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Abstract: Machine learning is widely used in various practical applications with deep learning
models demonstrating advantages in handling huge data. Treating music as a special language and
using deep learning models to accomplish melody recognition, music generation, and music analysis
has proven feasible. In certain music-related deep learning research, recurrent neural networks have
been replaced with transformers. This has achieved significant results. In traditional approaches with
recurrent neural networks, input sequences are limited in length. This paper proposes a method to
generate chord progressions for melodies using a transformer-based sequence-to-sequence model,
which is divided into a pre-trained encoder and decoder. A pre-trained encoder extracts contextual in-
formation from melodies, whereas a decoder uses this information to produce chords asynchronously
and finally outputs chord progressions. The proposed method addresses length limitation issues
while considering the harmony between chord progressions and melodies. Chord progressions can
be generated for melodies in practical music composition applications. Evaluation experiments are
conducted using the proposed method and three baseline models. The baseline models included the
bidirectional long short-term memory (BLSTM), bidirectional encoder representation from transform-
ers (BERT), and generative pre-trained transformer (GPT2). The proposed method outperformed the
baseline models in Hits@k (k = 1) by 25.89, 1.54, and 2.13 %, respectively.
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MSC: 68T99

1. Introduction

Machine learning has started making inroads in daily life; its use in various practical
applications, particularly deep learning with its advantages of handling huge data, is
significant. Due to the excellent performance of deep learning in natural language process-
ing tasks, it has also been applied to other research fields where data are in the form of
sequences [1]. Digital music data has increased significantly, as the Internet has become
more widely used and streaming services have become more popular. Treating music as a
special language and using deep learning models to accomplish melody recognition [2,3],
music generation [4,5], and music analysis [6,7] has proven feasible. Music-related research
has primarily focused on melody thus far. Additionally, chord progression is an essential
element in music and equally significant as melody. Chord progression refers to a sequence
of chords that create various emotional effects and is the foundation of harmony in western
music theory.

In early computer composition, researchers attempted to design a set of rules based
on music theory to guide computers in creating chord progressions. One approach [8]
suggests that a trance is the section of a song that contains highlights and usually repeats a
chord in a 16-measure loop. A statistical model was designed to generate chord loops that
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could be trained on a chord corpus. Another approach [9] suggests a system, namely, the
artificial immune system (AIS), which uses a penalty function for encoding musical rules.
The penalty function was minimized during the training process of the AIS for generating
chords in chord progressions. The trained AIS provides multiple suitable chords in parallel
to produce chord progressions.

Unlike the acquisition of knowledge through encoding music theory, a few researchers
produced chord progressions based on reinforcement learning. An automatic chord pro-
gression generator [10] based on reinforcement learning was introduced, which uses music
theory to define rewards and Q-learning algorithms to train an agent. A trained agent can
serve as an alternative tool for generating chord progressions and producing suitable chord
progressions that composers can use in their compositions. Although the utilization of
music theory can assist in the generation of harmonically sound chord progressions by the
model, the modeling of music theory or the definition of rewards based on it is challenging.
Additionally, this reliance on music theory may cause limitations in model generalization
and diversity of generated chord progressions. Therefore, researchers have attempted to
view music data as a special type of language by applying language modeling techniques.

Given that grammar is not required in natural language modeling, music theory
may not be required in music modeling. In the early days of machine learning, when
deep learning technology was not mature, the hidden Markov model (HMM) was used in
language modeling to generate chord progressions. One such system, MySong [11], uses
the HMM model to automatically select chords to accompany vocal melodies. Results
indicate that chord progressions assigned to melodies using MySong received subjective
scores similar to those assigned manually by musicians. Recurrent neural networks (RNNs),
including long short-term memory (LSTM) and gate recurrent unit (GRU), show improved
performance in the processing of discrete temporal sequence data. An LSTM-based dynamic
chord progression generation system [12] is designed to handle polyphonic guitar music.
Chord progression generation is formulated as a prediction process. Therefore, an LSTM-
based network architecture incorporating neural attention is proposed, which can learn the
mapping between previous symbolic representations of chords and future chord candidates.
Additionally, a bidirectional long short-term memory (BLSTM)-based chord-progression
generation approach [13] was introduced to generate chord progressions from symbolic
melodies. Furthermore, BLSTM networks are trained on a lead sheet database, where a
group of feature vectors composed of 12 semitones is extracted from the notes in each
measure of the monophonic melodies. To ensure that the notes share a uniform key
and duration, the key and time signatures of the vectors are normalized. Subsequently,
BLSTM learn temporal dependencies from the music corpus to generate chord progressions.
However, the length of the sequence representing the melody is a limitation of a chord
progression generator based on RNNs. Because of back-propagation through time (BPTT),
RNNs cannot handle long-distance dependencies well. A common approach to resolving
this issue is to shorten the length of the sequences to the extent possible, enabling only a
few measures of melodies as input and only generating a single chord for each measure.

This paper proposes a method for generating chord progressions for melodies using a
transformer-based sequence-to-sequence (Seq2Seq) model. The model consists of two parts:
a pre-trained encoder and decoder. The pre-trained encoder takes melodies as input and
analyzes them from both directions to extract contextual information. Subsequently, the
contextual information is passed to the decoder. The decoder receives the same melodies
as the input, however, in an asynchronous manner. The decoder generates chords step-
by-step by considering contextual information and input melodies and finally outputs
chord progressions.

The proposed method has several advantages. First, it relies entirely on a music
corpus and does not require music theory. Second, it addresses the issue of long-distance
dependencies, which RNNs cannot handle well. Finally, the pretrained encoder ensures that
chord progressions generated are suitable for melodies by pulling contextual information
from them.



Mathematics 2023, 11, 1111 3 of 14

The proposed method makes the following contributions: (1) compared to the chord
progression generation approaches based on music theory, the Seq2Seq model of the pro-
posed method trained on a music corpus has higher adjustability and generalizability; (2) it
overcomes the limitations of traditional RNN-based approaches in chord progression gen-
eration, which are unable to handle long-distance dependencies and makes the transitions
in chord progression smoother rather than being limited to only one chord per measure;
and (3) by considering melody compatibility, the proposed method can generate suitable
chord progressions for melodies and serve as an alternative tool for composition.

The remainder of this paper is organized as follows. Section 2 reviews studies on
transformer-based music generation. Section 3 describes the proposed method for the gen-
eration of chord progressions. Section 4 presents the experimental results and discussions
of the results. Section 5 presents the concluding remarks.

2. Related Work

The transformer has replaced RNNs and achieved notable results in temporal sequence
processing. The use of transformers has also become a trend in the field of music generation.
The most widely used approaches are reviewed briefly in this section.

2.1. Transformer (-XL) Based Approaches

One of the current state-of-the-art transformer-based music generation approaches [14]
is trained with a single sequence of notes. LakhNES [15] focused on generating multi-
instrumental music scores using a transformer architecture. A transformer is a complex,
high-dimensional language model that can capture long-term structures in sequence data.
LakhNES uses the NES-MDB dataset of four-instrument scores rather than a single note
sequence from an early video game sound synthesis chip and Lakh MIDI dataset for
pre-training to improve the performance of the model.

To enable the transformer to handle longer music, Museformer [16] improves the full
attention of the original transformer by using fine- and coarse-grained attention, which
processes sequences that are three times longer than the original transformer.

Another framework based on transformer-XL [17] has been suggested, which includes
two novel approaches [18]: building time-valued note sequences and the separation of four
sequences for individual use for the joint training of four transformer-XL networks.

2.2. Transformer-GANs-Based Approaches

Generative adversarial networks (GANs) are composed of generators and discrim-
inators. They are widely used to generate new samples through unsupervised learning
on datasets. The combination of transformers and GANs to generate music is a creative
task. A transformer-XL generator and pre-trained bidirectional encoder representation
from transformers (BERT) model as the discriminator were used to design transformer-
GANs [19], which helps to stabilize the training. The Gumbel-Softmax trick was used to
obtain a differentiable approximation of the sampling process, making discrete sequences
easy to optimize.

Another transformer-GAN-based research suggests a learning adversarial transformer [20],
which computes the reward for each generated step (REGS) for a long sequence rather
than adopting the time-consuming Monte Carlo (MC) search method commonly used
in sequence generative models. The discriminator is trained to optimize the elaborately
designed global and local loss objective functions simultaneously, enabling it to provide
reliable REGS for the generator.

2.3. Conditional Transformer-Based Approaches

By adding conditional vectors to the transformer, user-specified music was generated.
Among them, the theme-conditioned transformer [21] explicitly trains the transformer to
treat the conditioning sequence as thematic material that must manifest itself multiple
times in its generation result. Additionally, a controllable music transformer [22] receives
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images as conditional input and combines user-defined features to generate background
music for videos.

2.4. Differences between the Proposed Method and Previous Works

The proposed method uses the transformer-based Seq2Seq model to produce chord
progressions for melodies. This differs from previous works in the following ways. (1) The
proposed method focuses on generating chord progressions based on a given melody,
which is a more purposeful generation task. (2) To achieve this goal, the proposed method
uses a parallel model based on the attention mechanism, which is adept at handling such
tasks to fully understand the given melodies and generate chord progressions based on
them. (3) Pre-training techniques are used in the proposed method to make the pre-trained
encoder in the Seq2Seq model more effective in extracting contextual information.

3. Transformer-Based Seq2Seq Model for Chord Progression Generation

In this paper, a method is proposed to generate chord progressions for melodies using
a transformer-based Seq2Seq model. First, the representations of melodies and chord
progressions are demonstrated. Then, the process of pre-training the encoder is introduced.
Finally, the process of generating chord progressions for melodies based on the Seq2Seq
model is explained.

3.1. Symbolic Data Representation

Figure 1 shows that the required melodies and chord progressions for training are
obtained from lead sheets in XML format, which are sourced from the OpenEWLD music
corpus. The Python library music21 is utilized to extract relevant events for notes and
chords, which include information on time signature, pitch, beat, and chord types. The time
signature specifies how many beats are contained in each measure, and which note value is
equivalent to a beat. For example, in a 4/4 time signature, each measure consists of four
quarter notes, and each quarter note lasts for one beat. In order for computers to understand
melody and chord progression, they must be converted into a kind of indexed sequence.
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Melody is represented as pitch and beat sequences, where each element in pitch se-
quence consists of two parts: pitch name and octave. The pitch names consist of 12 different
types, which are C, C#(=Db), D, D#(=Eb), E, F, F#(=Gb), G, G#(=Ab), A, A#(=Bb), and B.
The octaves are represented by integers, and adjacent octaves differ by 12 semitones. In
treble clef, the note represented by a ledger line below the staff is C4. To index the pitch
sequence, the Musical Instrument Digital Interface (MIDI) is used as a reference. MIDI is
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the most widely used music standard format in the music composition industry and can
represent a range of 128 pitches from C-1 (index = 0) to G9 (index = 127). In addition, the
index of <PAD> is defined as 128 to ensure a same input length during model training.

The elements in the beat sequence and pitch sequence correspond one-to-one. Each
beat of a measure starts at 1, and the interval between adjacent integer beats is the length of
a quarter note. The music in the corpus is all monophonic, meaning that only one note is
played at a time. Beats are used to indicate the starting position of notes, and they last until
the beginning of the next note. As shown in Figure 1, the beat sequence of a measure is “1,
2, 3, 4, 4 1

2 ,” meaning that the notes in this measure start at beats 1, 2, 3, 4, and 4 1
2 . The note

on the first beat represents a note that starts at the beat 1 and lasts for one quarter note. The
note on the last beat represents a note that starts at the beat 4 1

2 and lasts for a half quarter
note (because the length of a measure with 4/4 time signature is 4 quarter notes). A total of
46 kinds of beat in different kinds of time signature are extracted from the music corpus,
and each beat is assigned an index from 0 to 45. The index of <PAD> is set to 46, and the
index of <UNK> is set to 47. The reason for adding <UNK> is to prevent the model from
failing to run due to uncommon beats during testing or actual application.

The chord progressions are represented by sequences of chords, which includes triads,
seventh, ninth chords, and so on. Additionally, chords can also be further classified into
major, minor, augmented, and diminished chords. In the music corpus, a total of 428 chords
were extracted and assigned an index from 0 to 429, where 0 represents <PAD> and 401
represents <UNK>. As shown in Figure 1, the chord sequence corresponding to the pitch
and beat sequences is generated. “C” represents the C major triad converted to index 1,
and “G” represents the G major triad converted to index 2. Each chord influences the pitch
of the current and subsequent pitches in the melody until a new chord is appeared. For
example, C major triad affects the pitches of C4 and E4, while G major triad affects the
pitches of G4, B4, and D5.

3.2. Pre-Training of Encoder

During the pre-training of the encoder, five noise patterns are designed to encourage
the encoder to understand the melodies, as shown in Figure 2. The noise patterns include
Start Note Permutation, End Note Permutation, Random Notes Changing, Random Notes
Masking, and Neighbor Notes Rotation. Start Note Permutation is designed to swap the
starting note of a melody with a random note from the melody. This enables the encoder to
learn the relationship between the starting note and remaining melody as well as potential
effects of changing the starting note on the overall structure of the melody. End Note
Permutation is similar to Start Note Permutation, which involves swapping the position of
the last note with the other notes in the melody. Random Notes Changing and Random
Notes Masking are designed to randomly replace notes in a melody with notes from the
melody, or with the special masking symbol “_”. The two patterns refer to masked language
modeling [23]. This helps the encoder learn to detect incorrect notes and fill in missing
notes, thereby deepening the understanding of melodies. Neighbor Notes Rotation is
designed to randomly swap the positions of two adjacent notes in a melody. Because
melodies have a certain trend, such as rising or falling, the encoder can strengthen its
understanding of the melody by rotating the notes. During pre-training, a melody can have
all five noise patterns applied to them simultaneously.

As shown in Figure 3, the pitch (p1, p2, p3, . . . , pn) and beat sequences (b1, b2, b3, . . . , bn)
of a melody are paired and then noised (an example utilized two noise patterns, Start Note
Permutation and Random Notes Masking) to obtain (p3, _, p1, . . . , pn) and (b3, _, b1, . . . , bn),
which are then embedded in the encoder. The encoder is composed of multiple layers
of transformers. The encoder uses transformers to capture long-distance dependencies
in both directions, which is crucial for understanding and restoring a melody to obtain
(p′1, p′2, p′3) and (b′1, b′2, b′3). This enables the encoder to accurately identify and repair
errors or inconsistencies in the melody. After pretraining, the pitch and beat prediction
layers were discarded.
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3.3. Generating Chord Progressions by Seq2Seq Model

In this paper, a transformer-based Seq2Seq model is proposed to generate chord
progressions for melodies. The Seq2Seq model consists of a pre-trained encoder and
decoder. As shown in Figure 4, the Seq2Seq model generates chord progressions based
on melodies. First, pitch (p1, p2, p3, . . . , pn) and beat sequences (b1, b2, b3, . . . , bn) were
passed through the note and beat embedding layers, respectively. These embedded features
were then concatenated and fed into the pre-trained encoder. The transformers within the
pre-trained encoder were fully connected, enabling full consideration of the input melodies
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from both directions and extraction of contextual information to ensure that the future
generated chord progressions were suitable for the input melodies.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 16 
 

 

3.3. Generating Chord Progressions by Seq2Seq Model 
In this paper, a transformer-based Seq2Seq model is proposed to generate chord pro-

gressions for melodies. The Seq2Seq model consists of a pre-trained encoder and decoder. 
As shown in Figure 4, the Seq2Seq model generates chord progressions based on melodies. 
First, pitch (𝑝1, 𝑝2, 𝑝3, … , 𝑝 ) and beat sequences (𝑏1, 𝑏2, 𝑏3, … , 𝑏 ) were passed through the 
note and beat embedding layers, respectively. These embedded features were then con-
catenated and fed into the pre-trained encoder. The transformers within the pre-trained 
encoder were fully connected, enabling full consideration of the input melodies from both 
directions and extraction of contextual information to ensure that the future generated 
chord progressions were suitable for the input melodies. 

 
Figure 4. Model structure of the Seq2Seq model in generating chord sequences. 

Additionally, the decoder input is divided into two types. One is the concatenated 
embedding feature obtained from the embedding layers and the other is the contextual 
information ℎ  extracted from the pre-trained encoder. This contextual information is in-
put as the key and the value through cross-attention in each transformer in the decoder, 
whereas the query uses the concatenated embedding features of the pitch and beat se-
quences. In the decoder, the connections between transformers are unidirectional. This 
implies that when predicting the current chord, only the current and previous pitches and 
beats can be considered. In this manner, chord sequences are generated asynchronously 
by the chord prediction layer, which is a linear layer with Softmax. The chord prediction 
layer output is a probability distribution that predicts the chord corresponding to both the 
pitch and beat. To obtain the chord sequence (𝑐1, 𝑐2, 𝑐3, … , 𝑐 ), the argmax function is used 
to identify the indexes with the highest values. To present the result, the chord sequences 
are first reverse indexed to get chord progressions. Then, the chord progressions are re-
encoded using the Python library music21 to output music in MIDI format. 

It should be noted that compared to traditional Seq2Seq models that use RNNs, trans-
former-based Seq2Seq models have greater advantages. Firstly, the parallel mechanism of 
the transformer does not require sequential calculation like RNNs. Therefore, even if the 
number of layers and dimensions of the transformer increases, it can still be trained and 
inferred more quickly. Secondly, the transformer-based decoder can asynchronously re-
ceive input to obtain information for the current time step. Compared to traditional 
Seq2Seq models that only rely on last hidden states of encoder, transformer-based 
Seq2Seq models consider both contextual and asynchronous features simultaneously. 

  

Figure 4. Model structure of the Seq2Seq model in generating chord sequences.

Additionally, the decoder input is divided into two types. One is the concatenated
embedding feature obtained from the embedding layers and the other is the contextual
information hn extracted from the pre-trained encoder. This contextual information is input
as the key and the value through cross-attention in each transformer in the decoder, whereas
the query uses the concatenated embedding features of the pitch and beat sequences. In
the decoder, the connections between transformers are unidirectional. This implies that
when predicting the current chord, only the current and previous pitches and beats can be
considered. In this manner, chord sequences are generated asynchronously by the chord
prediction layer, which is a linear layer with Softmax. The chord prediction layer output is
a probability distribution that predicts the chord corresponding to both the pitch and beat.
To obtain the chord sequence (c1, c2, c3, . . . , cn), the argmax function is used to identify the
indexes with the highest values. To present the result, the chord sequences are first reverse
indexed to get chord progressions. Then, the chord progressions are re-encoded using the
Python library music21 to output music in MIDI format.

It should be noted that compared to traditional Seq2Seq models that use RNNs,
transformer-based Seq2Seq models have greater advantages. Firstly, the parallel mechanism
of the transformer does not require sequential calculation like RNNs. Therefore, even if
the number of layers and dimensions of the transformer increases, it can still be trained
and inferred more quickly. Secondly, the transformer-based decoder can asynchronously
receive input to obtain information for the current time step. Compared to traditional
Seq2Seq models that only rely on last hidden states of encoder, transformer-based Seq2Seq
models consider both contextual and asynchronous features simultaneously.

4. Experiments

The proposed method and three types of baseline models were trained and evaluated
using the OpenEWLD [24] dataset. In this section, details of the dataset, the structure of the
baseline models, training hypermeters, and evaluation results are introduced.

4.1. Dataset

Enhanced Wikifonia Leadsheet Dataset (EWLD) is a music lead sheet corpus in Mu-
sicXML format. OpenEWLD [24] is a subset of EWLD that contains only lead sheets in the
public domain, and it is used as the experimental dataset in this paper. This subset includes
502 lead sheet music formats, from which 502 pairs of pitch, beat sequences from melodies,
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and chord sequences from chord progressions were extracted. Additionally, 328 types of
chords were extracted from the dataset. Figure 5 shows the chords for the top-30 frequency.
Among them, the C major triad had the highest frequency, accounting for approximately
8.1% of all chord occurrences.
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4.2. Baseline Models

In this paper, three baseline models were designed. As shown in Figure 6A, this is a
BLSTM-based chord progression generation model composed of two LSTM layers in the
forward and backward directions. The model is an improved version of the BLSTM model
of Lim et al. [13], in which the embedding layer is replaced with the same embedding layer
as in the proposed method. The model in Figure 6B is designed according to BERT [23],
which is a bidirectional model that can consider contextual features. The last layer of the
model was fully connected to a linear layer using Softmax to generate chord progressions.
The model shown in Figure 6C is designed to refer to a generative pre-trained transformer
(GPT2) [25], which is asynchronous and only considers information from the current
time step and previous steps. The final layer is fully connected directly to a linear layer
with Softmax.
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4.3. Experimental Environment

The experiment was conducted on the model of the proposed method as well as on
three other baseline models. Table 1 lists the hyperparameters used in the training of each
model. When setting the hyperparameters, the values were set as similar as possible in
four models. In this case, Max Sequence Length, Max Epochs, Warmup Epochs, Batch
Size, and optimizer-related hyperparameters such as Learning Rate Decay, Weight Decay,
Adam ε, Adam β1, and Adam β2 were set to the same in all models. Since the length of
music can be diverse, the Max Sequence Length of the input sequences has been set to 512,
which is also the maximum sequence length that the transformer can handle. Based on
the proposed data representation method, all music in the dataset is no longer than this
length, and any shorter sequences were padded with <PAD>. Because the output chord
sequence corresponds to the pitch and beat sequences, its maximum sequence length was
also set to 512. Additionally, in the three models using transformers, transformer-related
parameters such as Hidden size, FFN inner hidden size, Attention heads, Attention head
size, and Dropout were set to the same value. Additionally, the model using BLSTM has its
Hidden size set to 1024 and Dropout set to 0.1. Finally, to balance the number of trainable
parameters in a comparable range, the number of layers in the four models was set to 24,
32, 32, and 32, respectively.

Table 1. Hyperparameters of the model of proposed method and baseline models.

Hyperparameters Proposed Method BLSTM [13] BERT [23] GPT2 [25]

Number of Layers 24 1 32 32 32

Hidden size 1024 1024 1024 1024
FFN inner hidden size 4096 - 4096 4096

Attention heads 16 - 16 16
Attention head size 8 × 8 - 8 × 8 8 × 8

Dropout 0.1 0.1 0.1 0.1

Max Sequence Length 512 512 512 512
Max Epochs 100 100 100 100

Warmup Epochs 10 10 10 10
Batch Size 8 8 8 8

Learning Rate Decay Line Line Line Line
Weight Decay 0.01 0.01 0.01 0.01

Adam ε 1× 106 1× 106 1× 106 1× 106

Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.98 0.98 0.98 0.98

Number of Trainable Parameters 408 M 397 M 382 M 476 M
1 The model of proposed method was composed of a total of 24 transformer layers, with the pre-trained encoder
and decoder each consisting of 12 transformer layers.

Table 2 shows the hardware, software, and machine learning based libraries used in
experiments. The experiments were carried out on an Ubuntu 20.04.1 LTS (GNU/Linux
5.4.0) operating system with the source code written in Python 3.8.10 using PyCharm
2021.1.1. PyTorch 1.13.0, NumPy 1.23.4, Transformers 4.24.0, and Accelerate 0.15.0 machine
learning libraries were used. PyTorch and Transformers were used for model building,
NumPy was used for data preprocessing and representation, and Accelerate was used to
optimize the training process to speed up training. The hardware environment used for the
experiments is detailed in the table, and included CPU, GPU, RAM, and SSD.

4.4. Experimental Results and Discussion

Figure 7 shows the change in the average loss per epoch for the four models during
the training process, where the loss calculation used the cross-entropy function. The
BLSTM model had a more evident downward trend than other models at the beginning
of training. However, the loss did not continuously decrease. The loss-decreasing trend
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of the three models using the transformer was approximately the same. The losses of
BERT and GPT2 approached equality after 60 epochs and converged after 80 epochs. In
the first 20 epochs, the convergence speed of the proposed method was not the fastest.
However, after 40 epochs, the decline in loss exceeded that of the other models, and even
after 80 epochs, a slight downward trend was observed in the loss.

Table 2. Hardware, software, and machine learning based libraries used in experiments.

Item Description Number

CPU Intel Xeon Silver 4310 2
GPU NVIDIA RTX3090 24GB 4
RAM Samsung 32GB DDR4 4
SSD Seagate FireCuda 530 2TB 1
OS Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0) -

Programming Language Python 3.8.10 -
Python IDE PyCharm 2021.1.1 -

Machine Learning Library

PyTorch 1.13.0
Numpy 1.23.4

Transformers 4.24.0
Accelerate 0.15.0

-
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The experimental results show that BLSTM cannot overcome the long-distance de-
pendencies issue. In comparison, the transformer-based model demonstrated significant
advantages in handling long sequences. Additionally, the proposed method using the
Seq2Seq model outperformed BERT and GPT2 in terms of loss convergence.

Hits@k [22] was utilized as the metric to evaluate the generated chord progressions for
calculating the ratio of the reference chord (from chord progressions assigned by human
composers) presence among the top k candidate chords, where k = 1, 3, 5, 10, and 20. Hits@k
is a widely used metric for evaluating recommendation models and is also employed in
music generation to assess the quality of generated results [26]. Hits@k was calculated
as shown in Formula 1, where n represents the number of samples; I(·) is an indicator
function that returns 1 if the rank of the target is less than k, and 0 otherwise.

Hits@k =
1
n ∑n

i=1I(ranki ≤ k) (1)

Table 3 shows the Hits@k scores of the proposed method and baseline models. The
experimental results based on Hits@k indicated that BLSTM was not effective in completing
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the chord progression generation. However, the model of the proposed method outper-
formed the other models when evaluated using various k values. This implies that in the
proposed method, the contextual information provided by the pre-trained encoder and
asynchronous generation of the decoder collaborates effectively and is considered sufficient
for melody compatibility.

Table 3. Hits@k scores of the proposed method and baseline models.

Model HITS@1 (%) HITS@3 (%) HITS@5 (%) HITS@10 (%) HITS@20 (%)

Proposed
Method 36.29 53.23 64.24 76.75 86.28

BERT [13] 34.75 51.56 62.46 75.93 85.76
GPT2 [23] 34.16 45.52 55.07 69.36 80.70

BLSTM [25] 10.40 24.30 36.70 53.53 71.63

Figure 8 shows the confusion matrices of the model of the proposed and other baseline
models on chords with the top-30 frequency. The horizontal axis represents the gener-
ated chords, and the vertical axis represents the target chords. Furthermore, BLSTM
only generated the C major triad chord, which appeared with the highest probability in
the training dataset, indicating that it was unable to discover the relationship between
melodies and chord progressions. A diagonal line was observed in the confusion matri-
ces of the three transformer-based models, which indicates that the chords generated by
these models align with those of human composers. In the part marked by the red box,
the performance of the proposed method was significantly better than that of the other
two transformer-based models.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 16 
 

 

 

 

Figure 8. Cont.



Mathematics 2023, 11, 1111 12 of 14
Mathematics 2023, 11, x FOR PEER REVIEW 13 of 16 
 

 

 

 
Figure 8. Confusion matrices of the model of the proposed method and baseline models on the 
chords with top-30 frequency, where the horizontal axis represents the generated chords, and the 
vertical axis represents the target chords. (A) Confusion matrix of the proposed method. (B) Confu-
sion matrix of BLSTM. (C) Confusion matrix of BERT. (D) Confusion matrix of GPT2. The differ-
ences between (A) and (B) or (C) can be clearly seen from the areas marked by the red box. 

Figure 8. Confusion matrices of the model of the proposed method and baseline models on the chords
with top-30 frequency, where the horizontal axis represents the generated chords, and the vertical axis
represents the target chords. (A) Confusion matrix of the proposed method. (B) Confusion matrix
of BLSTM. (C) Confusion matrix of BERT. (D) Confusion matrix of GPT2. The differences between
(A,C,D) can be clearly seen from the areas marked by the red box.

This paper proposes a method that utilizes a transformer-based Seq2Seq model to
generate chord progressions for melodies. The proposed method outperformed other
baseline models, as observed in the Hits@k and confusion matrix.

In Table 3, the asynchronous GPT2 model performs approximately the same as BERT
that considers contextual information only when k = 1 but is lower than BERT by about
5% to 6% in other k values. This indicated that considering contextual information can
lead to more suitable chord progressions generated for a given melody. Furthermore, the
proposed method, which considers both contextual information and asynchronous features,
outperforms BERT by approximately 1% to 2% in all k values. This also suggested that
emphasizing the input from the current and previous time steps is helpful for generating ap-
propriate chords. However, generating chord progressions was distinct from classification;
as in music, the relationship between melody and chord progression was not one-to-one.
For instance, as shown in Figure 8, the three transformer-based models mostly predict the
E minor triad as the G major triad. However, by analyzing the composition of the chords,
it could be seen that the E minor triad is composed of E, G, and B, and G major triad is
composed of G, B, and D. Both G and B appeared in both G major and E minor triads,
which suggested that the appearance of the G major triad was not an error. However, the G
major triad could serve as an alternative to the E minor triad under certain conditions.
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The goal of chord progression generation is to generate chord progressions that comply
with music theory and that possess diversity and uniqueness. However, collecting high-
quality symbolic music data with chord progressions is challenging, therefore achieving
breakthroughs in diversity and uniqueness is challenging. As shown in Figure 4, the
distribution of chords in the OpenEWLD music corpus is unbalanced. Thus, the bright
regions in Figure 8 tend to concentrate on the left part of the confusion matrix. When the
model was uncertain, it tended to select chords with a higher frequency in the dataset.

5. Conclusions

This paper proposes a method for generating chord progressions using a transformer-
based Seq2Seq model. The model was divided into two parts: a pre-trained encoder
and decoder. The pre-trained encoder uses transformers to understand melodies from
both the forward and reverse directions, extracting context information to pass on to
the decoder. Additionally, the decoder takes the melodies as input and generates chord
progressions asynchronously, considering the contextual information obtained from the
pre-trained encoder. Based on the experimental results, the proposed method outperformed
the three baseline models based on BLSTM, BERT, and GPT2 by 25.89, 1.54, and 2.13%,
respectively, in terms of the Hits@k (k = 1) quantitative evaluation. Furthermore, BLSTM
was unable to generate effective chord progressions due to the difficulty in handling
long-term dependencies.

This transformer-based Seq2Seq model can be used in fields such as automatic music
composition, chord recommendation, and automatic music accompaniment. For example,
in music composition, the model can assist composers in creating more beautiful melodies
and harmonies by generating chord progressions. In terms of chord recommendation, the
model can automatically generate corresponding chord progressions based on the input
melodies, thus providing users with a richer and more diverse selection of chords. In terms
of automatic music accompaniment, the model can generate corresponding chord progres-
sions based on the input melodies and use them as a basis for automatic accompaniment. In
future research, to increase the diversity and uniqueness of generated chord progressions,
melody and chords recognition and data balancing should be studied while continuously
exploring the relationship between melodies and chord progressions.
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