback sliding-mode control: An event-triggered approach. Automatica 2018, 91, 126–135.

[CrossRef]
8. Niu, Y.; Ho, D.W.C. Control strategy with adaptive quantizer’s parameters under digital communication channels. Automatica

2014, 50, 2665–2671. [CrossRef]
9. Chang, X.H.; Xiong, J.; Li, Z.M.; Park, J.H. Quantized static output feedback control for discrete-time systems. IEEE Trans. Ind. Inf.

2018, 14, 3426–3435. [CrossRef]
10. Tanaka, K.; Wang, H.O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach; Wiley: New York, NY, USA,

2001.
11. Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern.

1985, 15, 116–132. [CrossRef]
12. Zhang, J.; Shi, P.; Qiu, J.; Nguang, S.K. A novel observer-based output feedback controller design for discrete-time fuzzy systems.

IEEE Trans. Fuzzy Syst. 2015, 23, 223–229. [CrossRef]
13. Chang, X.H.; Yang, G.H. NonfragileH∞ filter design for T–S fuzzy systems in standard form. IEEE Trans. Ind. Electron. 2014, 61,

3448–3458. [CrossRef]
14. Dong, J.; Yang, G.H. Observer-based output feedback control for discrete-time T–S fuzzy systems with partly immeasurable

premise variables. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 98–110. [CrossRef]

http://doi.org/10.1109/TII.2012.2219540
http://dx.doi.org/10.1016/j.automatica.2017.10.014
http://dx.doi.org/10.1016/j.automatica.2007.06.015
http://dx.doi.org/10.1109/TAC.2010.2040497
http://dx.doi.org/10.1016/S0005-1098(03)00151-1
http://dx.doi.org/10.1002/asjc.72
http://dx.doi.org/10.1016/j.automatica.2018.01.007
http://dx.doi.org/10.1016/j.automatica.2014.08.032
http://dx.doi.org/10.1109/TII.2017.2774446
http://dx.doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/10.1109/TFUZZ.2014.2306953
http://dx.doi.org/10.1109/TIE.2013.2278955
http://dx.doi.org/10.1109/TSMC.2016.2531655


Mathematics 2023, 11, 1116 19 of 20

15. Chang, X.H.; Yang, G.H. A descriptor representation approach to observer-basedH∞ control synthesis for discrete-time fuzzy
systems. Fuzzy Sets Syst. 2011, 185, 38–51. [CrossRef]

16. Liu, Y.; Guo, B.Z.; Park, J.H. Non-fragileH∞ filtering for delayed Takagi-Sugeno fuzzy systems with randomly occurring gain
variations. Fuzzy Sets Syst. 2017, 316, 99–116. [CrossRef]

17. Zhang, H.; Yang, D.; Chai, T. Guaranteed cost networked control for T–S fuzzy systems with time delays. IEEE Trans. Syst. Man
Cybern. C 2007, 37, 160–172. [CrossRef]

18. Yao, H.; Gao, F. Design of observer and dynamic output feedback control for fuzzy networked systems. Mathematics 2022, 11, 148.
[CrossRef]

19. Peng, C.; Yang, T.C. Communication-delay-distribution-dependent networked control for a class of T–S fuzzy systems. IEEE
Trans. Fuzzy Syst. 2010, 18, 326–335. [CrossRef]

20. Zheng, Q.; Xu, S.; Zhang, Z. NonfragileH∞ control for uncertain Takagi-Sugeno fuzzy systems under digital communication
channels and its application. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 3638–3647. [CrossRef]

21. Shen, H.; Men, Y.; Wu, Z.G.; Cao, J.; Lu, G. Network-based quantized control for fuzzy singularly perturbed semi-Markov jump
systems and its application. IEEE Trans. Circuits Syst. I Reg. Papers 2019, 66, 1130–1140. [CrossRef]

22. Qiu, J.; Feng, G.; Gao, H. Observer-based piecewise affine output feedback controller synthesis of continuous-time T–S fuzzy
affine dynamic systems using quantized measurements. IEEE Trans. Fuzzy Syst. 2012, 20, 1046–1062.

23. Chang, X.H.; Yang, C.; Xiong, J. Quantized fuzzy output feedbackH∞ control for nonlinear systems with adjustment of dynamic
parameters. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2005–2015. [CrossRef]

24. Zheng, Q.; Xu, S.; Du, B. Quantized guaranteed cost output feedback control for nonlinear networked control systems and its
applications. IEEE Trans. Fuzzy Syst. 2022, 30, 2402–2411. [CrossRef]

25. Pan, T.T.; Chang, X.H.; Liu, Y. Robust fuzzy feedback control for nonlinear systems with input quantization. IEEE Trans. Fuzzy
Syst. 2022, 30, 4905–4914. [CrossRef]

26. Chang, X.H.; Jin, X. Observer-based fuzzy feedback control for nonlinear systems subject to transmission signal quantization.
Appl. Math. Comput. 2022, 414, 126657. [CrossRef]

27. Chang, X.H.; Li, Z.M.; Park, J.H. Fuzzy generalizedH2 filtering for nonlinear discrete-time systems with measurement quantiza-
tion. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2419–2430. [CrossRef]

28. Li, Z.M.; Xiong, J. Event-triggered fuzzy filtering for nonlinear networked systems with dynamic quantization and stochastic
cyber attacks. ISA Trans. 2022, 121, 53–62. [CrossRef]

29. Gao, H.; Chen, T. Network-basedH∞ output tracking control. IEEE Trans. Autom. Control 2008, 53, 655–667. [CrossRef]
30. Peng, C.; Song, Y.; Xie, X.P.; Zhao, M.; Fei, M.R. Event-triggered output tracking control for wireless networked control systems

with communication delays and data dropouts. IET Control Theory Appl. 2016, 10, 2195–2203. [CrossRef]
31. Yan, H.; Hu, C.; Zhang, H.; Karimi, H.R.; Jiang, X.; Liu, M.H∞ output tracking control for networked systems with adaptively

adjusted event-triggered scheme. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2050–2058. [CrossRef]
32. Lian, K.Y.; Liou, J.J. Output tracking control for fuzzy systems via output feedback design. IEEE Trans. Fuzzy Syst. 2006, 14,

628–639. [CrossRef]
33. Lin, C.; Wang, Q.G.; Lee, T.H.H∞ output tracking control for nonlinear systems via T–S fuzzy model approach. IEEE Trans. Syst.

Man Cybern. B Cybern. 2006, 36, 450–457.
34. Tseng, C.S.; Chen, B.S.; Uang, H.J. Fuzzy tracking control design for nonlinear dynamic systems via T–S fuzzy model. IEEE Trans.

Fuzzy Syst. 2001, 9, 381–392. [CrossRef]
35. Li, H.; Wu, C.; Jing, X.; Wu, L. Fuzzy tracking control for nonlinear networked systems. IEEE Trans. Cybern. 2017, 47, 2020–2031.

[CrossRef]
36. Zhang, D.; Han, Q.L.; Jia, X. Network-based output tracking control for a class of T–S fuzzy systems that can not be stabilized by

nondelayed output feedback controllers. IEEE Trans. Cybern. 2015, 45, 1511–1524. [CrossRef]
37. Zhang, D.; Han, Q.L.; Jia, X. Network-based output tracking control for T–S fuzzy systems using an event-triggered communica-

tion scheme. Fuzzy Sets Syst. 2015, 273, 26–48. [CrossRef]
38. Li, Z.M.; Park, J.H. Dissipative fuzzy tracking control for nonlinear networked systems with quantization. IEEE Trans. Syst. Man

Cybern. Syst. 2020, 50, 5130–5141. [CrossRef]
39. Li, Z.M.; Chang, X.H.; Park, J.H. Quantized static output feedback fuzzy tracking control for discrete-time nonlinear networked

systems with asynchronous event-triggered constraints. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 3820–3831. [CrossRef]
40. Li, Z.M.; Chang, X.H.; Xiong, J. Event-based fuzzy tracking control for nonlinear networked systems subject to dynamic

quantization. IEEE Trans. Fuzzy Syst. 2022, in press. Available online: https://ieeexplore.ieee.org/abstract/document/9839441
(accessed on 25 July 2022).

41. Wu, L.; Yang, X.; Li, F. Nonfragile output tracking control of hypersonic air-breathing vehicles with an LPV model. IEEE/ASME
Trans. Mechatron. 2013, 18, 1280–1288. [CrossRef]

42. Keel, L.H.; Bhattacharyya, S.P. Robust, fragile, or optimal? IEEE Trans. Autom. Control 1997, 42, 1098–1105. [CrossRef]
43. Wang, J.; Wu, J.; Cao, J.; Chadli, M.; Shen, H. Nonfragile output feedback tracking control for Markov jump fuzzy systems based

on integral reinforcement learning scheme. IEEE Trans. Cybern. 2022, in press. Available online: https://ieeexplore.ieee.org/
abstract/document/9911218 (accessed on 4 October 2022).

http://dx.doi.org/10.1016/j.fss.2011.06.010
http://dx.doi.org/10.1016/j.fss.2016.11.001
http://dx.doi.org/10.1109/TSMCC.2006.886983
http://dx.doi.org/10.3390/math11010148
http://dx.doi.org/10.1109/TFUZZ.2010.2041354
http://dx.doi.org/10.1109/TSMC.2021.3071403
http://dx.doi.org/10.1109/TCSI.2018.2876937
http://dx.doi.org/10.1109/TSMC.2018.2867213
http://dx.doi.org/10.1109/TFUZZ.2021.3082691
http://dx.doi.org/10.1109/TFUZZ.2022.3163908
http://dx.doi.org/10.1016/j.amc.2021.126657
http://dx.doi.org/10.1109/TSMC.2017.2743012
http://dx.doi.org/10.1016/j.isatra.2021.03.034
http://dx.doi.org/10.1109/TAC.2008.919850
http://dx.doi.org/10.1049/iet-cta.2015.1314
http://dx.doi.org/10.1109/TSMC.2017.2788187
http://dx.doi.org/10.1109/TFUZZ.2006.876725
http://dx.doi.org/10.1109/91.928735
http://dx.doi.org/10.1109/TCYB.2016.2594046
http://dx.doi.org/10.1109/TCYB.2014.2354421
http://dx.doi.org/10.1016/j.fss.2014.12.015
http://dx.doi.org/10.1109/TSMC.2018.2866996
http://dx.doi.org/10.1109/TSMC.2019.2931530
https://ieeexplore.ieee.org/abstract/document/9839441
http://dx.doi.org/10.1109/TMECH.2013.2255064
http://dx.doi.org/10.1109/9.618239
https://ieeexplore.ieee.org/abstract/document/9911218
https://ieeexplore.ieee.org/abstract/document/9911218


Mathematics 2023, 11, 1116 20 of 20

44. Han, T.J.; Kim, H.S. Disturbance observer-based nonfragile fuzzy tracking control of a spacecraft. Adv. Space Res. 2022, in press.
Available online: https://www.sciencedirect.com/science/article/abs/pii/S0273117722010754 (accessed on 25 November 2022).

45. Ghorbel, C.; Benhadj Braiek, N. Nonfragile H∞ tracking control strategies for classes of linear and bilinear uncertain Takagi-
Sugeno fuzzy systems. Trans. Inst. Meas. Control 2022, 44, 2166–2176. [CrossRef]

46. Gao, F.; Wu, Y.; Zhang, Z. Global fixed-time stabilization of switched nonlinear systems: A time-varying scaling transformation
approach. IEEE Trans. Circuits Syst. II Exp. Briefs 2019, 66, 1890–1894. [CrossRef]

47. Gao, F.; Chen, C.C.; Huang, J.; Wu, Y. Prescribed-time stabilization of uncertain planar nonlinear systems with output constraints.
IEEE Trans. Circuits Syst. II Exp. Briefs 2022, 69, 2887–2891. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.sciencedirect.com/science/article/abs/pii/S0273117722010754
http://dx.doi.org/10.1177/01423312221075473
http://dx.doi.org/10.1109/TCSII.2018.2890556
http://dx.doi.org/10.1109/TCSII.2022.3145098

	Introduction
	Problem Formulation
	T–S Fuzzy Model
	Reference Model
	Observer-Based Output Feedback Tracking Controller
	Dynamic Quantizers
	Resulting System

	Main Results
	Tracking Performance Analysis
	Non-Fragile Tracking Controller Design

	Illustrative Example
	Conclusions
	References

